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Abstract—The augmentedk-ary n-cube AQn,k is a recently
proposed interconnection network that incorporates an exten-
sion of a k-ary n-cube Qk

n inspired by the extension of a
hypercubeQn to the augmented hypercubeAQn (as developed
by Choudom and Sunita). We extend a recent topological
investigation of augmentedk-ary n-cubes by proving that any
augmented k-ary n-cube AQn,k is edge-pancyclic and that
AQ2,k is panconnected.
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I. I NTRODUCTION

Hypercubes are perhaps the most well known of all
interconnection networks for parallel computing, given their
basic simplicity, their generally desirable topological and
algorithmic properties, and the extensive investigation they
have undergone (not just in the context of parallel computing
but also in discrete mathematics in general; see, for example,
[13] for some essential properties of hypercubes). However,
a multitude of different interconnection networks have been
devised and developed in a continuing search for improved
performance, with many of these networks having hyper-
cubes at their roots. Amongst these generalisations of hy-
percubes arek-ary n-cubes [4], augmented cubes [2], cube-
connected cycles [12], twisted cubes [8], twistedn-cubes
[7], crossed cubes [5], folded hypercubes [6], Möbius cubes
[3], generalised twisted cubes [1], shuffle cubes [11],k-skip
enhanced cubes [15], twisted hypercubes [10], and Fibonacci
cubes [9]. Perhaps the most popular of these generalisations
are thek-ary n-cubes. Having the two parametersk and
n available allows us to regulate the degree of the nodes
yet still incorporate large numbers of processors, although
usually at a cost to some other property such as the diameter
or the connectivity.

However, recently an interconnection network has been
proposed that can be viewed as incorporating not just one
but two of the above generalisation techniques. In [16],
generalisations ofk-ary n-cubes, namelyaugmentedk-ary
n-cubes, have been proposed as interconnection networks
for parallel computing, inspired by Choudum and Sunitha’s
generalisation of hypercubes as augmented cubes [2]. Ak-
ary n-cubeQk

n is extended to an augmentedk-ary n-cube
AQn,k in a manner analogous to the extension of ann-
dimensional hypercubeQn to ann-dimensional augmented

cubeAQn; however, the latter extension is more involved
than the former, as we now explain. The hypercubeQn

and thek-ary n-cube Qk
n are spanning subgraphs of the

augmented hypercubeAQn and the augmentedk-ary n-
cubeAQn,k, respectively. In order to build the augmented
hypercubeAQn, one takes two copies of an(n − 1)-
dimensional augmented cubeAQn−1 and as well as joining
corresponding pairs of vertices, as one does in the hypercube
construction, one also joins pairs of vertices of Hamming
distancen − 1 (that is, vertices that are different in every
component). In order to build the augmentedk-ary n-cube
AQn,k, one takesk copies of an augmentedk-ary (n− 1)-
cubeAQn−1,k and as well as joining these copies as one
would in order to form ak-aryn-cube, one also includes two
other edges for every vertexv: one edge going to the vertex
whose every component is1 less that ofv (modulok); and
one edge going to the vertex whose every component is1
plus that ofv (modulok) (precise algebraic definitions are
given in the next section). In consequence, the augmentedk-
ary n-cubeAQn,k is a k-ary n-cube with additional edges.
The augmented5-ary 2-cube is depicted in Fig. 1 (in two
different ways, showing different embeddings ofQ5

2 within
AQ2,5).
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Figure 1. Two views of an augmented5-ary 2-cube.

Some essential properties of the augmentedk-ary n-cube
AQn,k in comparison with thek-ary n-cubeQk

n are given
in Fig. 2 (see [16] for more details). As can be seen, the
augmentedk-ary n-cubeAQn,k compares very favourably
with the k-ary n-cube Qk

n. Furthermore, and importantly,
the augmentedk-ary n-cubeAQn,k is ‘built on top’ of the
k-ary n-cubeAQk

n; that is, Qk
n is a spanning subgraph of

AQn,k. Thus, all routing and broadcasting algorithms which
work for Qk

n also work forAQn,k.



Qk
n AQn,k

vertices/edges kn/nkn kn/(2n − 1)kn
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(n ≥ 3) −(n − 2), k + 7}
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Figure 2. A comparison betweenQk
n andAQn,k.

In this paper, we further investigate the topological prop-
erties of augmentedk-aryn-cubes; in particular, pancyclicity
and panconnectivity. Path and cycle networks are fundamen-
tal in parallel computing; for not only is there a multitude of
algorithms specifically designed for linear arrays of proces-
sors and cycles of processors but paths and cycles appear
as data structures in many more algorithms for parallel
machines whose processors are inter-connected in a variety
of topologies. For example, having a collection of processors
connected in a cycle means that all-to-all message passing
can be undertaken by ‘daisy-chaining’ messages around the
cycle. In Section 2, we provide the basic definitions and
concepts relating to this paper. Our main results are proven
in Sections 3 and 4. In particular, in Section 3 we prove
that any augmentedk-ary n-cubeAQn,k is edge-pancyclic,
and in Section 4 thatAQ2,k is panconnected. In Section 5,
we present our conclusions and discuss panconnectivity in
AQn,k whenn ≥ 3.

II. BASIC DEFINITIONS

We assume throughout that arithmetic on tuple elements
is modulok, and we denote tuples of elements by bold type.
Recall the definition of thek-ary n-cubeQk

n: the vertex set
V (Qk

n) is {(an, an−1, . . . , a1) : 0 ≤ ai ≤ k − 1}; and the
edge setE(Qk

n) is {(u,v) : u = (un, un−1, . . . , u1),v =
(vn, vn−1, . . . , v1), eitherui = vi − 1 or ui = vi +
1, for somei, anduj = vj , for all i 6= j}. We regard all
graphs defined in this paper as undirected.

An augmentedk-ary n-cube is defined as follows.
Definition 1: Let n ≥ 1 and k ≥ 3 be integers. The

augmentedk-ary n-cubeAQn,k haskn vertices, each la-
belled by ann-bit string (an, an−1, . . . , a1), with 0 ≤ ai ≤
k − 1, for 1 ≤ i ≤ n. There is an edge joining vertex
u = (un, un−1, . . . , u1) to vertexv = (vn, vn−1, . . . , v1) if,
and only if:

• vi = ui − 1 (resp.vi = ui + 1), for somei such that
1 ≤ i ≤ n, andvj = uj, for all j such that1 ≤ j ≤ n

andj 6= i; or

• for somei such that2 ≤ i ≤ n, vi = ui − 1, vi−1 =
ui−1 − 1, . . . , v1 = u1 − 1 (resp.vi = ui + 1, vi−1 =
ui−1 + 1, . . . , v1 = u1 + 1), andvj = uj , for all j > i.

The augmentedk-ary n-cubeAQn,k can also be recur-
sively defined as it was in the Introduction (the proof of
this fact is a simple induction) and the essential properties
of AQn,k have already been given in Fig. 2. Note that
we can partitionAQn,k recursively as follows: we refer to
the subgraph ofAQn,k induced by the vertices whose first
component isi, for some fixedi ∈ {0, 1, . . . , k − 1}, as
AQi

n−1,k, and this subgraph is clearly a copy ofAQn−1,k.
A graph G = (V, E) is pancyclic(resp.m-pancyclic) if

it contains a cycle of every length between3 (resp.m) and
|V | (inclusive). If a graphG = (V, E) is such that given any
edgee, it contains a cycle passing throughe of every length
between3 and|V | then we say thatG is edge-pancyclic. Let
dG(u, v) denote the length of a shortest path inG joining
vertex u and vertexv. A graph ispanconnected(resp.m-
panconnected) if for every pair of distinct verticesu andv

of V , there is a path of every length betweendG(u, v) (resp.
m) and |V | − 1 joining u andv.

As regards thek-ary n-cube, panconnectivity and pan-
cyclicity issues have only recently been resolved, as we
now explain. The situation forQk

n is confused as when
k is even, Qk

n is bipartite and consequently cannot be
pancyclic nor panconnected. For bipartite graphs, the notions
of bipancyclicity and bipannconnectivity are more relevant,
where a bipartite graphG = (V, E) is bipancyclic if it
contains a cycle of every even length between4 and |V |,
andbipannconnectedif for every distinct pair of verticesu
and v of V , there is a path of every even length between
dG(u, v) and|V |−1 joining u andv (although the notions of
bipancyclicity and bipannconnectivity are primarily designed
for bipartite graphs, they are still relevant for non-bipartite
graphs). In [14] it was shown thatQk

n is bipanconnected and
bipancyclic, whenk ≥ 3 and n ≥ 2, and also that whenk
is odd,Qk

n is m-panconnected, form = n(k−1)+2k−6
2 , and

(k − 1)-pancyclic (these bounds are optimal).
We shall use a specific technique whilst building our

paths and cycles. Suppose thatρ is some path or cycle
v1, v2, . . . , vm, for somem (where there is an edge(vm, v1)
if ρ is a cycle). We say thatρ can beprogressively shortened
to a path of lengthm′, say, if we can iteratively replace a
sub-pathx, y, z, say, inρ with the edgex, z until we obtain
a path or cycle of lengthm′.

The following lemma from [16] will prove useful.
Lemma 2:The following are automorphisms ofAQn,k :

(a) the mapping taking the vertex(vn, vn−1, . . . , v1) to
(vn −an, vn−1−an−1, . . . , v1−a1), where(an, an−1,

. . . , a1) ∈ {0, 1, . . . , k − 1}n is fixed;
(b) the mapping taking the vertex(vn, vn−1, . . . , v1) to

(ǫvn, ǫvn−1, . . . , ǫv1), whereǫ ∈ {+1,−1} is fixed.

The following are automorphisms ofAQ2,k :



(c) the mapping taking the vertex(i, j) to the vertex(j −
i, j), if i ≤ j, and the vertex(i, j) to the vertex(k −
(i − j), j), if i > j;

(d) the mapping taking the vertex(i, j) to the vertex(j, i).

III. PANCYCLICITY OF AQn,k

We prove in this section that whenn ≥ 2 and k ≥ 3,
AQn,k is edge-pancyclic. We begin withAQ2,k.

Proposition 3: Let u = (0, 0), v = (1, 1), andw = (0, 1)
be vertices ofAQ2,k, wherek ≥ 3. There is a Hamiltonian
cycleC in AQ2,k that contains the edges(u,v) and(u,w)
and that we can progressively shorten until we obtain the
cycle u,v,w.

Proof: We break our proof into two cases, depending
upon the parity ofk.

Case 1: k is even.

Consider the following Hamiltonian cycleC of AQ2,k:

u,v, (2, 2), . . . , (k − 1, k − 1), (k − 1, 0), (k − 1, 1),

. . . , (k − 1, k − 2), (k − 2, k − 3), (k − 2, k − 4),

. . . , (k − 2, k − 1), (k − 3, k − 2), . . . , (2, 3),

(1, 2), (1, 3), . . . , (1, 0), (0, k − 1), (0, k − 2),

. . . , (0, 2),w.

See Fig. 3(a) for a visualization of the above cycle. We can
progressively shorten the cycle by first shortening the cycle
as it runs through zoneA and then as it runs through zone
B, so that we finally obtain the cycleu,v,w.

Case 2: k is odd.

Consider the following Hamiltonian cycleC of AQ2,k:

u,v, (2, 2), . . . , (k − 1, k − 1), (k − 2, k − 1),

(k − 1, 0), (k − 2, 0), (k − 1, 1), . . . , (k − 2, k − 4),

(k − 1, k − 3), (k − 1, k − 2), (k − 2, k − 3),

(k − 3, k − 4), (k − 3, k − 5), . . . , (k − 3, k − 2),

. . . , (2, 3), (1, 2), (1, 3), . . . , (1, 0), (0, k − 1),

(0, k − 2), . . . , (0, 2),w.

See Fig. 3(b) for a visualization of the above cycle. We can
progressively shorten the cycle by shortening the cycle as it
runs through zoneA and then as it runs through zoneB, so
that we finally obtain the cycleu,v,w.

An immediate corollary of Proposition 3 is thatAQ2,k is
pancyclic. However, asAQ2,k is edge-symmetric [16], it is
trivially also edge-pancyclic.

Corollary 4: AQ2,k is edge-pancyclic.
Note that we could define an ‘augmented grid’ by omitting

the ‘wrap-around’ edges inAQ2,k (this augmented grid is
actually the network visualized in Fig 3). As can be seen
from the proof of Proposition 3, this augmented grid is
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Fig. 3. A Hamiltonian cycle inAQ2,k.

pancyclic too (though not edge-pancyclic; for just consider
the edge(v,w) in Fig. 3).

Now for the general case. We begin with a useful lemma.
Lemma 5:Let n ≥ 2 andk ≥ 3. If (u,v) is an edge of

AQn,k then there are paths of lengths2 and3 joining u and
v.

Proof: By Lemma 2, we may assume w.l.o.g. thatu =
(0, 0, . . . , 0).

Case (a): v = (0, . . . , 0, 1, 0, . . . , 0), where all components
are0 except for theith, which is1, andi 6= 1.

Define w = (0, . . . , 0, 1, 1, . . . , 1); that is, thejth compo-
nent is 0, if j > i, with all other components1. Define
x = (0, . . . , 0, 0, 1, . . . , 1); that is, thejth component is0,
if j ≥ i, with all other components1. Definey = w.

Case (b): v = (0, . . . , 0, 1), where all components are0
except for the first, which is1.

Definew = (0, . . . , 0, 1, 1); that is, all components are0 ex-
cept for the first two which are1. Definex = (0, . . . , 0, 1, 0);
that is, the second component is1, with all other components
0. Definey = w.

Case (c): v = (0, . . . , 0, 1, 1, . . . , 1), wherei > 1 and where
the jth component is1 (resp.0) if, and only if, i ≥ j (resp.
i < j).

Define w = (0, . . . , 0, 0, 1, . . . , 1); that is, w is identical
to v in every component except that theith component



of w is 0. Define x = (0, . . . , 0, 1); that is, the first
component is1, with all other components0. Definey =
(0, . . . , 0, 1, 1, . . . , 2); that is, thejth component is1, if
1 < j ≤ i, with all other components0 except for the
first component which is2.

In each case,u,w,v is a path inAQn,k, as isu,x,y,v.
The result follows as by Lemma 2, all other cases (forv)
are isomorphic to one of the above cases.

We now consider pancyclicity inAQn,k.
Theorem 6:Let u = (0, 0, . . . , 0) be a vertex ofAQn,k,

wheren ≥ 2 andk ≥ 3. Let v be any neighbour ofu. There
exists a neighbourw of u, different fromv, such that for
everym such that5 ≤ m ≤ kn, there is a cycle of length
m in AQn,k containing the edge(u,v) as well as the edge
(u,w).

Proof: Let v = (vn, vn−1, . . . , v1). We will prove the
theorem by induction onn. The base case, whenn = 2,
is given by Proposition 3 and Lemma 2. Fixn > 2
and considerAQn,k, wherek ≥ 3. Partition AQn,k into
AQ0

n−1,k, AQ1
n−1,k, . . . , AQk−1

n−1,k by fixing the first com-
ponent of every vertex ofAQi

n−1,k at i; for ease of notation,
denote eachAQi

n−1,k by AQi.

Case (a): vn = 0; thus, v′ = (vn−1, vn−2, . . . , v1) is a
neighbour ofu′ = (0, 0, . . . , 0) in AQn−1,k.

We assume, as our induction hypothesis, that there is a
neighbouring vertexw′ = (wn−1, wn−2, . . . , w1) of u

′ in
AQn−1,k, different fromv

′, such that for everym for which
5 ≤ m ≤ kn−1, there is a cycleCm of length m in
AQn−1,k containing both of the edges(u′,v′) and(u′,w′).
For ease of notation, define the following vertices inAQn,k,
for eachi ∈ {0, 1, . . . , k − 1}: u

i = (i, 0, 0, . . . , 0); v
i =

(i, vn−1, vn−2, . . . , v1); andw
i = (i, wn−1, wn−2, . . . , w1)

(in particular,u = u
0 andv = v

0).
For eachi ∈ {0, 1, . . . , k − 1} and for eachm for which

5 ≤ m ≤ kn−1, denote byCi
m the natural embedding of

the cycleCm in AQi (and so, in particular,Ci
m contains

the edges(ui,vi) and (ui,wi)). Fix j ∈ {1, 2, . . . , k − 1}.
For each0 ≤ i ≤ j, choose the cycleCi

mi
in AQi, where

5 ≤ mi ≤ kn−1. Join these cycles together as follows:
• remove the edge(u0,w0) from C0

m0
;

• remove the edges(ui,wi) and (ui,vi) from Ci
m, for

1 ≤ i ≤ j − 1;
• if j is even then remove the edge(uj ,vj) from Cj

mj
,

and if j is odd then remove the edge(uj ,wj) from
Cj

mj
;

• if 0 ≤ i ≤ j − 1 and i is even then include the edges
(ui,ui+1) and (wi,wi+1);

• if 0 ≤ i ≤ j − 1 and i is odd then include the edges
(ui,ui+1) and (vi,vi+1).

The resulting cycle has lengthm0 + m1 + . . . + mj and
contains the edges(u0,v0) and(u0,u1). By choosingj and
the mi’s appropriately, for everym such that7 ≤ m ≤ kn,
we can obtain a cycle of lengthm in AQn,k containing

both of the edges(u0,v0) and (u0,u1); that is, the edges
(u,v) and (u,u1). A typical cycle can be visualized as
in Fig. 4 (where we have assumed thatj is odd).

...

...

AQ0 AQ1 AQ2 AQ3 AQ AQj-1 j...

Cm0
0 Cm1

1 Cm2
2 Cm3

3 Cmj-1
j-1 Cmj

j
v0

u0
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v1

u1

w1

v2

u2

w2

v3

u3

w3

vj-1

uj-1

wj-1

vj

uj

wj

Fig. 4. A typical cycle inAQn,k.

All that remains to do is to find cycles of lengths5 and6
containing the edges(u,v) and (u,u1). There is a cycle
u,v,v1,u1 of length 4, and Lemma 5 yields cycles of
lengths5 and 6 containing(u,v) and (u,u1) (we simply
replace the edge(u1,v1) with paths of lengths2 and3 in
AQ1).

Case (b): vn = 1 and v
′ = (vn−1, vn−2, . . . , v1) =

(1, 1, . . . , 1).

We assume, as our induction hypothesis, that there is a
neighbouring vertexw′ = (wn−1, wn−2, . . . , w1) of u =
(0, 0, . . . , 0) in AQn−1,k, different from v

′, such that for
every m for which 5 ≤ m ≤ kn−1, there is a cycleCm

of lengthm in AQn−1,k containing both edges(u′,v′) and
(u′,w′). By applying a suitable automorphism to eachAQi

(via Lemma 2), we may assume that for eachm such that
5 ≤ m ≤ kn−1, we can find a cycleCi

m of lengthm in AQi

that contains the edges((i, i, i, . . . , i), (i, i+1, i+1, . . . , i+
1)) and((i, i, i, . . . , i), (i, wn−1 + i, wn−2 + i, . . . , w1 + i))
(with arithmetic modulok). For ease of notation, define the
following vertices ofAQn,k, for eachi ∈ {0, 1, . . . , k− 1}:
u

i = (i, i, i, . . . , i); v
i = (i, i + 1, i + 1, . . . , i + 1); and

w
i = (i, wn−1 + i, wn−2 + i, . . . , w1 + i) (in particular,

u = u
0 andv = u

1).
We now proceed exactly as we did in Case (a) and obtain

that for everym such that5 ≤ m ≤ kn, there is a cycle of
length m in AQn,k containing both of the edges(u0,u1)
and (u0,v0); that is, the edges(u,v) and (u,v0).

Case (c): vn = 1 and v
′ = (vn−1, vn−2, . . . , v1) =

(0, 0, . . . , 0).

Define the vertexx = (0, 0, . . . , 0, 1) in AQn,k; that
is, the first component ofx is 1, with all other compo-
nents 0. Also, define the vertexx′ = (0, 0, . . . , 0, 1) of
AQn−1,k similarly. We assume, as our induction hypothesis,
that there is a neighbourw′ = (wn−1, wn−2, . . . , w1) of
u
′ = (0, 0, . . . , 0) in AQn−1,k, different from x

′, such
that for everym for which 5 ≤ m ≤ kn−1, there is a
cycle Cm of length m in AQn−1,k containing both of the
edges(u′,x′) and(u′,w′). For ease of notation, define the



following vertices ofAQn,k, for eachi ∈ {0, 1, . . . , k− 1}:
u

i = (i, 0, 0, . . . , 0); v
i = (i, 0, 0, . . . , 0, 1); and w

i =
(i, wn−1, wn−2, . . . , w2, w1) (in particular,u = u

0, v = u
1,

andx = v
0).

We now proceed exactly as we did in Case (a) and obtain
that for everym such that5 ≤ m ≤ kn, there is a cycle of
length m in AQn,k containing both of the edges(u0,u1)
and (u0,v0); that is, the edges(u,v) and (u,x).

The result follows by induction as every other case for
the neighbourv of u is isomorphic to one of the cases
considered above.

Lemmas 2 and 5 and Theorem 6 yield the main result of
this section.

Corollary 7: For n ≥ 2 and k ≥ 3, AQn,k is edge-
pancyclic.

IV. PANCONNECTIVITY IN AQ2,k

In this section, we show that whenk ≥ 3, AQ2,k is
panconnected. Just as we did before, partitionAQ2,k into
AQ0, AQ1, . . . , AQk−1 by fixing the first component of
every vertex ofAQi at i (so, eachAQi is a cycle of length
k). To prove thatAQ2,k is panconnected, we work in vertex-
induced subgraphs ofAQ2,k, namely the graphsBi induced
by the vertices ofAQ0, AQ1, . . . , AQi, where3 ≤ i ≤ k−1.

Throughout,u and v are two arbitrary, distinct vertices
of AQ2,k. Let d be the length of a shortest path inAQ2,k

joining u and v. We will show that there are paths of all
lengths betweend and k2 − 1 joining u and v in AQ2,k.
By Lemma 2, w.l.o.g. we may suppose thatu = (0, 0) and
thatv = (i, j), wherei ≤ j. Let us begin by supposing that
v ∈ B3. We shall describe a Hamiltonian path fromu to v

in B3. There are various cases to consider, depending upon
the vertexv.

Case 1: i = 0.

A Hamiltonian path fromu to v in B3 is depicted in
Fig. 5(a).

Case 2: i = 1.

A Hamiltonian path fromu to v in B3 whenv 6= (1, 1) is
depicted in Fig. 5(b), and one fromu to (1, 1) in Fig. 5(c).

Case 3: i = 2.

A Hamiltonian path fromu to v in B3 whenv 6= (2, 2) is
depicted in Fig. 6(a), and one fromu to (2, 2) in Fig. 6(b).

It is trivial to verify that all of the paths constructed
above can be progressively shortened until they have length
j (remember,i ≤ j).

Let us now suppose thatv ∈ B4. We shall describe a
Hamiltonian path fromu to v in B4. There are various
cases to consider, depending upon the vertexv.

Case 1: i = 0.

A Hamiltonian path fromu to v in B4 is depicted in
Fig. 7(a).

... ...

u v

(a) i = 0.

... ...

u

v

(b) i = 1, v 6= (1, 1).

... ...

u

v

(c) i = 1, v = (1, 1).

Fig. 5. Hamiltonian paths inB3 when i = 0, 1.

... ...

u

v

(a) i = 2, v 6= (2, 2).

... ...

u

v

(b) i = 2, v = (2, 2).

Fig. 6. Hamiltonian paths inB3 when i = 2.

Case 2: i = 1.

A Hamiltonian path fromu to v in B4 is depicted in
Fig. 7(b).

Case 3: i = 2.

A Hamiltonian path fromu to v in B4 is depicted in
Fig. 7(c).

Case 4: i = 3.

A Hamiltonian path fromu to v in B4 whenv 6= (4, 4) is
depicted in Fig. 8(a), and one fromu to (4, 4) in Fig. 8(b).

Again, it is trivial to verify that all of the paths constructed
above can be progressively shortened until they have length
j.

We now extend the constructions above inductively. Sup-
pose that for some3 ≤ r ≤ k−3, given any vertexv = (i, j)
in Br (different from (0, 0) and with i ≤ j), we can find
a Hamiltonian pathρ in Br joining (0, 0) and (i, j) that
can be progressively shortened until the path has lengthj;
moreover, we assume that there is at least one edge ofρ

lying in AQr (this is certainly true for all paths constructed
above inB3 and B4). Now let u = (0, 0) and v = (i, j),
wherev lies in Br+2 and i ≤ j.



... ...

u v

(a) i = 0.

... ...

u
v

(b) i = 1.

... ...

u

v

(c) i = 2.

Fig. 7. Hamiltonian paths inB4 when i = 0, 1, 2.
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(a) i = 3, v 6= (4, 4).

... ...
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v

(b) i = 3, v = (4, 4).

Fig. 8. Hamiltonian paths inB4 when i = 3.

Case 1: (i, j) lies in Br.

By the induction hypothesis, there is a Hamiltonian path
ρ in Br joining (0, 0) and (i, j) that can be progressively
shortened until the path has lengthj. Take any edge of the
form ((r, a), (r, a+1)) (with addition modulok) that lies on
the pathρ (such an edge exists by assumption). Extend the
path ρ as in Fig. 9(a). The new Hamiltonian path inBr+2

can clearly be progressively shortened to obtain a path of
lengthj.

Case 2: (i, j) lies in AQr+1 (so, i = r + 1).

Let w = (i − 1, j − 1); so, i − 1 ≤ j − 1. By the induction
hypothesis, there is a Hamiltonian pathρ in Br from u

to w that can be progressively shortened until we obtain
a path of lengthj − 1. The pathρ can be extended as in

... ...

Br
u

v

(a) A simple extension.

... ...

Br
u

v

w

(b) Extending toAQr+1.

... ...

Br
u

w

v

(c) Extending toAQr+2.

Fig. 9. Extending Hamiltonian paths.

Fig. 9(b) (note that ifi = j = r + 1 then we use the edge
((r, r), (r + 1, r))). The new Hamiltonian path inBr+2 can
clearly be progressively shortened until we obtain a path of
lengthj.

Case 3: (i, j) lies in AQr+2 (so, i = r + 2).

Let w = (r, j − 2); so, i − 2 ≤ j − 2. By the induction
hypothesis, then is a Hamiltonian pathρ in Br from u to w

that can be progressively shortened until we obtain a path of
lengthj−2. The pathρ can be extended as in Fig. 9(c). The
new Hamiltonian path inBr+2 can clearly be progressively
shortened until we obtain a path of lengthj.

Thus, by induction, we have the following result.
Theorem 8:We can find a Hamiltonian pathρ in AQ2,k

joining the vertex(0, 0) to any different vertex(i, j), where
i ≤ j, that can be progressively shortened until the pathρ

has lengthj.
Thus, in order to prove thatAQ2,k is panconnected, all we

have to do is to show that there are paths joiningu = (0, 0)
andv = (i, j) (wherei ≤ j) of all lengths ranging from the
length of a shortest path joiningu andv up to j − 1. With
regard to candidate paths for shortest paths joiningu and
v, the situation can be visualized in Fig. 10. An immediate



observation is that if there is a shortest path fromu to v

that leaves the grey area (consisting of the subgraph induced
by the vertices of{(x, y) : 0 ≤ x, y ≤ k − 1, x ≤ y})
then there is an analogous shortest path that does not leave
the grey area. This observation can be easily verified by
examining the different configurations ofi andj with a view
to finding a shortest path joiningu andv. Depending upon
the relative values ofi andj (with respect to each other and
with respect tok and 0 also), a shortest path fromu to v

will be constructed in one of the following three ways:

• the first component will be increased from0 to j and
the second component will be increased from0 to i;

• the first component will be decreased from0 to j and
the second component will be increased from0 to i;

• the first component will be decreased from0 to j and
the second component will be decreased from0 to i.

Note that becausei ≤ j, a shortest path fromu to v

need not be constructed by increasing the first component
from 0 to j and decreasing the second component from
0 to i; for we can obtain a shortest path (of the same
length) by decreasing the first component from0 to j and
decreasing the second component from0 to i via a path
(0, 0), (k − 1, k − 1), . . . , (j, j), (j − 1, j), . . . , (i, j) which
resides wholly within the grey area. The criteria in each of
the three constructions above can be met by shortest paths
residing wholly within the grey area and so we may confine
ourselves to shortest paths residing wholly within the grey
area (see Fig. 10 for some illustrative paths).

... ...

...

...

...

u

v

z

w

Fig. 10. Possible shortest paths joiningu andv.

Any such shortest path must pass through exactly one of
w = (k− 1, k− 1) andz = (0, k− 1) or must pass through
neither ofw andz.

• If a shortest path does not pass throughw or z then
it has lengthj, and we are done (as we have already
found paths joiningu andv of all lengths betweenj
andk2 − 1, inclusive).

• If a shortest path passes throughz then it has length
k−j+i, and any such path can clearly be progressively
lengthened until it has lengthj (if k − j + i < j).

• If a shortest path passes throughw then it has length
k − i, and any such path can clearly be progressively
lengthened until it has lengthj (if k − i < j).

Thus, irrespective of the lengthd of a shortest path fromu
to v, there exists a path fromu to v of all lengths between
d andk2 − 1 (inclusive).

Consequently, we have the following result.
Theorem 9:AQ2,k is panconnected.

V. CONCLUSION

In this paper, we have shown thatAQn,k is edge-
pancyclic, whenn ≥ 2 and k ≥ 3, and thatAQ2,k is
panconnected. With regard to pancyclicity, the situation for
AQn,k is improved in comparison to thek-ary n-cubeQk

n.
With regard to panconnectivity, the situation forAQ2,k is
improved in comparison to thek-ary 2-cubeQk

2 . Of course,
the obvious question remaining to be asked is whether
AQn,k is panconnected whenn ≥ 3. This question is
made more complicated due to the lack of a complete
picture as regards the diameter ofAQn,k when n ≥ 3,
and more generally as regards the length of a shortest path
joining two arbitrary vertices ofAQn,k. As can be seen
from [16], at present only an upper bound is known as
regards the diameter ofAQn,k and (as remarked in [16])
deriving the diameter exactly appears to be combinatorially
quite difficult. However, in preliminary investigations on this
question we have tentatively obtainedm-panconnectivity
results forAQn,k wherem is n⌈k

2 ⌉ (that is, the diameter of
Qk

n). We shall continue this investigation in future.
Another topic for further research is the tolerance of

AQn,k to faults; for example, is it the case thatAQn,k re-
mains pancyclic when a limited number of vertices or edges
are removed from the network (mimicking fault processors
or links in an inter-connection network based uponAQn,k)?
We observe thatAQ2,k can tolerate at least one faulty vertex
and remain pancyclic (simply remove the vertexu in Fig. 3).
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