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Abstract—Network Processors have exploited many aspects of 
architecture design, such as employing multi-core, multi-
threading and hardware accelerator, to support both the ever-
increasing line rates and the higher complexity of network 
applications. Micro-architectural techniques like superscalar, 
deep pipeline and speculative execution provide an excellent 
method of improving performance without limiting either the 
scalability or flexibility, provided that the branch penalty is 
well controlled. However, it is difficult for traditional branch 
predictor to keep increasing the accuracy by using larger 
tables, due to the fewer variations in branch patterns of packet 
processing. To improve the prediction efficiency, we propose a 
flow-based prediction mechanism which caches the branch 
histories of packets with similar header fields, since they 
normally undergo the same execution path. For packets that 
cannot find a matching entry in the history table, a fallback 
gshare predictor is used to provide branch direction. 
Simulation results show that the our scheme achieves an 
average hit rate in excess of 97.5% on a selected set of network 
applications and real-life packet traces, with a similar chip 
area to the existing branch prediction architectures used in 
modern microprocessors. 

Keywords-branch prediction; network processor; network 
traffic; packet flow 

I.  INTRODUCTION 
As the Internet has evolved, the functions required to be 

implemented on a Network Processor (NP) have grown from 
simple packet forwarding to complex tasks such as packet 
classification, intrusion detection/prevention, smart metering 
and Quality of Service (QoS). This growth in application 
complexity has been accompanied with the demand to catch 
up with the ever-increasing line rates. In order to meet the 
two simultaneous requirements, the design space of NPs has 
always been exploited from numerous aspects in order to 
extract additional performance. Widely adopted architectural 
features range from integrating multiple processing engines 
(PEs) to exploit the packet-level parallelism, using hardware-
facilitated multi-threading to hide latencies of memory and 
I/O accesses, to offloading sophisticated functions such as 
cyclic redundancy check (CRC), encryption/decryption, and 
pattern matching to dedicated hardware blocks. Commercial 
examples of these solutions include Intel IXP family of 
network processors [1], Hifn 5PN4G Network Processor [2], 
and Cavium OCTEON Processor Family [3]. 

On one hand, improving NP performance by the above 
mentioned techniques might potentially suffer from some 
limitations in scalability as the line rate and application 
complexity keep evolving. For example, additional threads 
and PEs complicate both hardware and software design since 
it adds complexity to the memory controllers and I/O 
interfaces, as well as task partitioning, synchronization, and 
load balancing. Besides, as more and more stateful 
applications are deployed, the reduced parallelism among 
packets will limit the number of packets that can be 
simultaneously processed by the PEs. Solutions such as 
hardware accelerators provide higher performance for 
particular functions at the expense of lost flexibility. If these 
functions are not needed by certain applications, the chip 
area they consume is wasted. 

On the other hand, it is possible to improve PE 
performance through micro-architectural techniques such as 
superscalar, deeper pipeline, out-of-order execution, and 
speculative execution. For example, EZchip NP series of 
network processors incorporate an array of superscalar 
processors to speed up packet processing [4]. Cavium 
ECONA CNS-family of processors, targeted for router 
related applications, utilizes an ARM core [5]. Although the 
one used by ECONA processors has a 5-stage pipeline, the 
ARM cores have evolved to a superscalar architecture with a 
pipeline of up to 13 stages [6]. The desire to catch up with 
the ever-increasing line rate and application complexity will 
lead to greater use of these micro-architectural techniques to 
improve PE performance. 

To guarantee the effectiveness of these techniques, 
branch prediction should be accurate. Branch prediction for 
general purpose processing has been thoroughly investigated 
[8]-[17], but only a small amount of research effort has been 
dedicated to it in terms of network applications. Compared to 
other types of applications such as those found in the 
SPEC2000 or MediaBench benchmark suite, the processing 
of network applications focuses is primarily at a packet level 
[7]. Examination of network workloads shows that many 
network applications have a similar processing framework. 
For example, most header processing functions traverse a 
decision tree in order to find some information such as the 
next hop address or a matching rule. Payload processing 
functions often check each byte of packet until the last byte 
or until some pre-defined string(s) has been encountered. 
These characteristics make the branch behavior more 
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deterministic and highly associated with the value of certain 
packet fields. 

In our research, we found that although a small table can 
obtain a good branch prediction rate, it is quite difficult for 
traditional schemes such as gshare to keep increasing the 
accuracy by using larger tables [8]. This is caused by the 
more deterministic pattern of branch history of network 
applications, which leaves a large amount of unused entries 
in the history table. However, if the predictor can distinguish 
packets that have similar pattern of processing, which in this 
case means they have similar value for certain fields, the 
subsequent packets can simply re-use the branch history of 
the previous one. This paper presents a field-based branch 
prediction architecture which utilizes this phenomenon to 
provide high prediction accuracy. 

Instead of keeping either the global or local branch 
history, the proposed branch predictor maintains the branch 
history for packets with similar header fields. When a new 
packet arrives, configurable fields are extracted from the 
header based on the applications to be performed by the 
processing engines on this packet. Through an effective 
mapping mechanism, the corresponding branch history is 
fetched from the table and used to guide the branch direction. 
Simulation results show that the proposed scheme provides 
higher prediction accuracy than using a large prediction table 
in traditional schemes. 

The remainder of this paper is organized as follows. 
After a brief introduction of related work, Section II 
motivates our research by presenting the background work 
that implies the inefficiency of traditional large prediction 
table in network applications. Section III examines the 
branch behavior of network workloads and provides a 
description of our field-based branch predictor for packet 
processing engines. Section IV presents the simulation result 
achieved with the field-based prediction architecture, while 
the conclusions are drawn in Section V. 

II. BACKGROUND 

A. Related Works 
In general, branch prediction can be performed either 

statically or dynamically. Static prediction can be configured 
to use parameters such as instruction opcode at execution 
time or by implementing a profiling mechanism at compile 
time. A common example of static prediction is a scheme 
optimized for loop intensive program which simply assumes 
forward branches not taken and backward branches (often 
used by loops) taken [9]. Some microprocessors encode 
additional information within the instruction at compile time 
to specify the most likely direction for this branch, which is 
generated by previous executions on some sample input [10]. 
The drawback of static prediction schemes is that it is 
difficult for them to be effectively adjusted to changes in 
either the program or the data set currently being executed. 

Alternatively, dynamic prediction uses run-time 
execution history and is widely employed in modern 
microprocessors [11]-[14]. One such prediction scheme is to 
set up a table of two-bit saturating up-down counters, called 
Pattern History Table (PHT), indicting if the corresponding 

branch should be strongly/weakly taken or not. When a 
branch is encountered, the methods of generating the table 
index for it include: using part of the instruction address as in 
bimodal [15]; using global branch history (GAg), local 
branch history (PAg), or a combination of global and local 
branch history (PAp) as in two-level branch prediction [16]; 
concatenating part of branch instruction address with global 
branch history as in gselect; or XORing them as in gshare, 
which is illustrated in Fig. 1. A combining scheme uses 
several different types of predictors and an additional table 
of counters to decide which predictor should be used to make 
the final decision for a branch, referred to as gskew [17]. 

Within the NP domain, only a small number of papers 
have mentioned the accuracy of branch prediction for 
network applications. G. Memik and W. H. Mangione-Smith 
reported a prediction accuracy of up to 99.79% with a two-
level predictor of 2 KB and 4 KB table sizes using the 
benchmark of NetBench [18]. However, this result only 
focuses on small applications such as CRC and ignores the 
big variations among the tested applications. T. Wolf and M. 
Franklin gave some analysis of the instruction distribution, 
including conditional branches, for another set of network 
programs called CommBench, without providing any further 
simulation results on the accuracy of branch prediction [19]. 
Similarly, the work represented by B. K. Lee and L. K. John 
in [20] examined network workload and instruction 
distribution in another benchmark suite called NpBench, but 
did not provide detailed analysis of branch behavior. 

B. Packet Traces 
With NP operating on a per packet basis, a brief 

overview of the data set used in our work is necessary. 
Throughout this paper, the packet traces used in the 
experiments are collected from National Laboratory for 
Applied Network Research (NLANR) [21]. The source and 
destination IP addresses in the packet traces published by 
NLANR are renumbered to maintain anonymity. This 
process retains traffic patterns and flow information; but the 
renumbered IP addresses cannot match the real-life route 
table or ruleset. To solve this problem, the destination IP 
addresses used in packet forwarding programs are replaced 
with addresses derived from the prefixes found in the 
127,000-entry AT&T East routing table. A similar process is 
applied to the source IP address for packet classification. 
Another problem with the packet traces is that they only 
contain packet headers while applications like encryption 
need to scan the payload data. Since none of the PPAs 

 

Figure 1. Schematic diagram of gshare branch predictor. For a pattern 
history table of 2N saturation counters, the N-bit index is generated by 
XORing a M-bit global branch history where M<=N, and N-bit branch 
instruction address whose left most and right most bits are usually not used.
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examined in this work use payload as a means of guiding 
decisions, randomly generated content are attached to packet 
headers according to the packet length field in the IP header. 

C. Network Applications 
Network applications can be briefly divided into Header 

Processing Applications (HPA) and Payload Processing 
Applications (PPA). Fig. 2 outlines the typical programming 
framework for HPA and PPA. Fig. 2(a) is the pseudo code 
for IP forwarding. In this example, a packet pointer pkt_ptr is 
passed to the function packet_forward() for processing. Once 
the whole IP packet header iphdr is fetched and verified, the 
next hop address is determined based on the destination IP 
address. If the header or the next hop is not valid, the packet 
is dropped. Otherwise, it is modified (e.g. decrementing the 
Time-To-Live field of IP packet header) and forwarded. Fig. 
2(b) shows the pseudo code for packet encapsulation and 
encryption function used for network security. Once the 
packet is fetched, the header and payload are encrypted, 
which is typically performed on fixed-length blocks. As 
shown in Fig. 2(b), function encrypt_packet() encrypts the 
next block_size number of bytes starting from pkt_ptr and 
attaches the result to enc_pkt. The while-loop continues until 
every byte of the packet has been fetched and encrypted. 
After that, the encrypted packet is encapsulated with a new 
IP packet header for transmission. 

In this research, we select 10 applications from the three 
benchmark suites for network applications, NetBench, 
CommBench, and NpBench; six of them represent header 
processing tasks and the remaining four represent payload 
application.  

For HPA, we analyze two IP packet forwarding 
applications, the first is denoted as TRIE, which uses level 
compressed trie (LC-trie) to perform route lookup, and the 
other is denoted as HASH, which uses a link-list hash 
structure. Both applications perform header and IP address 
verification, checksum calculation and header modification 
before forwarding to the next hop port returned by route 
lookup. The application denoted as HYPE implements packet 
classification using HyperCuts algorithm, which recursively 
divides the hyperspace represented by the packet fields into 
smaller hyperboxes until the number of rules contained in 
them is smaller than a predefined threshold. STAT performs 
statistical analysis, mapping packets to entries maintained in 
a flow table, where statistics are retrieved and updated. The 
remaining two applications implement the functions of 
queuing and metering. DRR provides load balance for 
packets using the algorithm of deficit round robin. TCM, 
short for two-rate three color marker, classifies packets into 
three categories to smooth out bursty traffic, based on 
characteristics such as arrival rate. 

Among the payload applications, AES and SHA 
authenticate and encrypt IP packets, as is demanded by the 
implementation of Internet Protocol Security (IPsec). CRC 
calculates the checksum of the whole packet using the 
algorithm of cyclic redundancy check in order to detect 
errors during packet transmission. FRAG implements IP 
fragmentation specified in RFC 791, in which packets longer 

than a fragment limit and allowed to be fragmented are 
divided into smaller ones.  

These programs are compiled using gcc-3.4.3 targeted to 
ARM microprocessors, a RISC architecture that has already 
been used in NP [5]. Fig. 3 shows the number of instructions 
of the object codes and the percentage of conditional 
branches. As is pointed out in [19], the size of the network 
applications is much smaller than general purpose programs 
such as those in SPEC2000. The number of branch 
instructions ranges from less than 10 to more than 50, which 
makes the implementation of per-address history table 
relatively easy. 

Note that an unusual feature of ARM instruction set is 
the employment of branch predication, by which almost 
every instruction can be conditionally executed. The top four 
bits of each instruction is the condition code field that 
represents fifteen conditions, e.g. greater than (GT), always 
(AL), or not equal (NE). The value of this field causes the 
instruction to be executed or skipped, depending on the 
values of the flag bits in status register [6]. The main purpose 
of this method is to eliminate conditional branches over 
small code segments, increasing the effectiveness of pipeline 
and instruction cache. Therefore, the number of conditional 
branch instructions found in ARM object code is normally 
less than that of MIPS or Alpha code generated from the 
same source program.  

packet_forward (char* pkt_ptr) 
{ 

struct ip iphdr; 
int next_hop; 

 
iphdr = fetch_header(pkt_ptr); 
if(verify_header(iphdr) == TRUE) { 

next_hop = find_next_hop(iphdr.dst_address); 
if(next_hop == PROBLEM) 

drop(pkt_ptr); 
else { 
    modify(iphdr); 

forward(pkt_ptr); 
} 

} else 
drop(pkt_ptr); 

} 
(a)  Pseudo code for IP forwarding.  

packet_encapsulate(char* pkt_ptr) 
{ 

struct ip iphdr, new_iphdr; 
char* enc_pkt; 
 
iphdr = fetch_header(pkt_ptr); 
while(iphdr.ip_len) { 

encrypt_packet(pkt_ptr, enc_pkt, block_size); 
iphdr.ip_len -= block_size; 
pkt_ptr += block_size; 

} 
 
new_iphdr = new_header(iphdr, enc_pkt); 
pkt_ptr = encap_packet(new_iphdr, enc_pkt); 
transmit(pkt_ptr); 

} 
(b)  Pseudo code for packet encryption and encapsulation. 

Figure 2. Typical programming framework for HPA and PPA. 
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Fig. 4 shows the maximum and minimum number of 
conditional branches executed for a packet, its average 
execution frequency and taken rate for an OC-3 packet trace. 
Compared with the simulation result in [19], the execution 
frequency of conditional branches is slightly lower, ranging 
from 1.59% to 12.67%. For HPA, the variations in the 
number of executed branches are much smaller than PPA. 
Taking TRIE as an example, the length of path along which 
packets with different destination IP addresses traverse are 
almost the same in a well-balanced trie. On the other hand, 
the number of branches executed for PPA heavily depends 
on packet length. The taken rate of branches also varies 
greatly for different applications. 

D. Performance Issues with Branch Prediction for 
Network Applications 
In this subsection, we briefly analyze the problems faced 

by traditional branch prediction scheme for network 
applications, using gshare as an example.  

Fig. 5 shows the accuracy of a gshare branch predictor 
with different number of entries in PHT for the selected 
network applications and an OC-3 packet trace. According to 
Fig. 5, the accuracy for PPA is higher than HPA. For 
example, a 64-entry gshare predictor achieves a hit rate of 
91.9% and 91.92% for AES and CRC but only 85.36% and 
75.5% for the TRIE and STAT applications. This is caused by 
the relatively complicated pattern of branch history in HPA. 
On the other hand, greater performance gains are achieved 
for HPA as the table size is increased. For a small 64-entry 
table, the average accuracy for HPA is 85.42% while for 

PPA it is 87.81%. For 1024-entry, the difference in accuracy 
is negligible, with an average hit rates of 95.1% and 95.2% 
for HPA and PPA respectively. 

Generally speaking, the relationship between prediction 
rate and PHT size follows a similar pattern to general 
purpose processing. Since the code size of network 
application is normally much smaller than general purpose 
processing applications, such as SPEC2000, similar accuracy 
can be achieved with fewer entries in PHT. However, it is 
hard to keep increasing the accuracy when the number of 
PHT entries reaches certain level. As shown in Fig. 5, 
network applications saturate above 512-entry, compared to 
the 8K-entry table size needed for SPEC benchmark 
applications [13]. Above 1024-entry it can be seen that the 
performance gain is minimal compared to the additional cost. 

Fig. 6 shows the average table utilization of a gshare 
branch predictor for the OC-3 packet trace across all 10 
applications. For small table sizes, high miss-prediction rate 
is the result of large amount of branch interference, with 
multiple branches mapping to the same location. However, 
when additional counters are added, the utilization falls 
significantly compared to the slight increase in prediction 
accuracy. For example, a 32-entry gshare predictor utilizes 
an average of 83.44% of the available entries for the 10 
network applications, while a 512-entry and a 2048-entry 
table utilizes only 23.34% and 6.89% respectively. This 
phenomenon demonstrates that although the processing of 
one packet involves a large number of conditional branches, 
the branch history does not have a lot of differing patterns. 
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Figure 3. Number of instructions in the compiled code and the percentage 

of conditional branches. 
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Figure 4. Maximum and minimum number of branches executed for a 

packet, its average execution frequency and taken rate for an OC-3 trace. 
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For most NPs, an application will reside on one PE for long 
periods of time. A solution in which more than 90% of 
pattern table is idle represents a significant waste of chip area 
and energy. 

III. FIELD-BASED BRANCH PREDICTION 
As mentioned in Section II.C, many network applications 

follow similar programming patterns. For example, header 
processing applications might need to verify the correctness 
of the transmission and whether the values of certain fields 
are valid. The rest of the processing is often based on the 
value of one or a combination of fields. Since most packets 
do not contain errors, the code dealing with exceptions is 
hardly executed, making the branch history more predictable. 

Furthermore, packets with similar field value often have 
the same execution path. For example, packets whose 
destination IP addresses belonging to the same prefix in the 
route lookup table follow the same path in the trie. Packets of 
the same flow fall into the same hyperbox defined by a 
ruleset and undergo the same subsequent processing 
according to the associated actions. Similar situations can 
also be found in PPA. The most obvious examples include 
encryption and fragmentation, in which the conditional 
branches are used mainly for testing the length of remaining 
packets. 

Additionally, the relatively short branch history of HPA 
makes it easier to cache the entire branch history for the 
processing of one packet. For example, in TRIE, an average 
of 44 conditional branches is encountered when processing 
one packet, which is a short enough branch history to be 
stored in PE. This is similar with PPA when small packets 
are processed. 

For payload applications whose branch history for large 
packet is too long to be completely cached in one table entry, 
a fallback gshare predictor can be exploited. The reason for 
doing this is that the prediction performance of schemes such 
as gshare depends on the length of branch history, i.e. the 
accuracy of gshare can be increased when more data is 
provided. Since the number of branch instructions executed 
in PPAs scales with packet length, gshare exhibits better 
performance for large packets due to the additional branch 
history. Table I shows the average accuracy of a 64-entry 

gshare predictor for three payload applications and traces of 
different link speed. The OC-12 and OC-48 traces contain a 
higher proportion of large packets, which results in a higher 
prediction rate than the OC-3 trace. Table II shows the 
average accuracy of a 64-entry gshare predictor for packets 
of maximum and minimum length in an OC-3 trace, which 
further demonstrates that schemes like gshare are more 
suitable for PPA with large packets. Since gshare is likely to 
generate incorrect prediction at the beginning of packet 
processing, the cached branch history of previous packets 
with similar field value can be used at this stage; once every 
bit in the cached history is used, the fallback gshare 
predictor has been well trained for subsequent prediction. 

A. Basic Architecture of Field-Based Branch Predictor 
Fig. 7 gives the block diagram of a field-based branch 

predictor for network applications. The major part of the 
predictor is the Branch String Table (BST), which caches the 
branch history for packets that are categorized by the value 
of certain header fields. A fallback gshare predictor is used 
either when packet with a new value for certain fields is 
received, or the cached history has been exhausted. Unlike a 
gskew predictor where an additional table of counters is 
maintained for choosing the branch predictor to be used, the 
current status of BST alone determines whether branch 
should be taken or not. 

 

Figure 7. Block diagram of field-based branch predictor for network applications. 

TABLE II.  AVERAGE ACCURACY OF 64-ENTRY GSHARE
 PREDICTOR FOR PPA AND DIFFERENT TRACES (%) 

App. OC-3 OC-12 OC-48 
AES 91.99 96.41 96.34 

SHA 80.51 86.45 85.57 

CRC 91.92 96.61 96.55 

TABLE III.  ACCURACY OF 64-ENTRY GSHARE 
PREDICTOR FOR PPA AND PACKETS OF DIFFERENT 

LENGTH (%) 

App. Min. Length Max. Length 
AES 91.74 96.57 

SHA 81.50 88.58 

CRC 90.50 99.00 

TABLE I.  SEARCH KEY EXTRACTED FROM PACKET HEADER 

App. Search Key 
TRIE Source IP + Destination IP 

HASH Source IP + Destination IP 

HYPE Source IP + Destination IP + Protocol 

STAT Source IP + Destination IP + Protocol 

DRR Length 

TCM Length 

AES Length 

SHA Length 

CRC Length 

FRAG Length + Offset 
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When a packet is received by the network processor, the 
string extract block extracts the relevant header fields and 
combines them into a search key defined by the network 
application. The search key can be part of one particular 
header field or a concatenation of several parts from a 
number of header fields. Table III gives the list of header 
fields used to generate search keys in our experiments for the 
10 applications. In practice, network workloads consist of 
multiple types of applications which have different branch 
patterns. In this case, the search key can be constructed as a 
combination of the header fields corresponding to each 
application. 

The generated search key, or predictor string as labeled 
in Fig. 7, is used to identify the entry to be used for branch 
prediction in the BST. This mapping relationship can be 
implemented in a number of ways. In this experiment, a full-
associative BST is achieved using Content-Addressable 
Memory (CAM) [22]. CAM should have the same number of 
entries as BST. In our experiment, the data width of CAM is 
set to 32-bit. As shown in Table III, if the length of the 
search key is less than 32-bit, part of the data bits in CAM 
entry will not be used. Otherwise, part of bits in the selected 
header fields will be ignored in order to fit the search key 
into 32-bits. 

Using the search key, the CAM logic returns either the 
address of corresponding branch history if previous packets 
also have the same key, or allocates a new entry in both the 
CAM and BST if the key fails to match anything. If all of the 
CAM entries have been used, the replaced entry is selected 
in a round-robin way for the simplicity of hardware 
implementation. For a matched key, the next bit in the 
branch history is fetched from the BST every time a 
conditional branch is encountered. In the case of the number 
of conditional branches exceeding the history length, the 
fallback gshare predictor is used, which has been updated for 
all of the previous branches. For packets without matching 
entry in CAM, prediction is also provided via the gshare 

logic, with the BST being updated when the branch direction 
is resolved. 

A field-based branch predictor can be expanded on a 
number of dimensions, denoted as N/M/P. The number of 
CAM/BST entries N can be increased to allow more patterns 
of branch history to be cached simultaneously and reduce the 
chances that the fallback gshare predictor is used. Additional 
branch history for each packet can be retained by extending 
the branch string width M, while the table size P of fallback 
predictor can be expanded to give a better base prediction for 
packets not previously seen. 

B. Variations of Field-Based Branch Predictor 
Unlike traditional branch predictors, the generation of 

BST index does not depends on branch address in our 
scheme, which means it is not necessary to access BST after 
the address of the branch is known. In fact, when all the 
fields needed for predictor string are received, the CAM and 
BST search can be issued even before the actual packet 
processing begins. Therefore an M-bit shift register can be 
used to hold the branch history of BST indexed by the 
matching entry in CAM. Whenever a branch is encountered, 
the next bit in the register can be used, without accessing the 
BST again. Similarly, if no matching entry is found in CAM, 
the branch history of this packet can be first stored in the 
register and written back from this register to BST at the end 
of packet processing or when the register is full. The reduced 
number of memory accesses in this variation consumes less 
energy as well as making the scheduling of predictor updates 
easier. 

Other possible variations include using set-associative 
cache instead of CAM, or calculating the accuracy of BST 
and fallback gshare to determine which one should be used 
for the next branch. Note that even if a cache is used, our 
scheme is still quite different from YAGS branch predictor, 
where the branch addresses play an important role in table 
index generation and cache content comparison [23]. 
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IV. PERFORMANCE EVALUATION 

A. Accuracy of Field-Based Branch Predictor 
Fig. 8 shows the accuracy of various field-based branch 

predictors with a 128-entry fallback gshare predictor for an 
OC-3 packet trace. It can be seen that a 16/128/128 scheme 
increases the hit rate of a single 128-entry gshare predictor 
from 90.76% to 96.60% across all 10 applications, which is 
higher than the average value of 95.83% for a 2048-entry 
gshare predictor. For applications that are highly relevant to 
certain header fields, such as TRIE or HYPE, the prediction 
accuracy gain is greater, with an improvement of 13.80% 
and 9.44% respectively. The only application which shows 
no significant gain is the metering algorithm TCM, whose 
branch behavior is difficult to predict since it is related to the 
packet inter-arrival time rather than header fields.  

It can be seen in Fig. 8 that for most applications, 
increasing the number of CAM entries provides only 
marginal performance gain. This is because the amount of 
packets collected by the OC-3 link is small, which limits the 
number of branch patterns. On the other hand, increasing the 
branch history length is much more effective, especially for 
applications such as DDR or SHA, in which doubling the 
128-bit history to 256-bit increases the hit rate by 4.95% and 
4.35% respectively. 

Fig. 8 also includes the accuracy for the combinations of 
several applications in order to simulate the situation of real-
life network software. The first combination is TRIE and 
FRAG, which fragments the packet after route lookup. The 
second is HYPE and TRIE, which classifies packets into 
flows before forwarding them. Table IV lists the accuracy of 
gshare predictors for these application combinations. 
Compared with single application, both gshare and field-
based predictor exhibit performance degradation but in most 
configurations, our scheme continues to outperform the 
2048-entry gshare predictor. 

Fig. 9 shows the accuracy of field-based predictor as the 
size of fallback gshare predictor is increased. Since for most 
applications the utilization of predictor above 512-entry is 
less than 50%, we limit our analysis to ghsare predictors 
with no more than 512 entries. It can seen that a field-based 
16/128/256 predictor achieves an average hit rate of 96.77% 
across all 10 applications, with a minimum accuracy of 
93.24% for SHA. Except for SHA and FRAG, increasing the 
number of CAM entries has a better performance gain than 
using a larger fallback gshare. This can be explained by 
Table V, which shows the percentage of packets whose field 
value has already been recorded by the CAM logic. Even 
when the CAM size is small, less than 15% new packets 
utilize the fallback gshare. The exception of SHA and FRAG 
in Fig. 9 is caused by their large branch history. In this case, 
a larger gshare provides better prediction when the 

conditional branches fall out of the range that can be cached 
by field-based predictor. 

Fig. 10 shows the average accuracy of field-based 
predictor for different packet traces. The branch history 
length is 128-bit and fallback gshare also has 128 entries. 
For OC-12 trace, a 64-entry and 128-entry CAM provides an 
average prediction rate of 96.66% and 96.93% respectively, 
higher than 96.26% of a 2048-entry gshare. For higher speed 
OC-48 trace, a 64-entry and 128-entry CAM provides an 
average prediction rate of 96.56%, and 96.62% respectively, 
still higher than the 96.24% of 2048-entry gshare. Link 
speed has more impact on header applications because 
higher speed links accumulate more packets with a larger 
number of different field values. Since this OC-12 trace 
contains a higher proportion of large IP packets, the 
performance gain across the payload applications is even 
lower than that of OC-48. 

B. Latency of Field-Based Branch Predictor 
For each incoming packet, only one CAM lookup is 

needed to get the starting address of branch history in BST. 
For the basic architecture shown in Fig. 7, the subsequent 
addresses are automatically generated by Address Logic. 
Therefore the latency for getting the bit for branch prediction 
is that of a single memory lookup to BST SRAM (note that 
gshare can be accessed simultaneously with BST). In 
variations where register is used to latch the branch history 
stored in one BST entry, the latency is that of the register. In 
both cases, the above mentioned latency can be guaranteed 
only if the first bit or whole entry of BST is returned before 
the first branch is encountered. This condition is not hard to 

TABLE V.  ACCURACY OF GSHARE PREDICTOR OF DIFFENRENT PHT SIZE FOR 
COMBINATION OF APPLICATIONS (%) 

App. 32 64 128 256 512 1024 2048 
TRIE+FRAG 81.61 88.68 89.71 91.92 92.59 92.44 92.78 

HYPE+TRIE 73.67 78.26 81.90 87.67 89.55 91.10 93.03 

TABLE IV. UTILIZATION OF FIELD-BASED PREDICTOR FOR NEW 
PACKET (%) 

App. N=16 N=32 N=64 N=128 
TRIE 92.526 91.047 96.607 97.473 

HASH 86.233 89.380 96.607 97.473 

HYPE 86.233 89.380 93.773 95.327 

DRR 86.067 91.047 92.433 95.040 

TCM 86.067 95.220 92.433 95.040 

STAT 86.233 95.220 93.773 95.327 

AES 86.067 89.380 92.433 95.040 

SHA 86.067 89.380 92.433 95.040 

CRC 86.067 89.380 92.433 95.040 
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Figure 10. Average accuracy of field-based predictor for different traces. 
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meet since packet content transfer from network interface to 
PE typically consumes a lot of processing cycles. 

C. Chip Area of Field-Based Branch Predictor 
Most NPs have multiple PEs integrated on one chip, 

making them sensitive to silicon area. The transistor cost of a 
field-based predictor includes CAM, BST and the fallback 
predictor. The latter two can be implemented using standard 
6-transistor SRAM while each CAM cell normally requires 9 
transistors. Ignoring the decoder and other control logic, the 
transistor cost of an N/M/P field-based predictor can be 
approximated as requiring (9×32×N)+(6×M×N)+(6×2×P) 
transistors. For a 16/128/128 scheme, the silicon area is 
roughly equivalent to a 1536-entry gshare table, much 
smaller than the prediction tables used in modern general 
purpose processors. 

V. CONCLUSIONS 
In this paper we have examined branch prediction for 

NPs. Although NPs have utilized techniques such as multiple 
PEs, multi-threading and hardware accelerator to meet the 
requirements of high speed and programming flexibility, 
improving the performance of each PE is always important. 
Micro-architectural techniques such as superscalar and deep 
pipeline remain effective once the branch penalty is 
mitigated. 

However, traditional branch schemes are not as efficient 
in network applications as in general purpose processing. 
Increasing the PHT size only slightly improves the accuracy, 
with a large percentage of table entries remaining idle. On 
the other hand, the similarity found in the programming 
framework associated with network applications allows for 
novel methods of exploiting runtime execution history.  

One of the key observations that inspire our scheme is 
that packets with similar header fields normally follow the 
same execution path. To improve prediction accuracy, we 
propose a field-based predictor which maps the incoming 
packet to a table of cached branch history of previous 
executions, based on selected header fields according to the 
characteristics of the application. Simulation on a set of 10 
network applications and real-life packet traces shows that 
such a prediction scheme can achieve an average prediction 
rate of over 97.5% with reasonable chip area consumption. 
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