
Field-Based Branch Prediction for Packet Processing Engines

David Bermingham, Zhen Liu, and Xiaojun Wang
School of Electronic Engineering

Dublin City University
Dublin, Ireland

{david.bermingham, liuzhen, wangx}@eeng.dcu.ie

Bin Liu
Department of Computer Science and Technology

Tsinghua University
Beijing, P. R. China

liub@tsinghua.edu.cn

Abstract—Network Processors have exploited many aspects of
architecture design, such as employing multi-core, multi-
threading and hardware accelerator, to support both the ever-
increasing line rates and the higher complexity of network
applications. Micro-architectural techniques like superscalar,
deep pipeline and speculative execution provide an excellent
method of improving performance without limiting either the
scalability or flexibility, provided that the branch penalty is
well controlled. However, it is difficult for traditional branch
predictor to keep increasing the accuracy by using larger
tables, due to the fewer variations in branch patterns of packet
processing. To improve the prediction efficiency, we propose a
flow-based prediction mechanism which caches the branch
histories of packets with similar header fields, since they
normally undergo the same execution path. For packets that
cannot find a matching entry in the history table, a fallback
gshare predictor is used to provide branch direction.
Simulation results show that the our scheme achieves an
average hit rate in excess of 97.5% on a selected set of network
applications and real-life packet traces, with a similar chip
area to the existing branch prediction architectures used in
modern microprocessors.

Keywords-branch prediction; network processor; network
traffic; packet flow

I. INTRODUCTION
As the Internet has evolved, the functions required to be

implemented on a Network Processor (NP) have grown from
simple packet forwarding to complex tasks such as packet
classification, intrusion detection/prevention, smart metering
and Quality of Service (QoS). This growth in application
complexity has been accompanied with the demand to catch
up with the ever-increasing line rates. In order to meet the
two simultaneous requirements, the design space of NPs has
always been exploited from numerous aspects in order to
extract additional performance. Widely adopted architectural
features range from integrating multiple processing engines
(PEs) to exploit the packet-level parallelism, using hardware-
facilitated multi-threading to hide latencies of memory and
I/O accesses, to offloading sophisticated functions such as
cyclic redundancy check (CRC), encryption/decryption, and
pattern matching to dedicated hardware blocks. Commercial
examples of these solutions include Intel IXP family of
network processors [1], Hifn 5PN4G Network Processor [2],
and Cavium OCTEON Processor Family [3].

On one hand, improving NP performance by the above
mentioned techniques might potentially suffer from some
limitations in scalability as the line rate and application
complexity keep evolving. For example, additional threads
and PEs complicate both hardware and software design since
it adds complexity to the memory controllers and I/O
interfaces, as well as task partitioning, synchronization, and
load balancing. Besides, as more and more stateful
applications are deployed, the reduced parallelism among
packets will limit the number of packets that can be
simultaneously processed by the PEs. Solutions such as
hardware accelerators provide higher performance for
particular functions at the expense of lost flexibility. If these
functions are not needed by certain applications, the chip
area they consume is wasted.

On the other hand, it is possible to improve PE
performance through micro-architectural techniques such as
superscalar, deeper pipeline, out-of-order execution, and
speculative execution. For example, EZchip NP series of
network processors incorporate an array of superscalar
processors to speed up packet processing [4]. Cavium
ECONA CNS-family of processors, targeted for router
related applications, utilizes an ARM core [5]. Although the
one used by ECONA processors has a 5-stage pipeline, the
ARM cores have evolved to a superscalar architecture with a
pipeline of up to 13 stages [6]. The desire to catch up with
the ever-increasing line rate and application complexity will
lead to greater use of these micro-architectural techniques to
improve PE performance.

To guarantee the effectiveness of these techniques,
branch prediction should be accurate. Branch prediction for
general purpose processing has been thoroughly investigated
[8]-[17], but only a small amount of research effort has been
dedicated to it in terms of network applications. Compared to
other types of applications such as those found in the
SPEC2000 or MediaBench benchmark suite, the processing
of network applications focuses is primarily at a packet level
[7]. Examination of network workloads shows that many
network applications have a similar processing framework.
For example, most header processing functions traverse a
decision tree in order to find some information such as the
next hop address or a matching rule. Payload processing
functions often check each byte of packet until the last byte
or until some pre-defined string(s) has been encountered.
These characteristics make the branch behavior more

2009 15th International Conference on Parallel and Distributed Systems

1521-9097/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPADS.2009.120

276

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:36:30 UTC from IEEE Xplore. Restrictions apply.

deterministic and highly associated with the value of certain
packet fields.

In our research, we found that although a small table can
obtain a good branch prediction rate, it is quite difficult for
traditional schemes such as gshare to keep increasing the
accuracy by using larger tables [8]. This is caused by the
more deterministic pattern of branch history of network
applications, which leaves a large amount of unused entries
in the history table. However, if the predictor can distinguish
packets that have similar pattern of processing, which in this
case means they have similar value for certain fields, the
subsequent packets can simply re-use the branch history of
the previous one. This paper presents a field-based branch
prediction architecture which utilizes this phenomenon to
provide high prediction accuracy.

Instead of keeping either the global or local branch
history, the proposed branch predictor maintains the branch
history for packets with similar header fields. When a new
packet arrives, configurable fields are extracted from the
header based on the applications to be performed by the
processing engines on this packet. Through an effective
mapping mechanism, the corresponding branch history is
fetched from the table and used to guide the branch direction.
Simulation results show that the proposed scheme provides
higher prediction accuracy than using a large prediction table
in traditional schemes.

The remainder of this paper is organized as follows.
After a brief introduction of related work, Section II
motivates our research by presenting the background work
that implies the inefficiency of traditional large prediction
table in network applications. Section III examines the
branch behavior of network workloads and provides a
description of our field-based branch predictor for packet
processing engines. Section IV presents the simulation result
achieved with the field-based prediction architecture, while
the conclusions are drawn in Section V.

II. BACKGROUND

A. Related Works
In general, branch prediction can be performed either

statically or dynamically. Static prediction can be configured
to use parameters such as instruction opcode at execution
time or by implementing a profiling mechanism at compile
time. A common example of static prediction is a scheme
optimized for loop intensive program which simply assumes
forward branches not taken and backward branches (often
used by loops) taken [9]. Some microprocessors encode
additional information within the instruction at compile time
to specify the most likely direction for this branch, which is
generated by previous executions on some sample input [10].
The drawback of static prediction schemes is that it is
difficult for them to be effectively adjusted to changes in
either the program or the data set currently being executed.

Alternatively, dynamic prediction uses run-time
execution history and is widely employed in modern
microprocessors [11]-[14]. One such prediction scheme is to
set up a table of two-bit saturating up-down counters, called
Pattern History Table (PHT), indicting if the corresponding

branch should be strongly/weakly taken or not. When a
branch is encountered, the methods of generating the table
index for it include: using part of the instruction address as in
bimodal [15]; using global branch history (GAg), local
branch history (PAg), or a combination of global and local
branch history (PAp) as in two-level branch prediction [16];
concatenating part of branch instruction address with global
branch history as in gselect; or XORing them as in gshare,
which is illustrated in Fig. 1. A combining scheme uses
several different types of predictors and an additional table
of counters to decide which predictor should be used to make
the final decision for a branch, referred to as gskew [17].

Within the NP domain, only a small number of papers
have mentioned the accuracy of branch prediction for
network applications. G. Memik and W. H. Mangione-Smith
reported a prediction accuracy of up to 99.79% with a two-
level predictor of 2 KB and 4 KB table sizes using the
benchmark of NetBench [18]. However, this result only
focuses on small applications such as CRC and ignores the
big variations among the tested applications. T. Wolf and M.
Franklin gave some analysis of the instruction distribution,
including conditional branches, for another set of network
programs called CommBench, without providing any further
simulation results on the accuracy of branch prediction [19].
Similarly, the work represented by B. K. Lee and L. K. John
in [20] examined network workload and instruction
distribution in another benchmark suite called NpBench, but
did not provide detailed analysis of branch behavior.

B. Packet Traces
With NP operating on a per packet basis, a brief

overview of the data set used in our work is necessary.
Throughout this paper, the packet traces used in the
experiments are collected from National Laboratory for
Applied Network Research (NLANR) [21]. The source and
destination IP addresses in the packet traces published by
NLANR are renumbered to maintain anonymity. This
process retains traffic patterns and flow information; but the
renumbered IP addresses cannot match the real-life route
table or ruleset. To solve this problem, the destination IP
addresses used in packet forwarding programs are replaced
with addresses derived from the prefixes found in the
127,000-entry AT&T East routing table. A similar process is
applied to the source IP address for packet classification.
Another problem with the packet traces is that they only
contain packet headers while applications like encryption
need to scan the payload data. Since none of the PPAs

Figure 1. Schematic diagram of gshare branch predictor. For a pattern
history table of 2N saturation counters, the N-bit index is generated by
XORing a M-bit global branch history where M<=N, and N-bit branch
instruction address whose left most and right most bits are usually not used.

277

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:36:30 UTC from IEEE Xplore. Restrictions apply.

examined in this work use payload as a means of guiding
decisions, randomly generated content are attached to packet
headers according to the packet length field in the IP header.

C. Network Applications
Network applications can be briefly divided into Header

Processing Applications (HPA) and Payload Processing
Applications (PPA). Fig. 2 outlines the typical programming
framework for HPA and PPA. Fig. 2(a) is the pseudo code
for IP forwarding. In this example, a packet pointer pkt_ptr is
passed to the function packet_forward() for processing. Once
the whole IP packet header iphdr is fetched and verified, the
next hop address is determined based on the destination IP
address. If the header or the next hop is not valid, the packet
is dropped. Otherwise, it is modified (e.g. decrementing the
Time-To-Live field of IP packet header) and forwarded. Fig.
2(b) shows the pseudo code for packet encapsulation and
encryption function used for network security. Once the
packet is fetched, the header and payload are encrypted,
which is typically performed on fixed-length blocks. As
shown in Fig. 2(b), function encrypt_packet() encrypts the
next block_size number of bytes starting from pkt_ptr and
attaches the result to enc_pkt. The while-loop continues until
every byte of the packet has been fetched and encrypted.
After that, the encrypted packet is encapsulated with a new
IP packet header for transmission.

In this research, we select 10 applications from the three
benchmark suites for network applications, NetBench,
CommBench, and NpBench; six of them represent header
processing tasks and the remaining four represent payload
application.

For HPA, we analyze two IP packet forwarding
applications, the first is denoted as TRIE, which uses level
compressed trie (LC-trie) to perform route lookup, and the
other is denoted as HASH, which uses a link-list hash
structure. Both applications perform header and IP address
verification, checksum calculation and header modification
before forwarding to the next hop port returned by route
lookup. The application denoted as HYPE implements packet
classification using HyperCuts algorithm, which recursively
divides the hyperspace represented by the packet fields into
smaller hyperboxes until the number of rules contained in
them is smaller than a predefined threshold. STAT performs
statistical analysis, mapping packets to entries maintained in
a flow table, where statistics are retrieved and updated. The
remaining two applications implement the functions of
queuing and metering. DRR provides load balance for
packets using the algorithm of deficit round robin. TCM,
short for two-rate three color marker, classifies packets into
three categories to smooth out bursty traffic, based on
characteristics such as arrival rate.

Among the payload applications, AES and SHA
authenticate and encrypt IP packets, as is demanded by the
implementation of Internet Protocol Security (IPsec). CRC
calculates the checksum of the whole packet using the
algorithm of cyclic redundancy check in order to detect
errors during packet transmission. FRAG implements IP
fragmentation specified in RFC 791, in which packets longer

than a fragment limit and allowed to be fragmented are
divided into smaller ones.

These programs are compiled using gcc-3.4.3 targeted to
ARM microprocessors, a RISC architecture that has already
been used in NP [5]. Fig. 3 shows the number of instructions
of the object codes and the percentage of conditional
branches. As is pointed out in [19], the size of the network
applications is much smaller than general purpose programs
such as those in SPEC2000. The number of branch
instructions ranges from less than 10 to more than 50, which
makes the implementation of per-address history table
relatively easy.

Note that an unusual feature of ARM instruction set is
the employment of branch predication, by which almost
every instruction can be conditionally executed. The top four
bits of each instruction is the condition code field that
represents fifteen conditions, e.g. greater than (GT), always
(AL), or not equal (NE). The value of this field causes the
instruction to be executed or skipped, depending on the
values of the flag bits in status register [6]. The main purpose
of this method is to eliminate conditional branches over
small code segments, increasing the effectiveness of pipeline
and instruction cache. Therefore, the number of conditional
branch instructions found in ARM object code is normally
less than that of MIPS or Alpha code generated from the
same source program.

packet_forward (char* pkt_ptr)
{

struct ip iphdr;
int next_hop;

iphdr = fetch_header(pkt_ptr);
if(verify_header(iphdr) == TRUE) {

next_hop = find_next_hop(iphdr.dst_address);
if(next_hop == PROBLEM)

drop(pkt_ptr);
else {
 modify(iphdr);

forward(pkt_ptr);
}

} else
drop(pkt_ptr);

}
(a) Pseudo code for IP forwarding.

packet_encapsulate(char* pkt_ptr)
{

struct ip iphdr, new_iphdr;
char* enc_pkt;

iphdr = fetch_header(pkt_ptr);
while(iphdr.ip_len) {

encrypt_packet(pkt_ptr, enc_pkt, block_size);
iphdr.ip_len -= block_size;
pkt_ptr += block_size;

}

new_iphdr = new_header(iphdr, enc_pkt);
pkt_ptr = encap_packet(new_iphdr, enc_pkt);
transmit(pkt_ptr);

}
(b) Pseudo code for packet encryption and encapsulation.

Figure 2. Typical programming framework for HPA and PPA.

278

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:36:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 4 shows the maximum and minimum number of
conditional branches executed for a packet, its average
execution frequency and taken rate for an OC-3 packet trace.
Compared with the simulation result in [19], the execution
frequency of conditional branches is slightly lower, ranging
from 1.59% to 12.67%. For HPA, the variations in the
number of executed branches are much smaller than PPA.
Taking TRIE as an example, the length of path along which
packets with different destination IP addresses traverse are
almost the same in a well-balanced trie. On the other hand,
the number of branches executed for PPA heavily depends
on packet length. The taken rate of branches also varies
greatly for different applications.

D. Performance Issues with Branch Prediction for
Network Applications
In this subsection, we briefly analyze the problems faced

by traditional branch prediction scheme for network
applications, using gshare as an example.

Fig. 5 shows the accuracy of a gshare branch predictor
with different number of entries in PHT for the selected
network applications and an OC-3 packet trace. According to
Fig. 5, the accuracy for PPA is higher than HPA. For
example, a 64-entry gshare predictor achieves a hit rate of
91.9% and 91.92% for AES and CRC but only 85.36% and
75.5% for the TRIE and STAT applications. This is caused by
the relatively complicated pattern of branch history in HPA.
On the other hand, greater performance gains are achieved
for HPA as the table size is increased. For a small 64-entry
table, the average accuracy for HPA is 85.42% while for

PPA it is 87.81%. For 1024-entry, the difference in accuracy
is negligible, with an average hit rates of 95.1% and 95.2%
for HPA and PPA respectively.

Generally speaking, the relationship between prediction
rate and PHT size follows a similar pattern to general
purpose processing. Since the code size of network
application is normally much smaller than general purpose
processing applications, such as SPEC2000, similar accuracy
can be achieved with fewer entries in PHT. However, it is
hard to keep increasing the accuracy when the number of
PHT entries reaches certain level. As shown in Fig. 5,
network applications saturate above 512-entry, compared to
the 8K-entry table size needed for SPEC benchmark
applications [13]. Above 1024-entry it can be seen that the
performance gain is minimal compared to the additional cost.

Fig. 6 shows the average table utilization of a gshare
branch predictor for the OC-3 packet trace across all 10
applications. For small table sizes, high miss-prediction rate
is the result of large amount of branch interference, with
multiple branches mapping to the same location. However,
when additional counters are added, the utilization falls
significantly compared to the slight increase in prediction
accuracy. For example, a 32-entry gshare predictor utilizes
an average of 83.44% of the available entries for the 10
network applications, while a 512-entry and a 2048-entry
table utilizes only 23.34% and 6.89% respectively. This
phenomenon demonstrates that although the processing of
one packet involves a large number of conditional branches,
the branch history does not have a lot of differing patterns.

TRIE HASHHYPE STAT DRR TCM AES SHA CRC FRAG
0

500

1000

1500

2000

2500

3000

3500

 Instruction Count
 Branch Percentage

In
st

ru
ct

io
n

C
ou

nt

0

1

2

3

4

5

6

7

8

Percentage of C
onditional Branches (%

)

Figure 3. Number of instructions in the compiled code and the percentage

of conditional branches.

TRIE HASHHYPE STAT DRR TCM AES SHA CRC FRAG
10

100

1000

 Maximum Count
 Minimum Count
 Average Frequency
 Taken Ratio

Br
an

ch
 In

st
ru

ct
io

n
C

ou
nt

0

10

20

30

40

50

60

70

80

Percentage (%
)

Figure 4. Maximum and minimum number of branches executed for a

packet, its average execution frequency and taken rate for an OC-3 trace.

TRIE HASHHYPE STAT DRR TCM AES SHA CRC FRAG
50

55

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

 16-entry 32-entry
 64-entry 128-entry
 256-entry 512-entry
 1024-entry 2048-entry

Figure 5. Accuracy of a gshare branch predictor for an OC-3 packet trace.

16 32 64 128 256 512 1024 2048
0

20

40

60

80

100

Ta
bl

e
U

til
iz

at
io

n
(%

)

Table Entries

 TRIE HASH
 HYPE STAT
 DRR TCM
 AES SHA
 CRC FRAG

Figure 6. Table utilization of a gshare branch predictor for an OC-3 trace.

279

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:36:30 UTC from IEEE Xplore. Restrictions apply.

For most NPs, an application will reside on one PE for long
periods of time. A solution in which more than 90% of
pattern table is idle represents a significant waste of chip area
and energy.

III. FIELD-BASED BRANCH PREDICTION
As mentioned in Section II.C, many network applications

follow similar programming patterns. For example, header
processing applications might need to verify the correctness
of the transmission and whether the values of certain fields
are valid. The rest of the processing is often based on the
value of one or a combination of fields. Since most packets
do not contain errors, the code dealing with exceptions is
hardly executed, making the branch history more predictable.

Furthermore, packets with similar field value often have
the same execution path. For example, packets whose
destination IP addresses belonging to the same prefix in the
route lookup table follow the same path in the trie. Packets of
the same flow fall into the same hyperbox defined by a
ruleset and undergo the same subsequent processing
according to the associated actions. Similar situations can
also be found in PPA. The most obvious examples include
encryption and fragmentation, in which the conditional
branches are used mainly for testing the length of remaining
packets.

Additionally, the relatively short branch history of HPA
makes it easier to cache the entire branch history for the
processing of one packet. For example, in TRIE, an average
of 44 conditional branches is encountered when processing
one packet, which is a short enough branch history to be
stored in PE. This is similar with PPA when small packets
are processed.

For payload applications whose branch history for large
packet is too long to be completely cached in one table entry,
a fallback gshare predictor can be exploited. The reason for
doing this is that the prediction performance of schemes such
as gshare depends on the length of branch history, i.e. the
accuracy of gshare can be increased when more data is
provided. Since the number of branch instructions executed
in PPAs scales with packet length, gshare exhibits better
performance for large packets due to the additional branch
history. Table I shows the average accuracy of a 64-entry

gshare predictor for three payload applications and traces of
different link speed. The OC-12 and OC-48 traces contain a
higher proportion of large packets, which results in a higher
prediction rate than the OC-3 trace. Table II shows the
average accuracy of a 64-entry gshare predictor for packets
of maximum and minimum length in an OC-3 trace, which
further demonstrates that schemes like gshare are more
suitable for PPA with large packets. Since gshare is likely to
generate incorrect prediction at the beginning of packet
processing, the cached branch history of previous packets
with similar field value can be used at this stage; once every
bit in the cached history is used, the fallback gshare
predictor has been well trained for subsequent prediction.

A. Basic Architecture of Field-Based Branch Predictor
Fig. 7 gives the block diagram of a field-based branch

predictor for network applications. The major part of the
predictor is the Branch String Table (BST), which caches the
branch history for packets that are categorized by the value
of certain header fields. A fallback gshare predictor is used
either when packet with a new value for certain fields is
received, or the cached history has been exhausted. Unlike a
gskew predictor where an additional table of counters is
maintained for choosing the branch predictor to be used, the
current status of BST alone determines whether branch
should be taken or not.

Figure 7. Block diagram of field-based branch predictor for network applications.

TABLE II. AVERAGE ACCURACY OF 64-ENTRY GSHARE
 PREDICTOR FOR PPA AND DIFFERENT TRACES (%)

App. OC-3 OC-12 OC-48
AES 91.99 96.41 96.34

SHA 80.51 86.45 85.57

CRC 91.92 96.61 96.55

TABLE III. ACCURACY OF 64-ENTRY GSHARE
PREDICTOR FOR PPA AND PACKETS OF DIFFERENT

LENGTH (%)

App. Min. Length Max. Length
AES 91.74 96.57

SHA 81.50 88.58

CRC 90.50 99.00

TABLE I. SEARCH KEY EXTRACTED FROM PACKET HEADER

App. Search Key
TRIE Source IP + Destination IP

HASH Source IP + Destination IP

HYPE Source IP + Destination IP + Protocol

STAT Source IP + Destination IP + Protocol

DRR Length

TCM Length

AES Length

SHA Length

CRC Length

FRAG Length + Offset

280

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:36:30 UTC from IEEE Xplore. Restrictions apply.

When a packet is received by the network processor, the
string extract block extracts the relevant header fields and
combines them into a search key defined by the network
application. The search key can be part of one particular
header field or a concatenation of several parts from a
number of header fields. Table III gives the list of header
fields used to generate search keys in our experiments for the
10 applications. In practice, network workloads consist of
multiple types of applications which have different branch
patterns. In this case, the search key can be constructed as a
combination of the header fields corresponding to each
application.

The generated search key, or predictor string as labeled
in Fig. 7, is used to identify the entry to be used for branch
prediction in the BST. This mapping relationship can be
implemented in a number of ways. In this experiment, a full-
associative BST is achieved using Content-Addressable
Memory (CAM) [22]. CAM should have the same number of
entries as BST. In our experiment, the data width of CAM is
set to 32-bit. As shown in Table III, if the length of the
search key is less than 32-bit, part of the data bits in CAM
entry will not be used. Otherwise, part of bits in the selected
header fields will be ignored in order to fit the search key
into 32-bits.

Using the search key, the CAM logic returns either the
address of corresponding branch history if previous packets
also have the same key, or allocates a new entry in both the
CAM and BST if the key fails to match anything. If all of the
CAM entries have been used, the replaced entry is selected
in a round-robin way for the simplicity of hardware
implementation. For a matched key, the next bit in the
branch history is fetched from the BST every time a
conditional branch is encountered. In the case of the number
of conditional branches exceeding the history length, the
fallback gshare predictor is used, which has been updated for
all of the previous branches. For packets without matching
entry in CAM, prediction is also provided via the gshare

logic, with the BST being updated when the branch direction
is resolved.

A field-based branch predictor can be expanded on a
number of dimensions, denoted as N/M/P. The number of
CAM/BST entries N can be increased to allow more patterns
of branch history to be cached simultaneously and reduce the
chances that the fallback gshare predictor is used. Additional
branch history for each packet can be retained by extending
the branch string width M, while the table size P of fallback
predictor can be expanded to give a better base prediction for
packets not previously seen.

B. Variations of Field-Based Branch Predictor
Unlike traditional branch predictors, the generation of

BST index does not depends on branch address in our
scheme, which means it is not necessary to access BST after
the address of the branch is known. In fact, when all the
fields needed for predictor string are received, the CAM and
BST search can be issued even before the actual packet
processing begins. Therefore an M-bit shift register can be
used to hold the branch history of BST indexed by the
matching entry in CAM. Whenever a branch is encountered,
the next bit in the register can be used, without accessing the
BST again. Similarly, if no matching entry is found in CAM,
the branch history of this packet can be first stored in the
register and written back from this register to BST at the end
of packet processing or when the register is full. The reduced
number of memory accesses in this variation consumes less
energy as well as making the scheduling of predictor updates
easier.

Other possible variations include using set-associative
cache instead of CAM, or calculating the accuracy of BST
and fallback gshare to determine which one should be used
for the next branch. Note that even if a cache is used, our
scheme is still quite different from YAGS branch predictor,
where the branch addresses play an important role in table
index generation and cache content comparison [23].

TRIE HASH HYPE STAT DRR TCM AES SHA CRC FRAG TRIE+FRAG HYPE+TRIE
86

88

90

92

94

96

98

100

Ac
cu

ra
cy

 (%
)

 16/64/128 16/128/128 16/256/128 32/64/128 32/128/128 32/256/128 64/64/128 64/128/128 64/256/128 128/64/128 128/128/128 128/256/128

Figure 8. Branch prediction accuracy for field-based predictors with a fallback 128-entry gshare predictor.

TRIE HASH HYPE STAT DRR TCM AES SHA CRC FRAG Ave. TRIE+FRAGHYPE+TRIE
92

93

94

95

96

97

98

99

100

A
cc

ur
ac

y
(%

)

 16/128/256 32/128/256 64/128/256 128/128/256 16/128/512 32/128/512 64/128/512 128/128/512

Figure 9. Branch prediction accuracy for field-based predictors with fallback gshare predictor of changing number of entries.

281

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:36:30 UTC from IEEE Xplore. Restrictions apply.

IV. PERFORMANCE EVALUATION

A. Accuracy of Field-Based Branch Predictor
Fig. 8 shows the accuracy of various field-based branch

predictors with a 128-entry fallback gshare predictor for an
OC-3 packet trace. It can be seen that a 16/128/128 scheme
increases the hit rate of a single 128-entry gshare predictor
from 90.76% to 96.60% across all 10 applications, which is
higher than the average value of 95.83% for a 2048-entry
gshare predictor. For applications that are highly relevant to
certain header fields, such as TRIE or HYPE, the prediction
accuracy gain is greater, with an improvement of 13.80%
and 9.44% respectively. The only application which shows
no significant gain is the metering algorithm TCM, whose
branch behavior is difficult to predict since it is related to the
packet inter-arrival time rather than header fields.

It can be seen in Fig. 8 that for most applications,
increasing the number of CAM entries provides only
marginal performance gain. This is because the amount of
packets collected by the OC-3 link is small, which limits the
number of branch patterns. On the other hand, increasing the
branch history length is much more effective, especially for
applications such as DDR or SHA, in which doubling the
128-bit history to 256-bit increases the hit rate by 4.95% and
4.35% respectively.

Fig. 8 also includes the accuracy for the combinations of
several applications in order to simulate the situation of real-
life network software. The first combination is TRIE and
FRAG, which fragments the packet after route lookup. The
second is HYPE and TRIE, which classifies packets into
flows before forwarding them. Table IV lists the accuracy of
gshare predictors for these application combinations.
Compared with single application, both gshare and field-
based predictor exhibit performance degradation but in most
configurations, our scheme continues to outperform the
2048-entry gshare predictor.

Fig. 9 shows the accuracy of field-based predictor as the
size of fallback gshare predictor is increased. Since for most
applications the utilization of predictor above 512-entry is
less than 50%, we limit our analysis to ghsare predictors
with no more than 512 entries. It can seen that a field-based
16/128/256 predictor achieves an average hit rate of 96.77%
across all 10 applications, with a minimum accuracy of
93.24% for SHA. Except for SHA and FRAG, increasing the
number of CAM entries has a better performance gain than
using a larger fallback gshare. This can be explained by
Table V, which shows the percentage of packets whose field
value has already been recorded by the CAM logic. Even
when the CAM size is small, less than 15% new packets
utilize the fallback gshare. The exception of SHA and FRAG
in Fig. 9 is caused by their large branch history. In this case,
a larger gshare provides better prediction when the

conditional branches fall out of the range that can be cached
by field-based predictor.

Fig. 10 shows the average accuracy of field-based
predictor for different packet traces. The branch history
length is 128-bit and fallback gshare also has 128 entries.
For OC-12 trace, a 64-entry and 128-entry CAM provides an
average prediction rate of 96.66% and 96.93% respectively,
higher than 96.26% of a 2048-entry gshare. For higher speed
OC-48 trace, a 64-entry and 128-entry CAM provides an
average prediction rate of 96.56%, and 96.62% respectively,
still higher than the 96.24% of 2048-entry gshare. Link
speed has more impact on header applications because
higher speed links accumulate more packets with a larger
number of different field values. Since this OC-12 trace
contains a higher proportion of large IP packets, the
performance gain across the payload applications is even
lower than that of OC-48.

B. Latency of Field-Based Branch Predictor
For each incoming packet, only one CAM lookup is

needed to get the starting address of branch history in BST.
For the basic architecture shown in Fig. 7, the subsequent
addresses are automatically generated by Address Logic.
Therefore the latency for getting the bit for branch prediction
is that of a single memory lookup to BST SRAM (note that
gshare can be accessed simultaneously with BST). In
variations where register is used to latch the branch history
stored in one BST entry, the latency is that of the register. In
both cases, the above mentioned latency can be guaranteed
only if the first bit or whole entry of BST is returned before
the first branch is encountered. This condition is not hard to

TABLE V. ACCURACY OF GSHARE PREDICTOR OF DIFFENRENT PHT SIZE FOR
COMBINATION OF APPLICATIONS (%)

App. 32 64 128 256 512 1024 2048
TRIE+FRAG 81.61 88.68 89.71 91.92 92.59 92.44 92.78

HYPE+TRIE 73.67 78.26 81.90 87.67 89.55 91.10 93.03

TABLE IV. UTILIZATION OF FIELD-BASED PREDICTOR FOR NEW
PACKET (%)

App. N=16 N=32 N=64 N=128
TRIE 92.526 91.047 96.607 97.473

HASH 86.233 89.380 96.607 97.473

HYPE 86.233 89.380 93.773 95.327

DRR 86.067 91.047 92.433 95.040

TCM 86.067 95.220 92.433 95.040

STAT 86.233 95.220 93.773 95.327

AES 86.067 89.380 92.433 95.040

SHA 86.067 89.380 92.433 95.040

CRC 86.067 89.380 92.433 95.040

16 32 64 128
94.5

95.0

95.5

96.0

96.5

97.0

97.5

A
cc

ur
ac

y
(%

)

Table Entries

 HPA,OC-3 PPA,OC-3
 HPA,OC-12 PPA,OC-12
 HPA,OC-48 PPA,OC-48

Figure 10. Average accuracy of field-based predictor for different traces.

282

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:36:30 UTC from IEEE Xplore. Restrictions apply.

meet since packet content transfer from network interface to
PE typically consumes a lot of processing cycles.

C. Chip Area of Field-Based Branch Predictor
Most NPs have multiple PEs integrated on one chip,

making them sensitive to silicon area. The transistor cost of a
field-based predictor includes CAM, BST and the fallback
predictor. The latter two can be implemented using standard
6-transistor SRAM while each CAM cell normally requires 9
transistors. Ignoring the decoder and other control logic, the
transistor cost of an N/M/P field-based predictor can be
approximated as requiring (9×32×N)+(6×M×N)+(6×2×P)
transistors. For a 16/128/128 scheme, the silicon area is
roughly equivalent to a 1536-entry gshare table, much
smaller than the prediction tables used in modern general
purpose processors.

V. CONCLUSIONS
In this paper we have examined branch prediction for

NPs. Although NPs have utilized techniques such as multiple
PEs, multi-threading and hardware accelerator to meet the
requirements of high speed and programming flexibility,
improving the performance of each PE is always important.
Micro-architectural techniques such as superscalar and deep
pipeline remain effective once the branch penalty is
mitigated.

However, traditional branch schemes are not as efficient
in network applications as in general purpose processing.
Increasing the PHT size only slightly improves the accuracy,
with a large percentage of table entries remaining idle. On
the other hand, the similarity found in the programming
framework associated with network applications allows for
novel methods of exploiting runtime execution history.

One of the key observations that inspire our scheme is
that packets with similar header fields normally follow the
same execution path. To improve prediction accuracy, we
propose a field-based predictor which maps the incoming
packet to a table of cached branch history of previous
executions, based on selected header fields according to the
characteristics of the application. Simulation on a set of 10
network applications and real-life packet traces shows that
such a prediction scheme can achieve an average prediction
rate of over 97.5% with reasonable chip area consumption.

ACKNOWLEDGMENT
This work is funded by the Irish Research Council for

Science, Engineering and Technology (IRCSET) and the
School of Electronic Engineering, Dublin City University.

REFERENCES
[1] Intel Corporation, Intel IXP1200 Hardware Reference Manual. Santa

Clara, CA, USA, 2001.
[2] Hifn Inc., Wire Speed Performance for Demanding Network

Applications: Hifn 5NP4G Network Processor (Product Brief). Los
Gatos, CA, USA, 2008.

[3] M. Raghib Hussain, “Octeon Multi-Core Processor,” presented at the
2006 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS 2006), Dec. 2006.

[4] EZchip Technologies Ltd., Network Processor Designs for Next-
Generation Networking Equipment (White Paper), Yokneam, Israel,
1999.

[5] Cavium Networks Inc., ECONA CNS21XX Connected Home and
Office Processors (Product Brief), Mountain View, CA, USA, 2008.

[6] S. Furber, ARM System-on-Chip Architecture. London, Great
Britain: Addion-Wesley, 2000.

[7] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: a
tool for evaluating and synthesizing multimedia and communications
systems,” Proc. International Symposium on Microarchitecture
(MICRO-30), pp. 330-335, Dec. 1997.

[8] S. McFarling, “Combining branch predictors,” technical report TN-36,
June 1993, ftp://gatekeeper.dec.com/pub/DEC/WRL/research-
reports/WRL-TN-36.pdf.

[9] J. E. Smith, “A study of branch prediction strategies,” Proc.
International Symposium on Computer Architecture (ISCA 1981),
May 1981, pp. 135–148.

[10] C. Young and M. D. Smith, “Static correlated branch prediction,”
ACM Trans. Program Languages and Systems, vol. 21, no. 5, pp.
1028–1075, Sep. 1999.

[11] R. E. Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, vol.
19, no. 2, pp. 24–36, Mar. 1999.

[12] T. Ball and J. R. Larus, “Branch prediction for free,” Proc. ACM
Conference on Programming Language Design and Implementation
(SIGPLAN 1993), June 1993, pp. 300–313.

[13] P. Chang, M. Evers, and Y. N. Patt, “Improving branch prediction
accuracy by reducing pattern history table interference,” International
Journal of Parallel Programming, vol. 25, issue 5, pp. 339–362, Oct.
1997.

[14] J. A. Fisher and S. M. Freudenberger, “Predicting conditional branch
directions from previous runs of a program,” ACM SIGPLAN
Notices, vol. 27, issue 9, Sep. 1992, pp. 85–95.

[15] C.-C. Lee, I.-C. K. Chen, and T. N. Mudge, “The bi-mode branch
predictor,” Proc. International Symposium on Microarchitecture
(MICRO-30), Dec. 1997, pp. 4–13.

[16] T. Yeh and Y. N. Patt, “Alternative implementation of two-level
adaptive branch prediction,” ACM SIGARCH Computer Architecture
News, vol. 20, issue 2, pp. 124–134, May 1992.

[17] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides, “Design Tradeoffs
for the Alpha EV8 Conditional Branch Predictor,” Proc. Annual
International Symposium on Computer Architecture (ISCA 2002),
May 2002, pp. 295–306.

[18] G. Memik and W. H. Mangione-Smith, “Evaluating network
processors using NetBench,” ACM Trans. Embedded Computing
Systems, vol. 5, issue 2, pp. 453–471, May 2006.

[19] T. Wolf and M. Franklin, “CommBench-a telecommunications
benchmark for network processors,” Proc. IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS-2000), Apr. 2000, pp. 154–162.

[20] B. Lee and L. K. John, “NpBench: a benchmark suite for control
plane and data plane applications for network processors,” Proc.
International Conference on Computer Design (ICCD 2003), Oct.
2003, pp. 226–233.

[21] National Laboratory for Applied Network Research (NLANR),
Passive Measurement Analysis (PMA). [Online]. Available:
http://pma.nlnar.org/.

[22] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: A tutorial and survey,” IEEE
Journal of Solid-State Circuits, vol. 41, no. 3, pp. 712–727, Mar.
2006.

[23] A. N. Eden and T. Mudge, “The YAGS branch prediction scheme,”
Proc. International Symposium on Microarchitecture (MICRO-31),
Dec. 1998, pp. 69–77.

283

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:36:30 UTC from IEEE Xplore. Restrictions apply.

