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Abstract—Data streaming (DS) over Peer-to-Peer (P2P) net-
works has been intensively studied in recent years and there
have been various schemes proposed already. To evaluate these
schemes, either measurement in experimental implementations,
or simulation and theoretical analysis have been used. The
former is inadequate as data are collected from different ex-
periments, while the latter lacks a proper theoretical dynamics
model. Our research aims at providing a general theoretical
model to evaluate DS over P2P systems and analyze their
dynamic behaviors. In this paper, with the analysis and abstrac-
tion of the characteristics of peers and their organization in
DS over P2P, we propose a general population dynamics model
for DS over P2P with fixed population. The model depicts
the dynamic distribution of peers as a closed Markov queuing
network. In particular, the model is scheme-independent and
can be used with various schemes. Through theoretical analysis,
we prove the model has equilibrium and only one closed-form
solution. Besides, we verify the model through simulations, and
show that it is a helpful analytical tool with a case study.

Keywords-peer-to-peer; data streaming; Markov queuing
network; system dynamics;

I. INTRODUCTION

Due to its cost-effectiveness, the peer-to-peer (P2P) ap-

proach has been widely applied in data distribution in

the Internet. Several traditional services, such as directory

service, searching, and file sharing, have migrated onto this

new platform. Among these migrants, data streaming (DS)

has drawn special attention for its excellent performance in

on-line multimedia delivery and for its special challenges in

analysis and implementation.

Unlike ordinary data, streaming data has no clear start and

stop points, and therefore is suitable for real-time applica-

tions, such as video and audio broadcasting, stock market

information and weather information delivery. Traditionally,

DS is based on the Client/Server (C/S) paradigm or built

on multicast infrastructures. Such traditional DS approaches

have been thoroughly studied and it is found that while

reliability may be guaranteed, it is at the expense of low

scalability and high initial deploying cost.
In contrast, a P2P network enjoys high scalability and no

extra hardware cost is incurred for deployment. However,

due to its changing and unstable environment, a DS system

over P2P is also dynamic and unreliable. Providing efficient

and reliable streaming services becomes a new challenge

and excites the interests of researchers and engineers. In

the past few years, several DS schemes over P2P network

have been proposed, including the early tree-based structured

ones, such as SplitStream [1] and Chunkyspread [2], and

the more recent swarming-based unstructured ones, like

Coolstreaming [3] and RDS [4].

With the increasing number of proposed schemes, how

to make effective and fair evaluation among them becomes

a key issue. To achieve this objective, however, is not easy.

At present, to evaluate such schemes, either measurement on

experimental implementations, or simulation and theoretical

analysis have been used. However, the data collected may

not be useful to make fair comparisons among the various

schemes as the data are collected from different experiments

of different schemes, or from different implementations

of the same scheme. Some efforts, such as [5], [6], [7],

provide integral reviews of designs with regards to their

design principles, strengths, weaknesses, scalabilities, etc.

However, they are grounded on indirect comparison and

intuitive analysis of the original data from the respective

tests by their designers.

In addition, due to the lack of proper theoretical models,

the theoretical analysis in previous studies is limited to

simple static probabilistic characteristics, such as the average

delay, average hops and average number of peers. These

metrics, however, miss the dynamic characteristics of the

P2P environment and may be misleading [8].

This work aims at providing a general theoretical model

to evaluate DS over P2P systems and analyze their dynamic

behavior. In this paper, we propose a general population

dynamics model for DS over P2P with fixed population. The

distribution of peers is modeled as a closed Markov queuing

network. The model is scheme-independent and widely

applicable to various schemes. We prove the existence of

equilibrium in the model and that it has only one closed-

form solution.

As far as we know, our work is the first theoretical

study on the model of the population dynamics for DS

over P2P networks. There are several existing studies on

modeling data services over P2P. Our work is distinguished

by its special consideration of peers’ characteristics and

organization in DS over P2P, and the proposed population

dynamics model is a general model and applicable to various

schemes. Meanwhile, the existing studies focus on the file-
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Figure 1. State transition diagram of a peer’s behavior.

sharing application, and their proposed models are based on

particular schemes, such as the BitTorrent [9] scheme or its

variations [10], [8].

The rest of the paper is organized as follows. Sec. II is the

analysis and abstraction of peers and their organization in

the context of DS over P2P. Sec. III proposes the population

dynamics model and the related theoretical analysis. Sec. IV

verifies the model through simulation. Sec. V presents a case

study based on the proposed model. Sec. VI concludes the

paper.

II. ANALYSIS OF DATA STREAMING OVER P2P

In this section, we analyze the characteristics of peers

in the context of DS over P2P and propose a series of

abstractions of peers’ roles, behaviors and their organization.

The study provides necessary premise for the population

dynamics model in Sec. III.

A. Roles of a peer

In DS over P2P, a peer’s roles are jointly determined by

the underlying P2P mechanism and the characteristics of the

streaming application. As an elementary participant in the

P2P environment, each peer takes two roles, “client” and

“server”, simultaneously. For data-centric applications over

P2P networks, such as file sharing and DS, “caching” data

from others and “forwarding” data to others are the tasks of

“client” and “server” roles, respectively.

The characteristics of a peer are related to the properties

of its roles. In general, the service consumption for peers

as the “client” and the capability of service provision as the

“server” are the two basic properties which interest us.

B. Behaviors of a peer

In general, DS schemes have their own specifications

on peer behavior, usually including dozens of states and

actions. To focus on the essentials, we propose a simple

peer behavior model with only two possible actions, Join and

Leave, and two possible states, Attached and Unattached.

Fig. 1 shows the possible transitions between the states.

In particular, the only action a peer in the Attached state can

take is Leave, entering the Unattached state. Similarly, the

only action a peer in the Unattached state can take is Join.

Join leads to two possible results. If the Join action succeeds,

then the peer enters the Attached state; otherwise, it stays in

the Unattached state and retries after a scheme-determined

delay.

To simplify the discussion, we assume the time spent on

state transition is negligible. Once a peer joins a stream

successfully, it gets served immediately. We also assume

that an upstream peer’s Leave does not cause its downstream

peer’s recursive Leave.

C. Delay of a peer

In all kinds of data service over P2P, data delivery is

always accompanied by delay and delay jitter. In general,

delay is defined as the interval between the time when the

data chunk is generated at the source and the time when it is

ready at the peer for playback and forwarding. Delay jitter is

the variation of delay. In most schemes, delay jitter can be

mitigated by increasing the local cache size. Take PPlive,

a representative commercial P2P DS system for Internet-

wide video service, as an example, the probability of smooth

playback for peers with 150MB disk cache is about 90%
[11]. In this paper, therefore, we focus on the delay of peers

in streaming.

In general, DS applications are much more time sensitive

than file sharing. Besides requiring identical rate in data

playback and production, the streaming data has short effec-

tive time, after which the data becomes obsolete and useless.

Live TV program broadcasting is an example of this type

of applications. Given the properties of a peer’s roles, the

limited effective time puts a constraint on system capacity.

The closer the population gets to the capacity, the higher

probability the newly attached peer receives obsolete data,

which leads to a Leave action. On the other hand, within

the capacity, the delay experienced by newly attached peer

increases with the increase of hop distance between the peer

and the data source.

In general, the delay experienced by a peer is deter-

mined by three factors: delay of upstream peers, one-way

transmission latency from the upstream peers to the peer,

and the scheme-related delay. The scheme-related delay is

determined by the size of the peer’s local cache and caching

mechanism and usually in the range from half a minute to

several minutes. Also, most streaming applications expect

continuous data playback at the same rate as the data is

produced, so the scheme-related delay is relatively steady

after a peer is attached to a stream. The transmission latency

is quite small, varying from several milliseconds to less

than 10 seconds. Compared with the scheme-related delay,

the transmission latency is negligible. With this simplifi-

cation and considering the data spreading process, delay

is dominated by the scheme-related delay. Without loss of

generality, we further assume discrete delay in our model.
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Figure 2. Dynamic organization of peers.

D. Definition of a peer

With the above analysis and discussion, a peer can be

abstracted as a 4-tuple[
𝑟𝑐, 𝑟𝑠, 𝑠𝑡𝑎𝑡𝑒, 𝑑

]
,

where 𝑟𝑐 and 𝑟𝑠 denote the peer’s service consumption and

capability of service provision, 𝑠𝑡𝑎𝑡𝑒 denotes the peer’s

current state, and 𝑑 denotes the delay experienced by the

peer. To facilitate the comparison among different imple-

mentations, 𝑟𝑐 and 𝑟𝑠 are numbers without units. Obviously,

𝑑, 𝑟𝑐, and 𝑟𝑠 are non-negative. We set 𝑑 = 0 for the data

source, and 𝑑 = ∞ for the peers in the Unattached state.

E. Peer organization

In DS over P2P, the oriented diffusion model mentioned

in [12] provides a vivid description of the data spreading

process. It is similar to particle diffusion in physics: the

newly generated streaming data is injected into the system

at the data source, gradually diffuses among neighboring

peers and finally saturates all peers attached to the stream.

Following this model and with the assumption of discrete

delay, we propose to group peers in DS over P2P by the

delay they experience. As illustrated in Fig. 2, all the peers

are grouped into countable sets based on their delays. In

this way, the population dynamics can be represented by the

distribution of peers in these countable sets. Our population

dynamics model in Section III provides a tool to track the

evolution of such sets.

III. POPULATION DYNAMICS MODEL

In this section, we propose a general population dynamics

model for DS over P2P with a fixed population. Through

theoretical analysis, we prove that the model has equilibrium

and one and only one closed-form solution.

A. Population dynamics model

We make the following assumptions:

∙ The peer population is fixed. No peer leaves the system

and no peer joins the system from the outside.

Figure 3. Markov queuing network model of closed population.

∙ The role and number of data sources are fixed.

∙ The time a peer stays in the Attached state or the

Unattached state follows exponential distributions.

∙ All the peers are homogeneous. They have the same

capability and the same behavior.

Inspired by the work of Kingman [13] and Chandy [14],

our model maps the dynamic actions, Join and Leave, of

peers to the customers’ movements in a Markov queuing

network with the structure illustrated in Fig. 3.

In Fig. 3, each vertex (a small circle labeled with an index)

in the network represents a service queue. Peers are grouped

into different queues according to their delay 𝑑. 𝑑 is also

used as the index of that queue and 𝐷 is the maximum

allowed delay. We use 𝑞𝑑, 𝑑 ∈ {1, ⋅ ⋅ ⋅ , 𝐷} to represent the

queue with delay 𝑑; and use 𝑥𝑑 to represent the number of

peers in 𝑞𝑑. Besides, 𝑞0 denotes the queue of data sources,

and 𝑞∞ denotes the queue of unattached peers. There are

𝐷+2 queues in the closed system. Since the stream sources

are unchanged, 𝑞0 and 𝑥0 are fixed, and thus they are omitted

in the network. Due to the assumption on immediate service,

all the queues in this model are 𝑀 ∣𝑀 ∣∞ queues.

In Fig. 3, an edge represents a feasible transition path

among queues, through which a state transition of a peer

can be made. According to the model, a path only exists

between 𝑞𝑑, 𝑑 ∈ {1, ⋅ ⋅ ⋅ , 𝐷} and 𝑞∞.

Further, we define

𝑠 = [𝑥1, ⋅ ⋅ ⋅ , 𝑥𝐷, 𝑥∞]
𝑇

as the state of the population in terms of 𝑥𝑑 and represents

the distribution of peers with different delays. In addition,

we let 𝑆 denote the space of all the possible states and hence

𝑆 is irreducible. For convenience, in the rest of the paper,

we use 𝑠𝑑 to represent 𝑥𝑑 of a given 𝑠.

With the homogeneity assumption, all peers have the

same joining rate and leaving rate, represented by 𝜆 and

𝜇, respectively. In addition, 𝜆𝑑 and 𝜇𝑑 are used to represent

the arrival rate and service rate of 𝑞𝑑, 𝑑 ∈ {1, ⋅ ⋅ ⋅ , 𝐷, ∞}
respectively. Obviously, 𝜇𝑑 satisfies

𝜇𝑑 = 𝑥𝑑 ⋅ 𝜇, 𝑑 ∈ {1, ⋅ ⋅ ⋅ , 𝐷, ∞}.
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We find that 𝜆𝑑 is determined by 𝜇∞ and the transi-

tion probability of a peer moving from 𝑞∞ to 𝑞𝑑, 𝑑 ∈
{1, ⋅ ⋅ ⋅ , 𝐷}. This probability is determined by a specific

scheme implementation and is also a function of the current

state 𝑠.

To hide the difference among different schemes, we

abstract their behavior into the transition probability, de-

noted by 𝑃𝑠𝑐ℎ𝑒𝑚𝑒(𝑠, 𝑑) in our model. The introduction of

𝑃𝑠𝑐ℎ𝑒𝑚𝑒(𝑠, 𝑑) makes the model scheme-independent. Then

we have

𝜆𝑑 =

{
𝑃𝑠𝑐ℎ𝑒𝑚𝑒(𝑠, 𝑑) ⋅ 𝑥∞ , 𝑑 ∈ {1, ⋅ ⋅ ⋅ , 𝐷}∑𝐷

𝑖=1 𝜇𝑖 = 𝜇
∑𝐷

𝑖=1 𝑥𝑖 , 𝑑 = ∞ .

For simple schemes, such as the one used in Sec. IV, closed

form expression of 𝑃𝑠𝑐ℎ𝑒𝑚𝑒(𝑠, 𝑑) is available; otherwise,

𝑃𝑠𝑐ℎ𝑒𝑚𝑒(𝑠, 𝑑) can be calculated through simulations or

measurements in a real implementation.

In addition, we define 𝑉 as the peer population including

the source nodes, and 𝑉 ∗ as the population excluding the

source nodes. With the assumption of fixed population, 𝑉 ∗

is fixed, thus the state space 𝑆 satisfies

𝑆 = {𝑠 ∣ 𝑥1 + 𝑥2 + ⋅ ⋅ ⋅+ 𝑥𝐷 + 𝑥∞ = 𝑉 ∗} ,
and obviously ∣∣𝑆∣∣ is finite.

B. Equilibrium and solution

Although the proposed Markov population dynamics

model is similar to the general queuing network model

proposed by Jackson [15], that model is based on the

assumption of state-independent transition probability and

hence can not be applied to our population dynamics anal-

ysis.

We define 𝑝(𝑠) as the stationary probability of 𝑠, (𝑠 ∈ 𝑆);
𝑞(𝑚, 𝑛), (𝑚,𝑛 ∈ 𝑆) as the transition rate from state 𝑚 to

state 𝑛; and 𝑞(𝑚) as the summation of the transition rates

from state 𝑚 to all the other states. 𝑞(𝑚) can be calculated

as

𝑞(𝑚) =
∑

𝑚,𝑛∈𝑆
𝑞(𝑚, 𝑛), (𝑚 ∕= 𝑛). (1)

For convenience, we let 𝑒𝑖 denote a unit vector with the

same form as 𝑠. Specially, its 𝑖th-coordinate equals 1 and

all other coordinates equal zero. 𝑞(𝑚, 𝑛) can be calculated

as

𝑞(𝑚, 𝑛) =

⎧⎨
⎩
𝑚𝑑⋅𝜇 (𝑛=𝑚−𝑒𝑑+𝑒∞) ∩ (𝑚𝑑>0)

𝑃𝑠𝑐ℎ𝑒𝑚𝑒(𝑚, 𝑑)⋅𝑚∞ (𝑛=𝑚+𝑒𝑑−𝑒∞) ∩ (𝑚∞>0)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,

(2)

in which 𝑚𝑑 is the number of peers in the 𝑑th queue of state

𝑚. As stated in Sec. II-C, delay 𝑑 does not change while a

peer is Attached. Changing only happens when a peer moves

between 𝑞𝑑, 𝑑 ∈ {1, ⋅ ⋅ ⋅ , 𝐷} and 𝑞∞. In Eq. 2, the first

case gives the state transition rate triggered by a peer moving

from 𝑞𝑑, 𝑑 ∈ {1, ⋅ ⋅ ⋅ , 𝐷} to 𝑞∞; the second case shows

the state transition rate triggered by a peer moving from 𝑞∞
to 𝑞𝑑, 𝑑 ∈ {1, ⋅ ⋅ ⋅ , 𝐷}; and the last case indicates that no

other state transition is allowed.

Below, we prove that the proposed population dynamics

model has equilibrium and closed-form solution.

Lemma 1: The proposed population dynamics model has

equilibrium, and has one and only one solution.

Proof: Theorem 8 in [16] has proved that if a state space

is irreducible, then it has equilibrium, and the stationary

probability distribution of states has one and only one

solution.

As stated above, ∣∣𝑆∣∣ is finite and 𝑆 is irreducible. So the

proposed population dynamics model has equilibrium and

has one and only one solution. According to [16], the only

solution to the stationary probability distribution of states is

a set of positive numbers 𝑝(𝑛), (𝑛 ∈ 𝑆), which satisfies∑
𝑛∈𝑆

𝑝(𝑛) = 1,

𝑞(𝑛)𝑝(𝑛) =
∑
𝑚∈𝑆

𝑞(𝑚 ,𝑛)𝑝(𝑚), (𝑛 ∈ 𝑆). (3)

Unfortunately, Eq. 3 has no general closed-form solution.

Considering the model as a special case of the above Markov

queuing network, the numerical solution can be obtained by

solving the equation set of(∑𝐷
𝑑=1 𝜆𝑑 + 𝜆∞ +

∑𝐷
𝑑=1 𝜇 ⋅ 𝑛𝑑 + 𝜇 ⋅ 𝑛∞

)
⋅ 𝑝(𝑛) =∑𝐷

𝑑=1 𝑞 (𝑛+ 𝑒𝑑 − 𝑒∞, 𝑛) ⋅ 𝑝(𝑛+ 𝑒𝑑 − 𝑒∞)
+

∑𝐷
𝑑=1 𝑞(𝑛−𝑒𝑑+𝑒∞, 𝑛)⋅𝑝(𝑛−𝑒𝑑+𝑒∞), (𝑛 ∈ 𝑆).

Lemma 2: The proposed population dynamics model has

closed-form solution.

Proof: According to Kingman [13], reversibility leads

to a closed-form solution. Below we prove that the proposed

Markov queuing network is reversible.

Kolmogorov cycle condition [17] states that a system is

reversible if and only if

𝑞 (𝑛1, 𝑛2) 𝑞 (𝑛2, 𝑛3) ⋅ ⋅ ⋅ 𝑞 (𝑛𝑟, 𝑛1) =

𝑞 (𝑛1, 𝑛𝑟) 𝑞 (𝑛𝑟, 𝑛𝑟−1) ⋅ ⋅ ⋅ 𝑞 (𝑛2, 𝑛1)

is satisfied for any possible closed path of

< 𝑛1, 𝑛2, 𝑛3, . . . , 𝑛𝑟, 𝑛1 >, where 𝑛1, 𝑛2, 𝑛3, ⋅ ⋅ ⋅ , 𝑛𝑟
are any distinct states in 𝑆. As a special case, for paths

with length 2, the Kolmogorov cycle condition is always

satisfied [17].

In our model, all the possible closed paths are composed

of elementary paths between 𝑞𝑑, 𝑑 ∈ {1, ⋅ ⋅ ⋅ , 𝐷} and 𝑞∞.

In other words, all the elementary closed paths have the form

of < 𝑚, 𝑛, 𝑚 >, (𝑛, 𝑚 ∈ 𝑆) and with length 2. Therefore

our model satisfies Kolmogorov cycle condition and is thus
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reversible. According to [13], the closed-form solution to

the stationary distribution of states is

𝑝 (𝑛) = 𝑝 (∞)
𝐷∏
𝑑=1

𝐻𝑑(𝑛𝑑, 𝑛
𝑑). (4)

Due to space limitations, we only give the main formulas

here. Detailed descriptions can be found in [13].

IV. MODEL VERIFICATION

In this section, we verify the proposed population dy-

namics model through the comparison of its output to the

simulation results in a case study of DS over P2P. Since the

model is scheme-independent, we believe that its validity

can be extended to other schemes.

A. Scheme specification

With the assumption on homogeneity, all peers are as-

sumed to have the same 𝑟𝑐 and 𝑟𝑠. We use 𝑅𝑐 and 𝑅𝑠 instead

to denote the service consumption 𝑟𝑐 and the capability of

service provision 𝑟𝑠 of all peers. In our verification, we let

𝑅𝐶 = 1; thus the scheme has a tree-like structure.

In addition, we define the behavior of peers as follows:

when an Unattached peer 𝑈 tries to join a stream, it

randomly selects a peer already Attached to the stream,

say peer 𝐴, as its upstream provider. If 𝐴 has enough

available resource and 𝑑𝐴 < 𝐷 is satisfied, then 𝑈 joins

the stream successfully and 𝑑𝑈 = 𝑑𝐴 + 1. Otherwise, 𝑈
stays in the Unattached state and waits for a random period

before another trial. When in Attached state, a peer leaves

the stream with rate 𝜇. When in the Unattached state, a peer

attempts to join the stream with rate 𝜆. 𝜇 = 4 and 𝜆 = 1
are used in the verification.

B. Analysis

With the above specifications on peers’ behavior, the

corresponding 𝑃𝑠𝑐ℎ𝑒𝑚𝑒 (𝑠, 𝑑) satisfies

𝑃𝑠𝑐ℎ𝑒𝑚𝑒 (𝑠, 𝑑) =⎧⎨
⎩

𝑠𝑑−1

𝑉−𝑠∞
𝑠𝑑−1>0∩ 𝑠𝑑<𝑟𝑠
∩ 𝑠∞>0 𝑓𝑜𝑟 𝑑∈[1, 𝐷]

𝑠𝑑−1

𝑉−𝑠∞

(
1− C𝑅𝑠

𝑠𝑑

C𝑅𝑠
𝑅𝑠⋅𝑠𝑑−1

)
𝑠𝑑−1>0∩𝑅𝑠≤𝑠𝑑≤𝑅𝑠⋅𝑠𝑑−1

∩ 𝑠∞>0 𝑓𝑜𝑟 𝑑∈[1, 𝐷]

1−∑𝐷
𝑗=1 𝑃𝑠𝑐ℎ𝑒𝑚𝑒 (𝑠, 𝑗) 𝑑 = ∞

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

In the above equation, the first two cases represent the

probabilities that a peer changes from the Unattached state

to the Attached state successfully, i.e., moving from 𝑞∞
to 𝑞𝑑, 𝑑 ∈ [1, ⋅ ⋅ ⋅ , 𝐷]; the third case represents the

probability that a Join attempt fails, and the peer stays in

the Unattached state; and the last case represents that no

other state transition is allowed. With a closer view, in the

Table I
MAJOR STATISTICS OF THE SIMULATION

Statistics Value

All possible states 𝐶𝐷
𝑉 ∗+𝐷 𝐶10−1

10+4 = 1001

Number of different states observed 420

Number of state transitions 39092830

Simulation time 2479299.48 sec

Average occurrences per state 91125.48

Max occurrences of observed state 6557038

Average duration per observed state 5779.25

Max duration of observed state 504054

Min duration of observed state 1.65× 10−6
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Figure 4. Comparison of simulation results and analytical results.

first two cases, 𝑃𝑠𝑐ℎ𝑒𝑚𝑒(𝑠, 𝑑) is the joint probability of two

independent steps. First, pick a peer as the possible data

provider with delay 𝑖−1 at random. Clearly, the probability

for this step is
𝑠𝑑−1

𝑉 . Second, check if the selected candidate

has available upload resource. If 𝑠𝑑 < 𝑟𝑠 and 𝑠𝑑−1 > 0, the

check always leads to successful attachment and the join

probability is
𝑠𝑑−1

𝑉−𝑠∞ , given by the first case of Eq. 5. If

currently there is insufficient resource left, the probability

of successful attachment should be

(
1− 𝐶𝑅𝑠

𝑠𝑑

𝐶𝑅𝑠
𝑅𝑠⋅𝑠𝑑−1

)
1, and

the join probability is
𝑠𝑑−1

𝑉−𝑠∞

(
1− C𝑅𝑠

𝑠𝑑

C𝑅𝑠
𝑅𝑠⋅𝑠𝑑−1

)
, given by the

second case of Eq. 5.

C. Simulation results

We have implemented and simulated the scheme on a P2P

network based on our RDS protocol [4]. In the simulation,

we choose 𝑥0 = 2, 𝑉 ∗ = 10, 𝐷 = 4 and 𝑅𝑠 = 3, and record

all the state transitions. In order to get accurate statistical

results, the simulation was run for long enough to get a

1This is the same as the probability of failing to randomly pick up 𝑅𝑠

black balls from 𝑅𝑠 ⋅ 𝑠𝑑−1balls in which 𝑠𝑑 are black and the rest are
white.
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Table II
CONFIGURATIONS OF 𝜆 AND 𝜇.

Conf. Arrival rate 𝜆 Departure rate 𝜇 Ratio 𝜆
𝜇

1 5 4 1.25

2 8 4 2

3 9 3 3

4 8 2 4

1 1.5 2 2.5 3 3.5 4
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Figure 5. Average delay vs. 𝜆
𝜇

.

large number of state transitions. The major statistics are

listed in Table I.

Fig. 4 shows the frequencies of states observed in the

simulation and the analytical results based on the proposed

population dynamics model. From the figure, we can find

that the proposed model matches the simulation results very

well. In fact, the results overlap each other as shown in

the figure. The mean square of differences between the

frequencies, 𝑃𝑠𝑖𝑚(𝑠), and their corresponding probabilities,

𝑃𝑛𝑢𝑚(𝑠), is∑
𝑠∈𝑆(𝑃𝑠𝑖𝑚(𝑠)− 𝑃𝑛𝑢𝑚(𝑠))2

∣∣𝑆∣∣ = 3.2646× 10−10.

Since the proposed model is scheme-independent, we are

convinced that the validity of our model can be extended to

other possible schemes.

V. APPLICATIONS OF THE MODEL

In this section, we apply the model in a case study of the

population dynamics. As implied in [13], the ratio 𝜆
𝜇 is a

factor of the stationary probability distribution of population

states. The case study investigates the influence of the ratio

with the scheme defined in Sec. IV. In practice, we evaluate

the influence with four different configurations of the ratios

listed in Table II. In addition, we let 𝑉 ∗ = 15, 𝐷 = 4 and

𝑅𝑠 = 3 in all the configurations.
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Figure 6. Average peer number vs. 𝜆
𝜇

.

The proposed model provides the stationary distribution of

the probabilities of all the states. Based on this, we calculate

the average number of peers with different delays and the

average delay for all the attached peers. Table III lists all the

calculated values for the four different 𝜆
𝜇 ratios. The average

delay for all the attached peers are shown in Fig. 5. The

results indicate that the average delay increases non-linearly

with 𝜆
𝜇 .

In addition, Fig. 6 shows the change of calculated average

number of peers as a function of different 𝜆
𝜇 ratios for

various delays. The results give detailed insights on the

changing of peer numbers over delays with increasing 𝜆
𝜇 .

The average peer numbers for all delays increase with 𝜆
𝜇 .

The phenomena suggest that the ratio 𝜆
𝜇 reflects peers’

intention to join and stay attached in a stream.

Second, with the increasing of 𝜆
𝜇 , the average peer num-

bers with large delays increase faster than that of small

delays. Specifically, when 𝜆
𝜇 ≤ 2, the peers with 𝑑 = 1 has

the largest population, and the peer population decreases

with the delay increasing. With the increasing of 𝜆
𝜇 , the

differences among them for different delays diminish. When
𝜆
𝜇 ≥ 3, the populations of peers with large delays become

more than that of small delays. In addition, these observa-

tions suggest the possible existence of some 𝜆
𝜇 values which

leads to even population distributions.

The case study demonstrates that the population dynamics

model is a helpful analytical tool in the study of the

dynamics in DS over P2P.

VI. CONCLUSION

In this paper, we analyze the characteristics of DS over

P2P and propose a general population dynamics model for

DS over P2P with fixed population. The model depicts the

dynamic distribution of peers over their experienced delays

as a closed Markov queuing network. Different streaming

schemes are treated as different probability distribution
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Table III
AVERAGE PEER NUMBER AND AVERAGE DELAY VS. 𝜆

𝜇
.

Average number of peers with delay 𝑑
𝜆
𝜇

𝑑 = 1 𝑑 = 2 𝑑 = 3 𝑑 = 4 𝑑 = ∞ Average delay

1.25 1.9893345 1.844334 1.6349594 1.4294358 8.1019363 2.3628477

2 2.1375977 2.1562003 2.0756941 1.9585349 6.6719729 2.4657954

3 2.2493547 2.404296 2.4491919 2.4364818 5.4606756 2.5358189

4 2.3194356 2.5642009 2.6990861 2.7695584 4.647719 2.5761424

functions (PDF) of peer’s movements in the network. This

makes the model scheme-independent and can be applied to

various schemes for analysis. Through theoretical analysis,

we prove that the model guarantees the existence of equilib-

rium and one and only one closed-form solution. With our

simulation, the validity of the model is verified. The case

study demonstrates that the model can be a helpful analytical

tool in the study on the dynamics of DS over P2P.
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