
Delaunay State Management for Large-scale Networked Virtual Environments

Chien-Hao Chien, Shun-Yun Hu and Jehn-Ruey Jiang
Department of Computer Science and Information Engineering

National Central University, Taiwan, R.O.C.
chienhao1@gmail.com, syhu@yahoo.com, jrjiang@csie.ncu.edu.tw

Abstract

Peer-to-Peer (P2P) networks have been proposed as a
promising approach to create more scalable Networked Vir-
tual Environment (NVE) systems, but P2P-NVE also in-
creases the probability of cheating by allowing users to
manage the states of objects. In this paper, we propose De-
launay State Management (DSM), a P2P-NVE state man-
agement scheme that divides the whole virtual world into
many triangular regions by Delaunay triangulation. In
DSM, each region is managed by three super-peers, whose
collective decisions determine how states will change. As-
suming that at most one of the three super-peers is mali-
cious, effective anti-cheating can be provided. Additionally,
we also describe how DSM provides essential state manage-
ment functions (e.g., consistency, load-balancing, and fault-
tolerance), and conclude with its potential applications.

1. Introduction

Most of today’s commercial Networked Virtual Envi-
ronments (NVEs) [16] such as the Massively Multiplayer
Online Game (MMOG) World of Warcraft [1], or the so-
cial virtual world Second Life [15], adopt the Client/Server
(C/S) architecture. These NVEs allow users to create vir-
tual identities called avatars to perform jobs, and interact
with other users, by changing the states of various virtual
objects. These object states, or game states, often include
attributes about an object such as its name, type, location,
and properties. In C/S architectures, the states are managed
by a server. To change these states, users need to first send
events to the server, who would process and simulate the
events to modify the game states. The server then sends up-
dates to notify users who are affected. This event-update
model [7] is used in almost all current commercial NVEs.
As the server would incur a heavy load with an increasing
number of users (e.g., Second Life has over 45,000 peak
concurrent users), partitioning the world into various zones,
and assigning servers from a server-cluster to manage each

zones, has become a popular model for large-scale NVEs.
However, as the number of users increases, maintaining a
server-cluster becomes ever more complicated and costly.

Unlike C/S architectures, a peer-to-peer (P2P) archi-
tecture does not have a central bottleneck, as user-side
resources can be continuously added to support the sys-
tem. Several schemes for P2P-based NVEs (P2P-NVEs)
[2, 3, 6, 8, 12] have thus been proposed to eliminate the cen-
tral bottleneck to improve scalability at lower costs. Unfor-
tunately, P2P also increases the probability of user cheating
and the difficulty to maintain game state consistency on the
user machines. Additionally, as user-supplied resources are
less reliable (e.g., they can crash or leave at any time), fault
tolerance also becomes an important issue.

In this paper, we propose a super-peer-based P2P state
management scheme called Delaunay State Management
(DSM). DSM partitions the virtual world via Delaunay tri-
angulation, and lets three super-peers to collectively man-
age each triangular region. Super-peers thus oversee and
co-work with each other to provide dynamic load balanc-
ing, anti-cheating via mutual checking [11], as well as basic
consistency and fault tolerance.

The rest of this paper is organized as follows: Section 2
provides background on NVE consistency models and ar-
chitectures. We present DSM’s design in Section 3, discuss
its properties in Sections 4, and conclude in Section 5.

2. Background

2.1. Consistency model

Ensuring two or more interacting users have the same
view is an important issue in NVEs. Two main consis-
tency models have been used for current networked games:
event-based and update-based models [7]. The most popu-
lar model for current MMOGs is update-based consistency,
where all clients send events to and receive updates from a
server. In this model, only the server runs the game logic
(i.e., game rules on how behaviors and actions produce out-
comes) to modify states and sends the updates to relevant

users. When conflicting views exist between the server and
clients, the server is considered correct and authoritative. In
event-based model, all participating nodes are equal (such
as in real-time strategy, or RTS games), and game logic is
run at all nodes. Nodes exchange event messages only, and
synchronized event ordering is the basis for consistency.

2.2. Centralized server architectures

In order to increase the number of concurrent users, two
main designs for C/S architectures have been used [7]:

1) Zone-based. The virtual world is divided into sev-
eral regions, where each region is assigned to a server. The
servers are then connected by private high speed networks.
For example, Second Life [15] consists of many regions of
size 256x256 meters, each managed by a dedicated server.
Users see and interact with other users within the same re-
gion, but may also go across (i.e., transfer) to a neighboring
region by walking. Zone-based approach scales the virtual
world by simply adding more server machines. However, a
high density of users in a region can still degrade the quality
of service, and even cause server crashes.

2) Replication-based. The Mirrored Server architec-
ture [18] is based on the idea of fully replicating all game
states at several servers connected by a high-speed network.
Servers exchange among themselves event messages with
an event-based consistency model, and clients can connect
to any server based on latency or load balancing considera-
tions. Several servers together provide better fault tolerance
and load balancing. The main problem of Mirrored Server
is that each server has to synchronize game states with oth-
ers, so the communication cost per server grows at O(n) (n
is the number of users), and the total cost can be O(n2).

2.3. P2P-NVE architectures

To address the limitations in C/S designs, recently many
P2P-NVEs have been proposed. Solipsis [6] and Hyper-
Verse [3] both aim to build a massive virtual world by
providing distributed neighbor discovery and state manage-
ment. SimMud [12] supports basic state management on
a DHT overlay with fixed-size isolated regions. Hu et al.
use Voronoi diagrams to discover neighbors on a P2P net-
work [8] and to perform dynamic zone partitioning to bal-
ance state management loads [7]. Steiner et al. [17] propose
to cluster users on a Delaunay triangulation overlay (dual
of Voronoi) so that message delivery can be done more effi-
ciently in batch. RAP [5] is a hybrid design based on static
partitioning via triangulations. Each triangular vertex is a
landlord that runs on the user’s machine and handles the
state updates in nearby regions. A central server acts as a
tracker for landlord assignments. However, all these de-
signs have not yet considered anti-cheating.

Izaiku et al. [10] propose a cheat-detection system with
event-based consistency and zone-based partitioning. Each
zone (called subarea) has one responsible node and several
monitor nodes selected from user machines. Within each
time round, the users send events to both their responsible
nodes (who would relay the events to other users), and mon-
itor nodes, who would check the hash values of events from
the previous round (attached to the current event) to detect if
the responsible nodes have properly relayed events to users.

Enhanced Mirrored Server (EMS) [18] extends the mir-
rored server architecture by allowing users to exchange
messages directly to reduce transmission delay and increase
scalability. It utilizes selected super-peers called referees
for update authentication. In the Peer-to-Peer (PP) model,
a user sends messages to other users directly for processing
to minimize latency. But to ensure that peers execute game
logic correctly, in the Peer-Referee-Peer (PRP) model, each
user also sends an update to the referee. After the referee
receives and checks this update with all other referees, the
update is sent to relevant users. If referee messages conflict
with user messages, the user’s messages are dropped.

3. Delaunay State Management

Figure 1. A virtual world partitioned by DT

As the traditional centralized architectures may be costly,
here we propose Delaunay State Management (DSM) to
manage game states more cost-effectively. The key ad-
vantages of DSM over existing P2P-NVE schemes are bet-
ter anti-cheating support and more flexible load balancing.
DSM is based on a Delaunay Triangulation overlay net-
work [13], where nodes connect with each other to form
a Delaunay Triangulation (DT). Given a set of points in the
plane, DT divides the plane into a number of triangles such
that no point would exist inside the circumcircle of any tri-
angle (Fig. 1). Given a point, we also define its enclos-
ing neighbors [8] as any others points reachable by an edge
(e.g., circles are the enclosing neighbors of the triangle node
in Fig. 1).

B M

A

C

T

B M

A

C
T

B M

A

C
T

(a) (b) (c)

Figure 2. An example of DSM execution (pub-
lisher: A; watchers: B and C; users: T and M)

3.1. Design of DSM

DSM adopts the update-based consistency model, and
assigns two types of roles for client machines: user and
manager. Users are simply the clients in traditional C/S
architectures; they generate events to represent actions, and
receive updates for the affected, relevant states. Managers
are the more trustworthy and powerful super-peer nodes,
and act as the servers in traditional C/S architectures. Man-
agers have to receive events from users, simulate and pro-
cess the events, then send state updates to relevant users. As
the managers are selected from clients, we cannot guaran-
tee that they never cheat. So, we let multiple managers to
handle a region collectively to detect potential cheating.

We use Delaunay Triangulation to divide a virtual world
into several triangular regions, each of which is maintained
by three managers. All the objects and user states, such
as health points and positions, are stored and simulated by
these managers. Each user sends events to and receives up-
dates from managers to refresh their game states. During
bootstrapping, we first assume the existence of a gateway
server, which provides a number of virtual managers are
selected as the initial managers (Fig. 1). When there are
few users, virtual managers take care of all state manage-
ment tasks. But when the number of users increases, we
can find some powerful and trustworthy clients to replace
the virtual managers to share the load of the server.

The main goal for DSM is to build a robust state manage-
ment system that provides anti-cheating, while still consid-
ers consistency, load balancing (i.e., scalability), and fault
tolerance. Our focus on anti-cheating is to check whether
each manager follows the correct game logic and sends the
correct state updates to users. To do so, a user randomly
selects one of the three managers as publisher and the other
two as watchers before sending an event. The role of the
publisher rotates among managers across different game
rounds based on the user’s choice. All three managers first
process the received event to create state updates indepen-
dently. The two watchers then send hash values of their
updates (called current update hash) to the publisher, who
would distribute these updates to relevant users after veri-
fying the hash values from all three managers are identical.

Managers also keep the hash values of their updates for later
validation. To verify that updates received by users have not
been tampered by the publisher, users attach a hash value of
the previous set of updates (called previous update hash) to
each event message sent. The hash can then be verified by
the watchers to see if the last state update was indeed valid
before processing new events. The event processing steps
for DSM are as follows:
1) Event Delivery: User sends an event to managers.
2) Event Execution: Managers process the events accord-
ing to game logic and game states to create state updates.
3) Inconsistency Resolution: Managers detect and resolve
conflicts regarding state updates with other managers.
4) Update Distribution: Managers send state updates to
relevant users.

Let us take the scenario in Fig. 2 as an example of DSM
execution. The area of 4ABC is maintained by managers
A, B, and C, which are in the same coalition. All game
states in 4ABC are managed and stored by the three man-
agers. In Fig. 2(a), at the Event Delivery step, user M selects
manager A as the publisher, and sends an event (attached
with the previous update hash) to the coalition. When the
three managers receive the event from M, they first check
the hash value. If the received hash matches with the hash
of the previous update kept by the managers, it means that
M and the managers have the same update for the previous
round, so the managers can process this event and generate
updates individually at the Event Execution step. During In-
consistency Resolution, the two watchers (B and C) send the
current update hash to the publisher A (see Fig. 2(b)). The
publisher can then check the received hash values against
its own to see if the updates are independently consistent. If
so, the publisher sends the updates to relevant users (user T
and M) during Update Distribution (Fig. 2(c)). If not, steps
must be taken for DSM to work properly, as shown in Fig.
3. Below we describe in details, how DSM manages con-
sistency, anti-cheating, load balancing, and fault tolerance.

3.2. Consistency

Due to network latency, managers or users may receive
the same events / updates at different times and thus process
them in different orders. To maintain consistency among
managers and users, we adopt a two-level approach. At the
first level, consistency is ensured by assuming that the states
kept by managers collectively are more correct and author-
itative than the users’. Thus, in case of inconsistency, the
users have to synchronize their own states with the man-
agers’ states. This is in essence, how update-based con-
sistency works. At the second level, consistency among
the managers is ensured by majority-voting, or majority-
consensus. If inconsistency arises, we assume that the same
states held by two managers are correct over any alternative

1) Event Delivery

Check

previous

update

Drop event and

synchronize user

No

3) Inconsistency

Resolution
Check current

update

Manager

Synchronization

No

Process event

Yes

Re-execute

Yes

4) Update Distribution

Manager

Synchronization

2) Event

Execution

Figure 3. Event processing steps in DSM

held by the third manager. In case all managers disagree,
the states should restore to a previously agreed version, and
the inconsistent updates are simply discarded (i.e., the event
that causes the state updates becomes ineffective).

We note that in a highly dynamic distributed system such
as NVEs, consistency is better defined as having the same
update ordering for each objects than the same event or-
dering as traditionally viewed. The main reason is that
while ensuring the same event ordering at different nodes
will guarantee consistency, often the costs to maintain strict
event ordering is high, while many events are in fact in-
dependent (i.e., different executing orders actually would
produce the same state updates). Thus, we strive to pro-
vide consistent update ordering rather than consistent event
ordering. One main method to ensure consistent update or-
dering is to use hash value comparisons. When users send
events to managers, the hash of a collection of previous state
updates received by the user is attached to the current event
message. Managers then compare this hash value against
their own versions to verify that the user has indeed received
the proper set of updates for the previous round. This way,
we can make sure that updates for the same game object are
always applied consistently at different user nodes.

There are two check points for state consistency, which
we will describe next (see Fig. 3). For now, we only
consider the inconsistency caused by network latencies;
cheating-related inconsistency is described afterwards.

1) The first check point is when the previous update hash
is checked during the Event Execution step. Such a check
is performed by all three managers. When any manager de-
tects inconsistency in hash values, it would stall this event
and performs the Manager Synchronization procedure. The
goal for the procedure is to make sure that all the managers
have the same set of updates regarding the state changes for
a particular user before they process the events from this
user. It is done as follows: the first manager triggering
the procedure sends the other two managers a sync mes-
sage (SYN) that contains the previous update for the user.
Upon receival, a manager also sends to the other two man-
agers a SYN message attached with its previous updates for
the user in question. At this point, each manager should
know about the other two managers’ previous updates for

the user, and thus could resolve inconsistency based on the
majority version from these updates. The managers would
then drop this event, while the triggering manager notifies
the user of the correct previous update. Afterwards, the user
may resend this event based on a corrected previous update.

2) The second check point is when publisher compares
current update hash provided by the other two watchers at
the Inconsistency Resolution step. If the publisher detects
inconsistent hash values, it means that all three managers do
not have the same set of updates. For such a case, the Man-
ager Synchronization procedure is run again with the SYN
message attached with managers’ current updates instead
of the previous updates of the user. The manager whose up-
date differs from the other two thus can be corrected. After-
wards, the event should be re-executed at all three managers
based on the now-consistent states at each managers.

3.3. Anti-Cheating

Anti-cheating becomes especially difficult in P2P envi-
ronments, as the game states are updated by clients, mali-
cious users may thus manipulate the states easily. Although
we might try to find the more trustworthy users to take the
manager roles [9, 14], there is still no guarantee that mali-
cious acts would never occur. So besides identifying trust-
worthy clients, safety measures must still be taken in case
of malicious behaviors.

For anti-cheating, we first assume that a sufficient num-
ber of trustworthy managers exist and that malicious acts
are rare. If at most one of the three managers is malicious
at any given time, then its actions can be masked by the
other two managers. One important observation is that the
effects of cheating are, in fact, inconsistent states between
malicious and non-malicious users. So, cheating can simply
be seen as a form of inconsistency, and can be corrected by
following the consistency maintenance algorithms. The in-
tuitive idea behind DSM’s anti-cheating mechanism thus is:
managers are assumed to be more trustworthy than users (to
address user cheating), and the majority is more trustwor-
thy than the minority among the managers (to address man-
ager cheating). Below we discuss both user- and manager-
cheating, and how they are respectively handled.

3.3.1 User Cheating

Users in DSM cannot send events or updates to other users
directly; they can only exchange messages with managers.
Malicious behaviors thus can be detected by managers un-
der the assumption that the managers act properly.
Inconsistent events Users may send different events to dif-
ferent managers to cause inconsistency. However, as all
events are processed by all three managers to create up-
dates, the publisher can detect the inconsistency in updates
by checking the hash values of the updates from the two
watchers, and thus discard the event.
Suppressed updates Users may deliberately ignore updates
from managers or stop sending events. However, a user
gains no advantage by suppressing updates. As the man-
agers are ultimately authoritative regarding game states, the
user’s locally modified states will not affect other users’.

3.3.2 Manager Cheating

We assume at most one out of three managers for a given
region is malicious. Malicious acts thus can be masked out
by the two benign managers. In case of continuous cheats,
benign managers can request replacement for the offender.
We discuss the two main manager cheats below.
Publisher cheating Publishers are responsible to validate
the state updates with the other watchers and distribute up-
dates to users. To prevent publishers from sending incor-
rect updates to users or from ignoring some state updates,
the following two actions must be taken: 1) Each user at-
taches a hash value of the previous set of received updates to
each event message sent. If either watcher detects inconsis-
tency between its hash and the user’s hash, it performs the
Manager Synchronization procedure to correct the incon-
sistency. 2) To prevent a publisher from sending incorrect
messages continuously. Users would rotate their choices
for publishers before sending events. 3) When the cheating
user and publisher are the same node, the cheater may se-
lect itself as the publisher to avoid detection. However, the
malicious publisher will produce inconsistent states from
the other two managers, and would be detected by the two
managers in the next round. Manager Synchronization then
would be triggered, nullifying the impact of the cheat.
Watcher cheating Watchers process events to generate up-
dates, and verify if the last update received by each user
is valid. Watchers thus may produce incorrect updates
or improperly trigger Manager Synchronization. Inconsis-
tent updates of the watchers is detected by the publisher,
which checks the updates’ hash values of all three man-
agers. When a publisher detects inconsistency, a majority
decision via Manager Synchronization among managers is
used to determine the correct update. In case all three man-
agers have different views, the states have to rollback to
some common version.

3.4. Load Balancing

A B

D C

F

E

(a) (b)

A B

D

F

E

C

Figure 4. An example of the DT flip operation

The purpose of load balancing is to adjust the managers’
handling regions in order to reduce the workloads of over-
loaded managers. When a manager finds itself overloaded,
it would send an overload message to all of its enclosing
neighbors, some of which will then adjust their positions
to move closer to the requesting manager while avoiding
flip operations of the DT overlay. A flip operation occurs
when an existing DT edge is suddenly replaced by another
edge due to a changed node position. As shown in Fig. 4,
when manager at position E moves to position E’, the move-
ment would cause a flip operation. Because flip operations
can cause drastic changes in object ownerships for nearby
managers, managers should change positions in ways that
would not cause flip operations. As such, the movement of
a manager should be approved by the requesting manager to
avoid simultaneous manager movements, which may cause
unexpected flip operations.

If all the enclosing neighbors of the requesting manager
cannot move without causing flip operations, the requesting
manager should invite a new manager to join the DT overlay
at a nearby location to share some load. Ideally, load bal-
ancing should ensure that the load of each manager does not
exceed the manager’s capacity. As shown in Fig. 5(a), if the
circular area is a hotspot (i.e., an area crowded with many
objects and users), and if the manager handling the area, A,
finds itself overloaded, it will send overload messages to all
its enclosing neighbors. Some responding managers, e.g.,
manager B in Fig. 5, will move closer to A to help reduce
A’s load. Note that B’s own load is not changed after the
movement; however, some enclosing neighbors of B may
now be responsible for areas originally handled by A.

A

B

C D

E

A
B

C D

E

(a) (b)

Figure 5. Load balancing model

3.5 Fault Tolerance

Fault tolerance is naturally supported in DSM, where all
game states are stored by three managers. As we let three
managers to handle a given region, different managers nat-
urally act as backups for each other. When one or two of
the managers fails, the game states stored by the other man-
ager(s) are still available. Managers monitor one another
for detecting manager failures. Once a manager failure is
detected, DSM can recover the game states of the failed
manager immediately. Take the scenario in Fig. 5(a) for
example. Manager A has four enclosing neighbors, and the
states within the triangular region 4ABC are saved by A,
B, and C individually. As a Mirrored Server-like architec-
ture is used by DSM, when A fails, the states of A are al-
ready replicated on A’s enclosing neighbors, and thus can
be restored to a replacement manager.

4. Discussions

Objects in a virtual world may be classified as either dy-
namic or static, according to their mobility patterns. Dy-
namic objects such as user avatars, have high mobility and
generate events frequently, while having more relaxed con-
sistency requirement. Static objects, such as treasure boxes,
are stationary, and may update states less frequently, while
requiring stricter consistency. As DSM provides stronger
consistency and anti-cheating, at a potentially higher mes-
sage and latency costs, it may be more suitable to manage
static objects or serve as a storage layer for P2P-NVEs.

As managers can be any selected super-peers, the man-
ager overlay may be best constructed by considering net-
work latency and super-peer trustworthiness. For example,
we could select managers with smaller latencies with their
enclosing neighbors to minimize communication or owner-
ship transfer costs. If we arrange managers such that the rel-
atively less trustworthy ones are surrounded by more trust-
worthy ones, then our assumption – at most one of the three
managers is malicious – may be achieved with high proba-
bility. How to best select and place the managers so that
both the physical topology and client trustworthiness are
considered will be an interesting future topic.

One final note about the design of DSM is that we pro-
vide anti-cheating by addressing state inconsistency. This
provides a new way to think about anti-cheating such that if
faults can be detected, recovered, and contained, then cheat-
ing may also be rendered harmless. The behaviors of mali-
cious clients can thus be masked out by DSM naturally.

5. Conclusion

In this paper, we present DSM, a P2P-NVE state man-
agement system with strong consistency and anti-cheating

support. Our system is good at managing objects with strict
consistency requirements, at the expense of additional la-
tency. DSM thus is suitable for managing important objects
or events with strict consistency requirements, such as trad-
ing. Considering more dynamic objects, other state man-
agement schemes such as Colyseus [2] or VSM [7] may
complement DSM in managing those objects. The mutual
checking mechanism in DSM is general, so application to
other types of triangulations [4] may also be possible. For
future work, we will evaluate DSM’s design through imple-
mentations and/or simulation experements, and try to bring
better supports for dynamic objects into DSM.

References

[1] World of warcraft. http://www.worldofwarcraft.com, 2008.
[2] A. Bharambe et al. Colyseus: A distributed architecture for

multiplayer games. In NSDI, 2006.
[3] J. Botev et al. The hyperverse - concepts for a federated and

torrent-based ”3d web”. In Proc. MMVE, 2008.
[4] E. Buyukkaya and M. Abdallah. Efficient triangulation for

p2p networked virtual environments. In NetGames, 2008.
[5] K. Endo, Y. Yang, and Z. Zhang. Rap: Reliable peer to peer

network gaming environment using overlapped map tessel-
lation. In MIT Course Project 6.824 Report, 2006.

[6] D. Frey et al. Solipsis: A decentralized architecture for vir-
tual environments. In Proc. MMVE, 2008.

[7] S.-Y. Hu, S.-C. Chang, and J.-R. Jiang. Voronoi state
management for peer-to-peer massively multiplayer online
games. In Proc. NIME, 2008.

[8] S.-Y. Hu et al. Von: A scalable peer-to-peer network for
virtual environments. IEEE Network, 20(4):22–31, 2006.

[9] G.-Y. Huang, S.-Y. Hu, and J.-R. Jiang. Scalable reputation
management for p2p mmogs. In Proc. MMVE, 2008.

[10] T. Izaiku et al. Cheat detection for mmorpg on p2p environ-
ments. In Proc. NetGames’06, 2006.

[11] P. Kabus et al. Addressing cheating in distributed massively
multiplayer online games. In Proc. NetGames, 2005.

[12] B. Knutsson et al. Peer-to-peer support for massively multi-
player games. In Proc. INFOCOM, 2004.

[13] J. Liebeherr, M. Nahas, and W. Si. Application-layer mul-
ticasting with delaunay triangulation overlays. IEEE JSAC,
20(8):1472–1488, Oct 2002.

[14] V. Lo, D. Zhou, Y. Liu, C. GauthierDickey, and J. Li. Scal-
able supernode selection in peer-to-peer overlay networks.
In Proc. HOT-P2P’05, 2005.

[15] P. Rosedale and C. Ondrejka. Enabling player-created on-
line worlds with grid computing and streaming. Gamasutra
Resource Guide, 2003.

[16] S. Singhal and M. Zyda. Networked Virtual Environments:
Design and Implementation. ACM Press, 1999.

[17] M. Steiner and E. W. Biersack. Ddc: a dynamic and dis-
tributed clustering algorithm for networked virtual environ-
ments based on p2p networks. In Proc. CoNEXT ’05, 2005.

[18] S. D. Webb, S. Soh, W. Lau, and W. Lau. Enhanced mirrored
servers for network games. In Proc. NetGames ’07, 2007.

