
Improving Web Server Performance Through Main Memory Compression

Vicenç Beltran, Jordi Torres and Eduard Ayguadé

Barcelona Supercomputing Center - Technical University of Catalonia

{vbeltran, torres, eduard}@ac.upc.edu

Abstract

Current web servers are highly multithreaded appli-

cations whose scalability benefits from the current multi-

core/multiprocessor trend. However, some workloads can

not capitalize on this because their performance is limited

by the available memory and/or the disk bandwidth, which

prevents the server from taking advantage of the computing

resources provided by the system. To solve this situation we

propose the use of main memory compression techniques to

increment the available memory and mitigate the disk band-

width problem, allowing the web server to improve its use

of CPU system resources.

In this paper we implement to the Linux OS a full SMP

capable main memory compression subsystem to increase

the performance of a web server running the SPECweb2005

benchmark. Although main memory compression is not

a new technique per-se, its use in a multicore environ-

ment running heavily multithreaded applications like a web

server introduces new challenges in the technique, such

as scalability issues and the trade-off between the com-

pressed memory size and the computational power required

to achieve it. Finally, the evaluation of our implementaiton

shows promising results such as a 30% web server through-

put improvement and a 70% reduction in the disk bandwidth

usage.

1. Introduction

Generally speaking, compressed memory systems are

based on the reservation of some physical memory to store

compressed data, virtually increasing the amount of mem-

ory available to the applications. This extra memory re-

duces the number of accesses to the disk and allows the

execution of applications with larger working sets without

trashing. However, the benefits of the compressed memory

systems greatly depends on both the application access pat-

tern and the data compression ratio, as well as, the ratio of

compressed/uncompressed memory configured.

Previous work has exploited the compressed memory

systems to accelerate the execution of single threaded ap-

plications with a large working set, exchanging high latency

disk access for faster compressed memory access. This ap-

proach uses the idle times that this type of application usu-

ally spends accessing the disk to perform the decompres-

sion of the data requested. In contrast, we are interested

in investigating the benefits that compressed memory sys-

tems can contribute to disk I/O bandwidth bound applica-

tions like a web server running the SPECweb Support work-

load. In this case, the problem is that the web application

is bounded by the available I/O bandwidth of the disk. A

compressed memory system can mitigate this problem by

providing more available memory to cache disk content in

memory, thus reducing the number of accesses to the disk

and the effective disk I/O bandwidth needed. A major chal-

lenge with this approach is the large amount of CPU power

needed to provide the adequate bandwidth between the non

compressedmemory and the compressed one and viceversa.

However, this CPU power is nowmore easily available with

the proliferation of multicore and multiprocessor systems

which can be utilized for this purpose.

In summary, the focus of the paper is to improve the

performance of a highly multithreaded web server running

a disk-bounded web application. To this end, we have

implemented the first full SMP capable Compressed Page

Cache (CPC) in the Linux OS that make the most of mul-

ticore/multiprocessor architectures. To accomplish our ob-

jective we have solved two challenging scalability issues.

Firstly we have implemented our CPC on a multiproces-

sor Linux system that can scale in a highly threaded en-

vironment like that provided by a web server running the

SPECweb2005 benchmark and secondly, we have fructu-

ously used a large fraction of the physical memory to store

compressed data without running out of memory. As we

will show, our novel CPC proposal is able to work with op-

timal performance when up to 85% of the memory is dedi-

cated to store compressed data (in contrast to previous pro-

posals that have been evaluated with a much smaller frac-

tion of compressed memory, e.g. 10-20% in [19]).

2008 14th IEEE International Conference on Parallel and Distributed Systems

1521-9097/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPADS.2008.15

303



2. Related Work

Web servers are a well studied subject in the literature;

issues like performance [7], scalability [11], overload [12]

or security [5] have been deeply discussed but, to the best

of our knowlegde, the improvement of web server perfor-

mance with memory compression techniques has not been

studied before. The rationale behind using memory com-

pression techniques to improve web servers’ performance

is based on the fact that the bottleneck of a web server for

some workloads is the disk bandwidth and we can mitigate

it with more memory at the expense of CPU cycles to per-

form the data compression. With the expansion of multi-

core and multiprocessor systems the CPU resources needed

to make this technique feasible are currently available.

Our software main memory compression implement the

compression techniques on top of commodity hardware

without any special hardware support. In this section we

review the most relevant works in this area. The first mem-

ory compression proposal, due to Wilson [21], intends to

improve system performance reducing the latency associ-

ated with disk access. In [10] Douglis implements the first

adaptive memory compression scheme in Spirit OS, based

on a global LRU that can improve or decrease the perfor-

mance of the system depending on the workload character-

istics. Kaplan et al. [13] study the adaptive memory com-

pression scheme proposed by Douglis through simulation

and found that the proposed scheme has been partly at fault

for some workloads. Kaplan also contributes the WK fam-

ily of compression algorithms designed for in memory data

representations rather than file data. Finally he proposes a

method to determine how much memory should be com-

pressed during a phase of program execution by performing

an online cost/benefit analysis, based on recent program be-

havior statistics.

In [8] Cervera et al. implement in the Linux OS a com-

pressed swapping mechanism to reduce the number of times

the system has to access the swap device. Although the

amount of compressed swap memory used was rather small,

they observe a noticeable improvement of system perfor-

mance. This is the first work that swaps out pages to the

swap device in compressed form, virtually increasing its

capacity. Freedman et al. [3] apply memory compression

techniques to reduce the power consumption and to improve

the speed of embedded systems. Their compressed cache

implementation is based on a log-structured circular buffer

that allows the compressed cache area to be dynamically

resized. They estimate that compressed memory improves

the disk acces in both power efficiency and speed by 1-2

orders of magnitude. In [17] Roy et al. also proposes us-

ing compressed memory in order to hide the large latencies

associated with disk access. They claim that the optimal

fraction of memory that should be reserved for compres-

sion lies at around 25% across a wide range of application

types but they fail to provide a more general approach to

set the memory compression size. In [9] Rodrigo reevalu-

ates the use of adaptive compressed caching to improve the

system performance. The main idea behind their proposal

remains and it is to reduce the amount of disk accesses to

improve the data access latency. Their contribution is a new

adaptability policy that adjusts the compressed cache size

on-the-fly based on the recent program behavior. They im-

plement the compressed cache in the Linux kernel and it’s

the first to provide file backed memory compression as well

as swap based memory compression. They use the WKdm

specialized compression algorithm to compress swap based

pages and the LZO generic algorithm to compress file based

memory pages. Their implementation provides noticeable

improvements for a wide range of workloads and minimum

overhead for the rest. Tuduce [19] proposes a new heuristic

to dynamically determine the compressed cache size with

the objective of keeping all the application’s working set in

memory. Their results show increases in performance by

a factor of 1.3 to 55 times in three single threaded appli-

cations. Finally, in [16] Nitin Gupta has ported Rodrigo’s

implementation of the compressed cache from kernel 2.4 to

kernel 2.6 under the Google Summer of Code program for

the OLPC project [15]. The work is based on the work and

ideas of Kaplan, Rodrigo and Irina and the main objective is

to increase the tiny memory available on the OLPC laptops.

None of the cited works has studied memory compres-

sion from the point of view of disk I/O bandwidth. We fo-

cus our discussion around the multicore and multiproces-

sors systems as today they are standard commodity hard-

ware. To the best of our knowledge, our implementation is

the first to fully take advantage of the new multicore and

multiprocessor system’. Another remarkable characteristic

is that it is highly scalable in the amount of RAM that can

be used to store compressed data (up to 85% of the physi-

cal RAM). In this paper we do not compare our implemen-

tation with previous memory compression proposals (like

[9] and [19]) because it would produce equivalent results

for the workloads that have already been studied. Instead,

we focused on the evaluation of a multithreaded web server

with a disk bandwidth-bound workload on a multiproces-

sor environment, which is not supported by previous im-

plementations of the main memory compression techniques

described in the literature. We have augmented our com-

pressed page cache, first introduced in [6], with an asyn-

chronous implementation described in section 4.4. We have

evaluated our compressed page cache with a complete scal-

ability study in a quad-core PowerpPC970 server. We also

analyze the tradeoff between the compressed memory size

and the CPU power required to perform the compression

and decompression tasks.

304



Figure 1: Linux Unified Page Cache Diagram

3. Compressed Page Cache Design

We have chosen the Linux operating system to imple-

ment our compressed memory subsystem. In the following

section, we briefly describe the overall Linux memory man-

agement subsystem and the design goals of our compressed

page cache (CPC). For more details about our CPC imple-

mentation refer to [6].

3.1. Design Goals and Implementation

The objective of our design is to extend the unified page

cache of Linux depicted in Figure 1 and provide a high per-

formance compressed page cache (CPC) that can fully ex-

ploit the power of current multiprocessor systems. We also

want to be able to use a large fraction of the physical mem-

ory to store compressed data because our web server work-

load (SPECweb Support) has a huge working set, many

times larger than the available memory. Another design ob-

jective is to minimize the number of changes made to the

Linux kernel, avoiding the addition of complex algorithms

or data structures. The Figure 2 shows the Linux unified

page cache extended with our compressed page cache.

Linux memory management is developed around its core

concept: the page frame. All the memory available on the

system is divided in to page frames of the same size (usu-

ally 4Kb). The page frame is the smallest unit of work to

manage the system memory. The content of a page frame

changes dynamically depending on the needs of the sys-

tem. Generally speaking, one page frame may contain three

types of data: anonymous pages, file backed pages and pri-

vate kernel pages. The anonymous pages contain data dy-

namically allocated from user space programs and can be

Figure 2: Compressed Page Cache Diagram

swapped out under memory pressure if a swap device ex-

ists. File backed pages contain data that comes from filesys-

tem I/O operations. Finally, private kernel pages are used

and managed by the kernel and device driver code for pri-

vate purposes and can not be swapped out. An example

of this type of memory is the SLAB allocator, which pro-

vides memory for in-kernel use. The anonymous pages

and the file backed pages form the unified page cache.

The main data structure behind the unified page cache is

a radix-tree that works as an efficient dictionary, mapping

keys with page frames. All the I/O operations take place

through this unified cache depicted in Figure 1. When a

page fault occurs or an I/O operation is required, the ker-

nel always checks the unified page cache (with a call to

find get page()) to find the requested data. If the data is

not in the page cache the kernel adds a new page frame

to the page cache (with a call to add to page cache()) and

performs the required I/O operation so that the page cache

is always up to date. All the pages of the unified page

cache are linked together with a linked list to track their

activity with a LRU like algorithm. When the system is

under memory pressure, the kernel tries to free batches

of pages from the tail of the LRU list (with a call to re-

move from pagecache()) until enough memory is available.

The main idea behind the CPC is to modify the current

unified page cache depicted in Figure 1 to also contain com-

pressed page frames. Each compressed page frame has an

augmented struct page called struct cpage, which is dynam-

ically created to manage its content. This struct cpage is an

extension of the standard struct page but contains additional

information about the location and size of the compressed

page frame. We mark one unused bit of the flags field in

order to identify the pages that are currently compressed.

305



Linux 4GB

 !"#$%&'  ()*+,-*#.,&/00  (Linux 8GB 12 /'0  (
 !"#$304  (-5678,"",9 )*+,-*#.,'&4%  (CPC 4GB (68%) 12 /'0  ()*+,-*#.,%0&  (  !"#$'&:  ()*+,-*#.,/%00  ( 12 /'0  (

;5<*= > '&4%?0$3@ A %0& > &/00  (
CPC 8GB (80%) 12 /'0  ()*+,-*#.,%@'  (;5<*= > :%00?0$3@ A %0& > @:/:%  (  !"#$40:  (-5678,"",9 )*+,-*#.,:%00  (

Figure 3: Compressed Page Cache Memory Layout

Name RAM CPC memory PageCache Size

Linux 4GB 4GB 0% 3400MB

Linux 8GB 8GB 0% 7300MB

CPC 4GB 4GB 68% 7300MB1

CPC 8GB 8GB 80% 16300MB1

Table 1: Summary of configurations evaluated. 1with a data

compression factor of 41%

Figure 2 shows the CPC diagram. In this scenario, we

capture a page that is close to being discarded from the page

cache, compress it, split its content on top of the SLAB al-

located buffers, and update its reference in the radix-tree to

point to the new compressed page. The original page frame

is discarded and the new page is inserted at the head of the

LRU list. If it is not referenced in a period of time, then it is

discarded by the kernel reclamation code. When a lookup

on the page cache returns a compressed page, we allocate

a new page frame and fill it up with the decompressed data

and the SLAB buffers that contain the old data are returned

to the SLAB allocator. If the allocation of the new frame

fails, the compressed page frame is discarded and a null

value is returned, so the kernel takes the appropiate actions

to read the required data from the filesystem or swap device.

4. Experimental Results

4.1. Experimental Environment

We evaluated the performance of our compressed page

cache with the Tomcat [1] web server and the SPECWeb

2005 [4] benchmark. The SPECWeb 2005 benchmark is

divided into three logical components that run on different

servers interconnected by a gigabit ethernet switch. The

first component is the distributed client emulator that runs

on a group of OpenPower 720 servers. The second is the

web server that runs on a JS21 blade with two dual core

Power970, 8GB of RAM, two 60GB SCSI drives and two

ethernet gigabit links connected to the main switch. Finally,

the third component is the database emulator (BESIM) that

runs on an OpenPower 710. The JS21 server runs a 2.6.21

Linux kernel augmented with the compressed page cache

(CPC), while all the other servers run a Linux distribution

with a standard 2.6.9 kernel version. In this paper we fo-

cus our attention on the SPECweb2005 Support workload,

which is designed to simulate a vendor’s support web site.

The two principal characteristics of the Support application

are the use of only plain connections and a large working set

per client, so the benchmark tends to be I/O disk intensive.

4.2. SPECWeb2005 Benchmark

In this section we evaluate the performance of the Tom-

cat web server running on top of the CPC vs running the

web server on top of a plain Linux kernel by using the

SPECWeb 2005 Support application. The original work-

ing set of the SPECWeb Support is generated with random

data so it is incompressible. In order to evaluate the benefits

of our compression approach we have replaced the content

of the original working set with the content of some files

from the Silesia corpus [18], which is intended to represent

the current content of common diskfiles. This dataset has an

average compression factor of 41% with the LZO compres-

sion algorithm that is between the ranges that some papers

forecast for in memory data [19], [13] and [2]. We have cho-

sen the LZO algorithm because it has a good compression

ratio with file backed data and is one of the fastest available

compressors.

We compare the performance of four diferents configu-

rations. Firstly, we run the web server benchmark with the

standard 2.6 Linux kernel configured with 4GB and 8GB

of physical RAM. The results of both configurations are

used as a bottom and upper baseline result to compare with

the performance obtained using the compressed page cache

(CPC) on a system with 4GB of physical RAM, but con-

figured with a page cache size equal to the 8GB configu-

ration due to the compression effect. Finally we also run

the benchmark with the CPC and 8GB of physical RAM to

prove it’s scalability. The experiments are summarized in

table 1. As we can observe the two plain Linux configu-

rations with 4GB and 8GB of physical RAM have a page

cache of size 3600MB and 7300MB respectively. The re-

maining RAM is used as a heap by the Java virtual machine

that runs the Tomcat server and for Linux internal purpose,

like network buffers and other non swappable slab caches.

In figure 3 we can see a diagram detailing the memory lay-

306



out of the four configurations evaluated. The region labeled

”misc” includes network buffers, a minimum pool of free

pages, the array of struct pages and other non swappable

memory. The region labeled JVM is the memory utilized by

the Java Virtual Machine that runs the Tomcat web server.

In order to insolate the effects of the CPC on the perfor-

mance of the page cache we have configured the system

to be without a swap partition, thus the anonymous mem-

ory can not be swappend out and reclaimed. We have used

68% of the memory to store compressed data on the CPC

4GB configuration in order to have a page cache as large as

the plain Linux 8GB configuration. With a data compres-

sion factor of 41%, the CPC 4GB configuration with 68%

of memory dedicated to store compressed data results in

2785MB of compressed data plus 507MB of uncompressed

memory that adds up to a page cache size of 7300MB like

the plain Linux 8GB configuration. Although the page

cache size of the evaluated configurations are large, they are

unable to cache all of the working set of the SPECweb Sup-

port Workload which is considerably larger. In this bench-

mark the working set size is proportional to the number of

clients and goes from 17GB for 1000 concurrent clients to

37.4GB for 2200 concurrent clients.

4.3. Performance Results

In the first set of experiments we run a total of thirteen

tests on each configuration, varying the intensity of the load

from 1000 to 2200 concurrent clients in increments of 100.

For each test we capture a set of performance parameters re-

turned by the benchmark client; like the obtained through-

put and the response time, as well as, a number of system

metrics returned by the vmstat tool and the CPC code, e.g.

disk bandwidth usage, CPU utilization, page cache size and

compression/decompression times. In the second set of ex-

periments we choose the load with the best throughput for

the 8GB CPC configurations, and then vary the percentage

of memory dedicated to store compressed data from 10% to

80% in increments of 10 points.

4.3.1 Compressed Page Cache vs Plain Linux Kernel

In figure 4 we see the throughput of all the configurations

evaluated. As we can observe, all the configurations have a

similar behavior with two different phases. In the first phase

they increase their throughput linearly with the number of

concurrent clients (or load). At a certain point the server

stops increasing its throughput and enters the second phase

which is characterized by a softly decreasing throughput as

the load grows. The main difference between the configu-

rations is the point when they get saturated i.e. the change

between the first and the second phase. Figure 5 is com-

plementary to figure 4 and shows how the response time

quickly grows when a configuration reaches its saturation

point. This is normal behavior observed in web servers per-

formance [7].

As we can see in figure 4 the configuration where the

standard Linux kernel has 4GB of RAM is the first to reach

the saturation point with a load of 1400 concurrent clients.

This low throughput can be explained by looking at figure

7 where we can check that the disk bandwidth utilization

at this point is at its maximum (44MB/s). We have verified

that the bottleneck is the disk bandwidth by checking the

network and CPU resource usage. The standard Linux ker-

nel configured with 8GB of RAM has a larger page cache

size than the 4GB configuration as shown in figure 6. The

main effect of a larger page cache is the reduction of disk

accesses, saving disk bandwidth per client, delaying the sat-

uration point and achieving better overall performance. Fig-

ure 4 shows how the 8GB configuration is able to reach its

maximum throughput with 1700 concurrent clients.

The CPC configuration with 4GB of physical RAM per-

forms somewhere between the other two setups. It is ca-

pable of obtaining a noticeably better throughput than the

4GB configuration, but is unable to reach the levels of per-

formance of the 8GB configuration despite the fact that both

configurations have the same page cache size of 7300MB

as we see in figure 6. This result is explained by the disk

bandwidth data plotted in figure 7 that shows how the CPC

4GB configuration is unable to exceed 41MB/s while the

two configurations without memory compression reaches

44MB/s. This performance penalty is explained by how the

linux memory reclamation code works.

In Linux the memory can be reclaimed through the

kswapd daemon or directly by an application. In the first

case, the kswapd deamon is woken up periodically and if

the free memory is below a predefined threshold it starts the

reclamation procedure. In the second case, the application

performs a new memory allocation and if the memory is

below a predefined threshold it starts the reclamation pro-

cedure. In the plain Linux kernel executing the reclamation

code has no effect on performance, but with the CPC, the

discarded pages have to be compressed, so the reclamation

procedure is much slower. This fact slows the process of

obtaining new pages to perform the required disk operations

and is the cause of the lower disk read performance.

4.3.2 Compresed Page Cache Scalability

In figure 9 we can see the detailed CPU usage of the CPC

8GB configuration with a constant load of 2100 concurrent

clients. The PageCache key shows the size of the CPC (sum

of both compressed and uncompressed page frames), the

User key reflects the CPU time spent in the Java virtual ma-

chine, the System key shows the CPU spent on system calls

and the Compression and Decompression keys the amount

307



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1000  1200  1400  1600  1800  2000  2200

re
q
u
e
s
ts

/s

Number of clients/s

SPECWeb2005 Support Throughput

Linux 4GB
CPC 4GB (68%)

Linux 8GB
CPC 8GB (80%)

Figure 4: Throughput comparison

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1000  1200  1400  1600  1800  2000  2200

s
e
c
o
n
d
s

Number of clients/s

SPECWeb2005 Support Response Time

Linux 4GB
CPC 4GB (68%)

Linux 8GB
CPC 8GB (80%)

Figure 5: Response Time comparison

 0

 4

 8

 12

 16

 20

 1000  1200  1400  1600  1800  2000  2200

G
B

y
te

s

Number of clients/s

SPECWeb2005 Support Page Cache Size

Linux 4GB
CPC 4GB (68%)

Linux 8GB
CPC 8GB (80%)

Figure 6: Linux Page Cache Size

 0

 10

 20

 30

 40

 50

 1000  1200  1400  1600  1800  2000  2200

M
B

y
te

s
/s

Number of clients/s

SPECWeb2005 Support Disk Bandwidth

Linux 4GB
CPC 4GB (68%)

Linux 8GB
CPC 8GB (80%)

Figure 7: Disk Bandwidth Utilization

 0

 50

 100

 150

 200

 250

0 10 20 30 40 50 60 70 80 85
 0

 10

 20

 30

 40

 50

re
q
u
e
s
t/
s

M
B

/s

% of Compressed Memory

CPC 8GB with 2100 concurrent clients

Throughput
Bandwidth

Figure 8: Throughput and Disk Bandwidth Trend

 0

 20

 40

 60

 80

 100

0 10 20 30 40 50 60 70 80 85
 0

 4

 8

 12

 16

 20

%
 o

f 
p

ro
c
e

s
s
in

g
 t

im
e

 (
4

 C
P

U
s
)

P
a

g
e

C
a

c
h

e
 s

iz
e

 (
G

B
y
te

s
)

% of Compressed Memory

CPC 8GB with 2100 concurrent clients

User
System
Compression
Decompression
PageCache Size

Figure 9: Detailed CPU usage

308



 0

 5

 10

 15

 20

 25

 30

 0  20  40  60  80  100  120

%
 o

f 
p

ro
c
e

s
s
in

g
 t

im
e

 (
4

 C
P

U
s
)

Percentual increment of PageCache size

CPC 8GB with 2100 concurrent clients

Memory-CPU tradeoff

Figure 10: Memory and CPU trade-off

of CPU used for compressing and decompressing data re-

spectively.

Figures 8 and 9 show how the CPU spent in User and

System grows proportionaly to the throughput obtained. In

contrast, the CPU time dedicated to compressing data has a

large impact as soon as we dedicate some memory to store

compressed data. From that point on, the CPU spent in

Compression grows proportially to the number of decom-

pressions, which is proportional to the number of cache hits,

and also grows as the compressed page cache size grows.

We have two key factors that explain the big differences be-

tween the compression and decompression times. Firstly,

the compression time of a page frame is double its de-

compression time and secondly, we compress all the page

frames when they are reclaimed, so that all the data that

is read from the disk or from the compressed page cache

is compressed sooner or later. In contrast, we only decom-

press a page when a page cache lookup has a hit; that is , for

example, 40% of the time with 70% of memory dedicated

to store compressed data.

We can observe how the throughput increases as the

percentage of compressed memory increases and thus the

PageCache size also increases. In this case, we reach the

maximum throughput when 80% of the memory is dedi-

cated to store compressed data. Figure 3 shows how this

configuration has an uncompressed page cache of 512MB.

Below this minimum size, the configurations start to de-

grade their throughput due to the memory shortage. In fig-

ure 8 we can observe how the throughput increases and the

disk bandwidth decreases considerably as the percentage of

compressed memory rises up to 85%, when the throughput

starts to decrease. These figures show the good scalabilty

that our CPC has in function of the percentage of the com-

pressed memory used.

Figure 10 shows the trade-off between the increase in

PageCache size and the computational power required to

achieve it with the Support workload. As we can see the

processing time required and the increment of the Page-

Cache size are proportional. We can also observe that

the sum of CPU time for Compression and Decompression

tasks range from 11% to 26% (with a page PageCache size

increment of 18% to 120% respectively). The ability of the

CPC to double the PageCache size from less than 8GBytes

to slightly more than 16GBytes shown in figures 8 and 10,

produces a remarkable increase in throughput for the CPC

8GB configurations, which is depicted in figure 4.

4.4. Synchronous vs Asynchronous CPC

The implementation of the CPC used to evaluate the

performance of a web server in the last section has been

designed to run the compression and decompression tasks

synchronously in the current thread. This design can

take advantage of a multiprocessor system because the

Linux kernel and the evaluated web server running the

SPECWeb2005 workload are highly threaded. In contrast,

if an application were single threaded, with this design, it

is more difficult to fully exploit the power of larger mul-

tiprocessors systems. To solve this problem and allow the

execution of compression / decompression tasks in special-

ized compression hardware or dedicated cores of a hetero-

geneous multiprocessor system like the CBE [20], we have

implemented in the linux kernel a mechanism to execute

these tasks asynchronously. Our framework runs on top of

the workqueues facility provided by the standard linux ker-

nel. These workqueues have a dedicated thread for each

cpu that processes the tasks enqueued. Our implementa-

tion allows the kswapd daemon to send a batch of compres-

sion tasks to multiple workqueues increasing the processing

parallelism. The decompression tasks are also enqueued to

dedicated workqueues, but in this case we can not send mul-

tiple decompression tasks because the decompressions are

always triggered one to one. We have evaluated and com-

pared the asynchronousmechanismwith the CPC 8GB con-

figuration using the same parameters and the results have

not shown a noticeable degradation of the performance of

the asynchronous CPC. Despite the overhead of enqueue

tasks and context switches, the performance of both mech-

anisms are on a par because this overhead is small com-

pared with the time required to perform compression and

decompression tasks. With these results, we can predict that

the performance of the CPC running on top of specialized

hardware and heterogeneous multiprocessors are both fea-

sible and promising. We think that our software approach

can be augmented with the utilization of this new kind of

hardware resources to create hybrid memory compression

systems that have the flexibility of the software implemen-

tations and the performance of the specialized hardware so-

lutions.

309



5. Conclusions and Future Work

We implemented on the Linux OS a main memory com-

pression system that takes advantage of the full power of

current multiprocessors architectures. We evaluated its per-

formance with a higly threaded web server running the re-

alistic SPECWeb2005 benchmark and obtained positive re-

sults such as a 30% throughput improvement and a 70%

reduction in the disk bandwidth usage. Our CPC imple-

mentation allows us to maximize the utilization of multicore

and multiprocessor systems by memory-bounded applica-

tions, interchanging CPU cycles with memory space in a

flexible manner. With the obtained results from our asyn-

chronous implementation we can anticipate the big impact

that this technology can have in conjunction with new mul-

tiprocessor and multicore technologies like the Niagara [14]

and CELL [20] processors which have the power to accel-

erate the compression and decompression tasks, opening up

the performance improvement to a wider set of applications

bounded by the memory size or disk I/O bandwidth. Our re-

sults show how our CPC implementation can utilize almost

all of the physical memory to store compressed data and

improve the overall performance of the system by a large

margin. In the future, we will study the benefits of sending

anonymous and file-backed pages to disk in a compressed

form to effectively increase the bandwidth of the disk by

the data compression factor, and to reduce the number of

compressions that are now required.

6. Acknowledgments

This work has been supported by the SpanishMinistry of

Education and Science (projects TIN2007-60625), by the

IBM SoW on Adaptive Systems, as part of the BSC-IBM

collaboration agreement, and the HiPEAC Network of Ex-

cellence (IST-004408).

References

[1] Apache Software Foundation. Tomcat Project.

http://tomcat.apache.org.

[2] B. Abali, H. Franke, D.E. Poff, R.A. Saccone, C.O. Shulz,

L.M. Herger, and T.B. Smith, ”Memory Expansion Tech-

nology (MXT): Software Support and Performance,” IBM I.

Research and Development, vol. 45, no, 2, 2001.

[3] Michael J. Freedman. The Compression Cache: Virtual

Memory Compression for Handheld Computers. Technical

report, Parallel and Distributed Operating Systems Group,

MIT Lab for Computer Science, Cambridge, 2000.

[4] Standard Performance Evaluation Corporation.

SPECweb2005. http://www.spec.org/web2005/.

[5] V. Beltran, D. Carrera, J. Guitart, J. Torres, and E. Ayguadé.

A hybrid web server architecture for secure e-business web

applications. In HPCC, pages 366–377, 2005.

[6] V. Beltran, J. Torres, and E. Ayguadé. Improving disk

bandwidth-bound applications through main memory com-

pression. In MEDEA ’07: Proceedings of the 2007 work-

shop on MEmory performance, pages 57–63, New York,

NY, USA, 2007. ACM.
[7] D. Carrera, V. Beltran, J. Torres, and E. Ayguade. A hy-

brid web server architecture for e-commerce applications.

In Proceedings of the 11th International Conference on Par-

allel and Distributed Systems (ICPADS’05), pages 182–188,

Washington, DC, USA, 2005. IEEE Computer Society.
[8] R. Cervera, T. Cortes, and Y. Becerra. Improving Applica-

tion Performance through Swap Compression. In Proceed-

ings of the USENIX Technical Conference (Freenix track),

1999.
[9] R. S. de Castro, A. P. do Lago, and D. D. Silva. Adap-

tive Compressed Caching: Design and Implementation. In

SBAC-PAD ’03: Proceedings of the 15th Symposium on

Computer Architecture and High Performance Computing,

page 10, Washington, DC, USA, 2003. IEEE Computer So-

ciety.
[10] F. Douglis. The Compression Cache: Using On-line Com-

pression to Extend Physical Memory. In USENIX Winter,

pages 519–529, 1993.
[11] J. Guitart, V. Beltran, D. Carrera, J. Torres, and E. Ayguade.

Characterizing secure dynamic web applications scalability.

Parallel and Distributed Processing Symposium, 2005. Pro-

ceedings. 19th IEEE International, pages 108a–108a, 04-08

April 2005.
[12] J. Guitart, D. Carrera, V. Beltran, J. Torres, and E. Ayguade.

Session-based adaptive overload control for secure dynamic

web applications. Parallel Processing, 2005. ICPP 2005.

International Conference on, pages 341–349, 14-17 June

2005.
[13] S. F. Kaplan. Compressed Caching and Modern Virtual

Memory Simulation, Ph.D. Thesis, University of Texas at

Austin, December 1999.
[14] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A

32-way multithreaded sparc processor. IEEE Micro.
[15] One Laptop per Child Foundation. One Laptop per Child

Project. http://laptop.org/.
[16] Rodrigo S. de Castro. Compressed Caching for Linux.

http://linuxcompressed.sourceforge.net/.
[17] S. Roy, R. Kumar, and M. Prvulovic. Improving System Per-

formance with Compressed Memory. In IPDPS ’01: Pro-

ceedings of the 15th International Parallel & Distributed

Processing Symposium, page 66, Washington, DC, USA,

2001. IEEE Computer Society.
[18] Sebastian Deorowicz. Silesia Compression Corpus.

http://www-zo.iinf.polsl.gliwice.pl/ sdeor/silesia.html.
[19] I. C. Tuduce and T. R. Gross. Adaptive Main Memory Com-

pression. InUSENIX Annual Technical Conference, General

Track, pages 237–250, 2005.
[20] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and

K. Yelick. The potential of the cell processor for scientific

computing. In CF ’06: Proceedings of the 3rd conference

on Computing frontiers, pages 9–20, New York, NY, USA,

2006. ACM Press.
[21] P. R. Wilson. Operating System Support for Small Objects.

In Workshop on Object Orientation in Operating Systems,

pages 80–86, Palo Alto, CA, October 1991. IEEE Press.

310


