Query Management in a Sensor Environment

Martin F O’Connor

Dublin City University
moconnor@ computing.dcu.ie

Abstract

Traditional sensor network deployments consisted of
fixed infrastructures and were relatively small in size.
More and more, we see the deployment of ad-hoc sen-
sor networks with heterogeneous devices on a larger
scale, posing new challenges for device management
and query processing. In this paper, we present our de-
sign and prototype implementation of XSense, an archi-
tecture supporting metadata and query services for an
underlying large scale dynamic P2P sensor network.
We cluster sensor devices into manageable groupings
to optimise the query process and automatically locate
appropriate clusters based on keyword abstraction
from queries. We present experimental analysis to show
the benefits of our approach and demonstrate improved
query performance and scalability.

1. Introduction

The interest in and growth of Peer to Peer (P2P) sys-
tems in both academia and industry is on the increase.
The application domain in which P2P networks ini-
tially achieved both success and notoriety was with file
sharing systems such as Napster, Kazaa and Gnutella.
However, the use of P2P systems have matured beyond
this domain and is now being deployed in business (on
demand video streaming systems), military (commu-
nications and reconnaissance ad-hoc mobile networks)
and telephony (Skype).

An area of active research is the utilisation of
P2P systems for the management of dynamic sensor
networks. In this paper, we focus on the deployment
of a P2P system as the underlying architecture for
the XSense project. The goal of the XSense project
is to construct and implement a large-scale database
architecture with Query and Metadata services sup-
porting an underlying arbitrarily large dynamic P2P
sensor network. The Use Case presented in this paper

Vincent Andrieu
Interoperable Systems Group Interoperable Systems Group
Dublin City University
vandrieu@ gmail.com

Mark Roantree
Interoperable Systems Group
Dublin City University
mark.roantree @ computing.dcu.ie

is based on the CDVPIlex Biometric Cinema [1]. In the
CDVPIex study, new sensor technology and biometric
measurement techniques developed by researchers in
Health and Sports science were used to gather the
physiological reactions of movie viewers as they watch
a film.

1.1. Motivation and Contribution

The goal of the CDVPlex study was to detail the
data gathering process, not to provide an analysis of
the observed responses. Indeed the lack of a logical
Data Management layer and Query service identified a
gap that needed to be addressed. The motivation behind
our work is the construction of a digital representation
of a large cinema audience in order to test responses to
various stimuli. It is envisaged that the sensor network
will continue to grow and expand and thus requiring an
architecture capable of supporting an arbitrarily large-
scale sensor network. We use a logical P2P architecture
to represent the human and sensor devices. What is
needed to support the management of sensor data
generated is the construction of a virtual cinema based
upon a physical network of sensor devices. This virtual
cinema will thus provide a digital interface for data and
query management.

The contribution of this paper is the specification
and development of a Data Management, Metadata
and Query service for the virtual cinema on top of
an underlying dynamic sensor network. We have built
a prototype simulating a large cinema audience using
a P2P architecture. We cluster sensor devices into
manageable groupings to optimise the query process.
Due to the fact that we have constructed the digital
cinema, we can move individuals into different clusters
in a virtual manner. This provides the ability for
different users to form part of different study groups.
We automatically locate appropriate clusters based on
keyword extractions from queries. We describe our

Query Management
Layer

DoDoOEDDBDBBeBa8a | Virual Layer

Physical Layer

Figure 1. XSense Architecture Model.

implementation and provide detailed analysis of our
experiments and a demonstration of improved results
by tweaking the distribution of peers.

This paper is structured as follows: in §2 the XSense
architecture is presented and described; in §3 the
Query Management layer is detailed. In §4 our query
processing strategy is presented and in §5 a detailed
analysis of our experiments is provided. In §6 we
present our related research and in §7 we provide our
conclusions.

2. The XSense Architecture

In classic distributed database management sys-
tems, an efficient query service was made possible
through the key features of central control and global
knowledge (via a global schema). The goal of the
XSense architecture is to facilitate an improved query
service and minimise the cost of broadcast messages
between peers while addressing the challenges of a
large scale, decentralised, dynamic P2P network. The
XSense architecture illustrated in Figure 1 consists of
three logical layers: the Physical (or Human/Device)
layer, the Virtual (or Logical) layer and the Query
Management layer. Due to its significant content, the
Query Management layer shall be described in §3.

2.1. Physical Layer

The Physical or Human/Device layer represents the
physical sensor devices and the humans to which
they are attached. In our Use Case based on the
CDVPlex study, the sensors gather biometric data
recording physiological reactions by human subjects
as they are viewing movies in a large cinema. An in-
depth description of the data gathering process and the
sensors used may be found here [1].

XPR_DOMAIN_KEYWORDS

FK1 | DOMAIN_ID
KEYWORD

XPR_DOMAIN
PK | DOMAIN_ID

DOMAIN_NAWE
DOMAIN_DESC

XPR_PEER
XPR_PEER_KEYWORDS = XPR_CLUSTER
PK_|PEERID PK | CLUSTER ID
[y

PEER_NAME

FK1 | PEER_ID PEER DESC CLUSTER NAME FK1 | CLUSTER_ID

KEYWORD = L KEYWORD
PEER TYPE FK1 | DOMAIN_ID

XPR_CLUSTER_KEYWORDS

FK1 | DOMAIN_ID

A
XPR_PEER_CLUSTER
PKFK1 | PEER ID

PKFK2 | CLUSTER ID

XPR_PEER_CLUSTER_KEYWORDS

KEYWORD
FK1 | CLUSTER_ID
FK1 | PEER_ID

Figure 2. Repository Metadata for the XSense
P2P Network.

2.2. Virtual Layer

The Virtual Layer is developed and implemented
using JXTA [2]. JXTA is a P2P platform from Sun
Microsystems providing a set of 6 core protocols that
allow distributed client interoperability. Each peer in
our P2P network represents one sensor device attached
to one human. Multiple sensor devices may be attached
to the same human.

In order to process the sensor data, it is necessary
to enrich the data by adding structure and semantics
to facilitate manipulation by query languages. The
provision of a simple template for each sensor type
mapping the raw sensor data to the enriched data
format provides the necessary functionality enabling
our virtual P2P network to be interoperable with any
number and type of sensor devices.

3. Query Management Layer

The Query Management layer exploits and extends
the XPeer architecture [3] with metadata repositories.
The XPeer architecture defines a mediation system that
allows querying a large scale P2P Database Manage-
ment System by hiding the distribution, localisation
and heterogeneity of data sources while providing
reasonable query response times.

3.1. Metadata Management

The purpose of the metadata repositories is to store
and maintain the metadata describing the role of each
peer in the P2P network and the keywords associated
with them. A UML diagram of the metadata repository

Metadata Repository
(Oracle database)

AN
NN

Repository Peer
4
!

Figure 3. XSense Query Processor.

is presented in Figure 2. Each system has one or more
Domain peers and each Domain peer may contain one
or many Cluster peers. In a similar fashion, each cluster
may contain one or many Data peers as described
in [3]. The black nodes in Figure 1 illustrate the
Cluster peers. Additionally, the system instantiates and
maintains Query and Repository peers to provide both
query and repository interfaces as required by the
JXTA platform.

3.2. System Configuration

A peer is a node in the JXTA network. A JXTA
peer in the Java implementation is associated with one
Java Virtual Machine (JVM). Having only one peer per
device, such as a PC, is the default scenario. Multiple
JVMs are required to create multiple peers on a single
PC. However, even a relatively small number of peers
result in memory issues on a modern PC. Thus, in
order to optimise the management of peers on a single
machine in the Virtual layer, each peer is implemented
as a java thread and not a JVM process.
The current version of the XSense prototype con-
tains 268 peers and all CDVPlex peers may be
launched simultaneously.
o 221 Data peers where each Data peer represents
a single sensor output (as an XML document).

¢ 39 Cluster peers. The breakdown is as follows:
33 movie clusters (one for each movie) and one
cluster for each of the following; body sensors,
smart chair sensors, heart rate sensors, chest belt
sensors, female viewers and male viewers.

o 6 Repository peers (arbitrary number).

e 2 Query peers (to simulate 2 clients).

It should be noted at system startup, the Query
peers and Cluster peers must access the metadata
repository upon instantiation to retrieve information
about themselves because initially all peers are generic.

4. Query Processing

The Query Processing strategy used in the XSense
project is illustrated in Figure 3. Data peers (and indeed
Cluster peers) can be associated with one or more
keywords. A query may also contain one or more
keywords. Thus a Query peer receives a query and
associated keywords to target the relevant cluster(s).
Query processing proceeds as follow (refer to Figure
3 for an illustration of each step):

1) The Query peer accesses the repository for the
IDs of the Cluster peer(s) matching the query
keyword(s).

2) The Query peer queries those Cluster peers.

3) The Cluster peer requests (from the repository)
the IDs of its Data peers matching the query
keyword(s).

4) The Cluster peer queries those Data peers.

5) The Cluster peer aggregates the Data peers re-
sults and sends the entire result back to the Query
peer.

In our current implementation, the keyword(s) are
identified and stripped from the query itself. Although
the static encoding of keywords within the metadata
repository is sufficient at this stage in order to produce
a working prototype for the XSense architecture, it is
evident a dynamic encoding and keyword matching
algorithm is required for a more robust P2P query
processor. In [4] the authors present an approach for
approximate XML query processing (supporting top-k
queries) over distributed dynamic collections of XML
data based on a clustered path index. The use of
clustered path indexes to partition similar data on the
same superpeer would facilitate reduced communica-
tions costs between peers, while achieving a higher
pruning degree during query processing and eliminate
the need for the static encoding of keywords. An
adaptation of cluster path indexes to enable dynamic
keyword encoding and its application for the XSense
project remain as future work.

5. Experimental Evaluation

In this section we provide experimental analysis
for our methods. The principle questions we tried to
answer were:

1) Is the XSense architecture suitable for managing
dynamic data sources in a large P2P network?

2) Does our approach provide improved query re-
sponse times?

3) Does our approach adapt favorably with regard
to scalability?

107 Peers: 122 Peers:

« 101 Data Peers
« 6 Repository Peers

120 Data Peers
2 Query Peers

Computer 1

Wired LAN
100Mbps

Metadata
Database
(Oracle 10g)

eXist
Database
(eXist 1.1.1)

Oracle Server eXist Server

Figure 4. Network Configuration of the Chaotic
P2P Network.

The P2P network is implemented using the JXTA
platform in Java and runs on two 3.2GHz Pentium IV
machines running Windows XP Professional, each with
1GB of RAM. The Java Virtual Machine hosting the
P2P network is Sun JVM version 1.5. The Oracle 10g
database (hosting the metadata repositories) runs on a
Fedora 7 platform with a Pentium IV 3.2GHz CPU and
1GB of RAM. The open source eXist XML database
[5] (hosting the underlying data for all Data peers) runs
on a similar hardware and software specification as the
Oracle server.

5.1. Benchmarking the Virtual P2P Network

Before meaningful analysis may be performed, it is
necessary to evaluate and benchmark the P2P network
in its default chaotic state. In this experiment, there
are no clusters. There is no repository. It is a pure
P2P network with no notion of Super peers, only equal
Data peers. When a query is initiated, the entire P2P
network is queried and all Data peers (body sensors,
heart rate monitors, smart chair sensors and chest belt
sensor peers) will process the query. The P2P network
consists of 221 Data peers, 6 Repository peers and 2
Query peers and is illustrated in Figure 4. It should
be observed that the Repository peers are required to
inform the Data peers of their role at launch time, but
they are not used by the Query Processor.

Each query has been performed 10 times and the
average response times are displayed in Table 1.

Query Times
Q1 | //@deviceld/string() 7.36s
Q2 | //measurement/@name/string() | 9.08s
Q3 | //startDateTime 10.43s
Q4 | //interval 12.65s
Q5 | //interval[MinHR="66"] 7.78s

Table 1. Query Response times in the Chaotic
P2P Network.

5.2. Using the XSense architecture

In this experiment, the P2P network is configured
according to the XSense architecture: Data peers are
grouped into one or more clusters, with associated
keywords, and Repository peers act as an interface (as
required by JXTA) to the Oracle database maintaining
the cluster configuration. Using the XSense architec-
ture it is not necessary to query the entire P2P network
but only the relevant clusters (by choosing relevant
keywords). On the other hand, the Cluster peer(s) will
have to communicate with a Repository peer to identify
the relevant Data peers and this will incur an overhead.
The cost of this overhead shall be examined shortly.

The XSense P2P network has 221 Data peers, 6
Repository peers, 2 Query peers and 39 Cluster peers.

5.2.1. Evaluating Queries in the XSense P2P Net-
work. We report on the same queries and their perfor-
mance over a cluster of sensors: all body sensors, all
heart rate monitors, all smart chair sensors and all chest
belt sensors. In each case, a single cluster is queried.
Figure 5 displays a table listing a number of XPath
queries processed on different sensor clusters and their
response times.

The query response times are largely proportional to
the number of Data peers to be queried: we obtained
the fastest results for the Chest Belt cluster (10 Data
peers) and the slowest for Body Sensor (75 Data peers)
and Heart Rate (70 Data peers) clusters. Depending
on the targeted cluster size, the query response times
are 3 to 15 times faster using the XSense architecture.
The communication between Cluster Peers and the
Repository Peer is very fast (0.053 seconds on average)
and is performed only once per query. Thus, the
cost incurred of communication with the Repository
peer is very small while cluster targeting facilitates

Cluster Type (DataPeers) | # Query Times
Ql //@deviceld/string() 2.653s

. Q2 //measurement/@name/string() 2.699s

Body Sensor (75) Q3 | /istartDateTime 3.291s
Q4 /linterval 3.262s

Q5 //@deviceld/string() 2.340s

Q6 //measurement/@name/string() 2.463s

Q7 //startDateTime 3.775s

Heart Rate (70) Q8 | Jfinterval[MinHR="66'] 2.6665

Q9 /finterval[MinHR="66"]/MaxHR 2.323s
Q10 | /finterval[MaxHR/number()>200] | 2.292s

. QI11 | //@deviceld/string() 1.583s

Smart Chairs (33) Q12 | //measurement/@name/string() 1.770s
Q13 | //@deviceld/string() 0.517s

QI14 | //measurement/@name/string() 0.454s

Q15 | //Params 0.564s

Chest Belt (10) QI6 | //Params/Length 0.485s
Q17 | //VO2max 0.501s

Figure 5. Query Response Times using the
XSense architecture.

a significant improvement in performance times; the
XSense architecture permits faster query processing.

5.2.2. Querying Dynamic Clusters. In this section,
we report on queries executed over more dynamic
and smaller clusters. The logical P2P architecture and
metadata service provided by the XSense architecture
facilitate the construction of dynamic clusters at query
time based on keyword extraction. This enable queries
in the virtual cinema that would not be possible at
the physical level. If the queries were posed at the
physical level, all Data peers would have to be queried.
By querying a dynamically constructed cluster, only
those Data peers whose keyword matches the query
keyword (as described in §4) are actually queried.
Figure 6 reports on queries executed over two small
clusters, this time grouped by film type and not by
sensor device. The second column, CP(DP), shows
the number of Cluster peers receiving the query and
the number of Data peers processing the query. The
response times are more than an order of magnitude
faster than that provided by the chaotic P2P network
in which all Data peers are queried.

5.3. Network Tweaking for Performance En-
hancement

We analysed query performance at each stage of
the query processing strategy as outlined in §4 and
identified a potential bottleneck at step 4 (illustrated
in Figure 3). When the Cluster peer queries the Data
peers, the slowest stage of the entire query process
occurs between the beginProcessingXMLQuery check-
point and the XMLQueryProcessed checkpoint. On one
hand, this is to be expected as querying the Data peers
constitutes the bulk of the query operation. However,
for the purposes of our experiments the P2P network
is constructed such that the underlying data belonging
to all Data peers is stored in one eXist database.
Thus, a Data peer must query the eXist database
in order to retrieve its data. This centralised server
approach for maintaining the Data peer’s data is a
bottleneck when the number of data peers queried is
large. In a real world scenario each Data peer will
manage its own data. In order to evaluate the impact
of having only one data store (eXist XML database)
in our P2P network, we performed another set of
experiments using three eXist XML databases as data
stores. Due to a practical limitation on the number of
machines available, the two new eXist XML databases
were installed on Computer 1 and Computer 2
(illustrated in Figure 4). An analysis of the results
(which are not displayed due to lack of space) revealed

Keyword CP(DP) | # Query Times
Q19 | //@deviceld/string() 0.266s
Shrek 1(5) Q20 | //measurement/@name/string() | 0.269s
Q21 | /ititle 0.297s
Q22 | //@deviceld/string() 0.438s
Harry.~ | 3(14) Q23 | //measurement/@name/string() | 0.484s
Q24 | /itle 0.469s

Figure 6. Query Response Times over Dynamic
Clusters.

the gap between the beginProcessingXMLQuery and
XMLQueryProcessed checkpoints was reduced signif-
icantly (by two orders of magnitude). These results
confirm that many of the limitations we encountered
in our experiments were due to processing power
and resource limitations. We simulated a large P2P
network using only two machines. In our experiment,
Computer 1 and Computer 2 hosted 268 peers
(Data peers, Cluster peers, Repository peers and Query
peers) as well as the eXist XML databases. In a real
world scenario, Data peers will manage their own
data, reside on many machines and will far outnum-
ber (relatively speaking) Cluster peers, and thus the
XSense architecture will reap performance gains from
real large scale distributed and parallel processing of
queries in a P2P network.

6. Related Research

In this section, we examine related research under
two different criteria: the ability to provide generic
frameworks for sensor management and querying and
the ability to generate meaningful semantics for com-
plex sensor data (eg. multimedia).

In [6], they propose Virtual XML, an approach to
an XML-based virtualization of data resources. They
describe how to support the processing of non-XML
data without explicit conversion to XML. The key
contribution of their work is that no conversion of
sensor data is necessary as they create a view definition
to interpret the raw data. However, the template system
they provide has not been applied to any domain (rather
they provide some use-case descriptions) and no query
evaluations are possible.

In [7], the authors process and query the raw data
streams and avoid conversion to XML. Their Semantic
Streams model contains two fundamental elements:
event streams and inference units. Event streams rep-
resent real world events recorded by sensors and have
properties such as time, location and speed. Inference
units are processes that operate on event streams.
They infer semantic information from events and either
generate new event streams or add the information
to existing events as new properties. Their usage of

constraints (eg: Quality of Service) on the data streams
provides for a useful query mechanism for approximate
queries. However, the focus of this work is on semantic
interpretation facilitating declarative queries of sensor
data.

In [8], they employ the concept of proximity queries
whereby network nodes monitor and record interesting
events in their locality. While their results are positive
in terms of cost, queries are still at a relatively low level
(no common format for query expression) and query
processing is not designed for large scale distributed
networks.

In [9], they provide for semantic clusters within their
sensor network. They generate metadata either stati-
cally based on application semantics, or dynamically
using inference rules and thus, support query process-
ing. However, they observed the computational cost of
the metadata generation process increases significantly
as the number of sensor devices increased and thus the
current solution does not scale well.

7. Conclusions

This paper presents the XSense architecture to sup-
port the construction of a virtual cinema based upon
a physical network of sensor devices. The logical P2P
network represents the human and physical devices.
We provide a Query Management layer clustering
devices into manageable groupings to optimise query
processing. These clusters are dynamically constructed
based on keyword abstractions, allowing us to virtu-
ally move humans and devices into different study
groups as required. We provide an implementation and
detailed analysis of our experiments, demonstrating
improved query performance and scalability with our
approach.

We have two principle directions for future re-
search. The first, as previously mentioned in §4 is
the development of a dynamic keyword encoding and
keyword matching algorithm and in particular, an ex-
amination of the suitability of clustered path indexes
to achieve this end. The second direction focuses on
the inherent tree-like properties of clusters of sensors
residing inside specified domains. In particular, we
will investigate optimisation of distributed queries by
extending techniques previously developed for XML
trees [10].

Acknowledgment

This work is funded by the Irish Research Council
for Science Engineering and Technology grant no.
CNRS PICS/2006/04

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

S. Rothwell, B. Lehane, C. H. Chan, A. F. Smeaton,
N. E. O’Connor, G. Jones, and D. Diamond, “The
CDVPIlex Biometric Cinema: Sensing Physiological
Responses to Emotional Stimuli in Film,” in Proc.
International Conference on Pervasive Computing

(Pervasive), Dublin, Ireland, May 2006. [Online].
Available: http://doras.dcu.ie/364

L. Gong, “Project JXTA: A Technology
Overview,” Apr 2001. [Online]. Available:

http://aot.ce.unipr.it/documentation/jxta/TechOverview.
pdf

Z. Bellahséne and M. Roantree, “Querying Distributed
Data in a Super-Peer Based Architecture,” in Proc. In-
ternational Workshop on Database and Expert Systems
Applications (DEXA), Zaragoza, Spain, Sep 2004, pp.
296-305.

G. Koloniari and E. Pitoura, “A Clustered Index Ap-
proach to Distributed XPath Processing,” in Proc. In-
ternational Conference on Data Engineering (ICDE),
Cancun, México, Apr 2008, pp. 1516-1518.

W. Meier, “eXist: An Open Source Native XML
Database,” in Proc. Web-Services, and Database Sys-
tems, (NODe), Erfurt, Germany, Oct 2002, pp. 169-
183.

K. H. Rose, S. Malaika, and R. J. Schloss, “Virtual
XML: A Toolbox and Use cases for the XML World
View,” IBM Systems Journal, vol. 45, no. 2, pp. 411—
424, Jan 2006.

K. Whitehouse, F. Zhao, and J. Liu, “Semantic Streams:
A Framework for Composable Semantic Interpretation
of Sensor Data,” in Proc. Wireless Sensor Networks,
Third European Workshop, (EWSN), Zurich, Switzer-
land, Feb 2006, pp. 5-20.

Y. Kotidis, “Processing Proximity Queries in Sensor
Networks,” in Proc. Workshop on Data Management for
Sensor Networks, in conjunction with VLDB, (DMSN),
Seoul, Korea, Sep 2006, pp. 1-6.

H. Kawashima, Y. Hirota, S. Satake, and M. Imai,
“MeT: A Real World Oriented Metadata Management
System for Semantic Sensor Networks,” in Proc. Work-
shop on Data Management for Sensor Networks, in
conjunction with VLDB, (DMSN), Seoul, Korea, Sep
2006, pp. 13-18.

M. F. O’Connor, Z. Bellahseéne, and M. Roantree, “An
Extended Preorder Index for Optimising XPath Ex-
pressions,” in Proc. Third International XML Database
Symposium, (XSym), Trondheim, Norway, Aug 2005,
pp. 114-128.

