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Abstract—Wireless sensor networks have received consider-

able attention in recent years and played an important role 

in data collection applications. Sensor nodes usually have 

limited supply of energy. Therefore, a major consideration 

for developing sensor network applications is to conserve the 

energy for sensor nodes. In this paper, we propose a novel 

energy-efficient data acquisition algorithm based on the pe-

riodic patterns derived from past sensor readings. Our key 

observation is that sensor readings often exhibit periodic 

patterns, e.g., the daily cycle of temperature readings, and 

the patterns provide opportunities for reducing energy con-

sumption for sensor data acquisition. We exploit the patterns 

and use the patterns to build a statistic model for predicting 

sensor readings. In our approach, sensor data acquisition is 

needed only when acquired readings are unpredictable. 

Therefore the energy for sensor data acquisition and the 

associated radio communications can be conserved. The ex-

periments performed with real data validate the effectiveness 

and efficiency of our approach. 

 

Keywords: Sensor Networks, Data, Acquisitions, Query 

Processing. 

 

I. Introduction 

Wireless sensor networks have received considerable 

attention in recent years and played an important role in 

data collection applications. A wireless sensor network 

typically consists of a large number of sensor nodes 

equipped with the abilities of sensing, computing, and 

communicating. Wireless sensor networks provide new 

means for collecting data. One promising application of 

sensor networks is the scientific data collection, in which 

sensor nodes are deployed in the field where data are dif-

ficult or expensive to collect. In such data collection ap-

plications, sensor nodes periodically take sensor readings 

to produce a dataset for offline scientific analysis. 

One of the features for wireless sensor networks is re-

source limitations. Sensor nodes typically are limited in 

computing power, network bandwidth, storage capability, 

and energy supply. The limited computing and storage 

capability restrict the data processing algorithm that can 

be operated on the sensor nodes. In addition, the sensor 

nodes become useless once the batteries are depleted. Re-

installing the batteries for hundreds of sensor nodes is 

labor-intensive and impractical. Therefore, resource con-

servation becomes a major consideration when devising 

sensor applications. 

In continuous data collections, sensor data often ex-

hibit patterns which provide opportunities for reducing the 

energy consumption for the uses of sensor nodes. There 

has been a great deal of interests in recent years in devel-

oping approaches exploiting the patterns to reduce energy 

consumption. In [9], an energy-efficient querying frame-

work is built based on the observation that sensor readings 

often change infrequently. The basic idea behind the ap-

proach is that a sensor node sends its reading only when 

the reading significantly differs from the previous reading. 

The energy for communications between sensor nodes is 

therefore conserved.  

In [8][10], spatial correlations among readings of dif-

ferent sensor nodes are utilized. The basic idea is that a 

node suppresses its reading to the base station if the read-

ing is identical to its neighboring nodes. In addition, the 

correlations among different types of readings of the same 

node are utilized in [4]. With the correlations, a low-

priced sensor acquisition operation can be substituted for 

an expensive sensor acquisition to conserve energy for 

sensor data acquisition. For example, if a particular sensor 

node’s temperature readings are asked, the voltage can be 

measured to infer the temperature reading because the 

temperature reading and the voltage reading are highly 

correlated [4] and measuring the voltage is less expensive.   

As it can be seen, many opportunities have been ex-

ploited to reduce the cost of monitoring and reporting a 

group of sensor readings. In this paper we study using 

temporal periodical patterns to improve the performance 

of continuous data collections in a sensor network.  

In many scenarios, sensor readings exhibit temporal 

periodicity. For example, the light readings of a sensor 

node often show daily cycles, increasing at the beginning 

of a day and decreasing at the end of the day. As an ex-

ample, Fig. 1 shows a short span of the temperature read-

ings of Berkeley LabData [5]. We can see that the read-

ings exhibit a period with a length of twenty-four hours, 

where the value of the readings increases from a sunrise 

and decreases from the sunset.  

Such temporal periodicity provides opportunities for 

conserving the energy of sensor network applications. The 

basic intuition of using the periodicity is that, as sensor 

readings are expected to have cyclic behavior, sensor 

readings can then be derived from past sensor readings. In 

the following, we use an example to further highlight the 
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intuition and the challenges of using a temporal periodic-

ity for energy conservation. 

In Fig. 1, the time series formed by the sensor readings 

exhibits a period with a length of twenty-four hours. One 

naïve approach for using the periodicity is to find a repre-

sentative pattern and use the pattern to predict future read-

ings by assuming that the following days have the same 

behavior as the representative pattern. However, in gen-

eral, the perfect periodicity does not exist. As an example, 

we can break the time series into segments of a period of 
twenty-four hours (denoted by day1, day2, day3, and day4) 

and overlap these segments as shown in Fig. 2. We see 

that there is no perfect periodicity. In Fig. 2, only the 

readings at some time points show cyclic behavior, e.g. 

the readings at time point 7, and some points do not, e.g. 

the readings at time point 18. 

Although in general perfect periodicity does not exist, 

the readings at some time points may show cyclic behav-

iors, which still provide opportunities for the energy con-

servation of sensor applications. Our basic idea is to per-

form sensor data acquisition at the time points that the 

sensor readings to be acquired are unpredictable, and de-

rive the readings at the time points showing cyclic behav-

iors from past sensor readings.  

In this paper, we propose a novel approach named 

PSDA (Periodicity-based Sensor Data Acquisition) to 

exploit the above stated opportunities for the energy con-

servation. In the PSDA approach, predicting models for 

time points in a period are learned from historical readings. 

A predicting model for a time point determines the pre-

dictability of the readings to be acquired at the time point. 

With the predicting models, the future sensor readings can 

be classified into predictable and unpredictable ones, and 

sensor data acquisition are needed only when the sensor 

readings to be acquired are unpredictable. Therefore, the 

energy for sensor data acquisition and the associated radio 

communications can be conserved. 

To enable the use of the PSDA approach, several chal-

lenges are needed to be addressed. First, how do we de-

termine the predictability of the time points in a period? 

Second, how does our approach work along with stream-

ing sensor readings? Third, how is the accuracy of the 

proposed approach guaranteed? We identify and address 

these challenges in this paper. 

The contribution of this paper can be summarized as 

follows. First, we propose a novel energy-conserving ap-

proach for continuous data collections in a sensor network. 

Our approach builds on the observation that the values of 

the collected sensor data exhibit periodic patterns over 

time. Second, we provide theoretical analyses for the pro-

posed approach, and show that a tight bound of the accu-

racy of the reported value can be guaranteed. Finally, 

comprehensive experiments are conducted to validate the 

proposed approach. The experiments performed with real 

data set and synthetic data set validate the effectiveness 

and efficiency of our approach.  

The rest of this paper is organized as follows. In Sec-

tion 2, we discuss the related work. Section 3 introduces 

the approach and provides theoretical analysis. Section 4 

provides the experimental evaluations and Section 5 con-

cludes this paper and presents some future work. 

 

II. Related Work 

The problem of reducing the cost of monitoring and 

reporting a group of sensor readings have been studied in 

several fronts [1][2][3][4][6][9][10][14].  

Model-based Suppression One prominent direction for 

reducing the cost of continuous data collection is the 

model-based suppression approaches [1][3][6][8][14]. In 

model-based suppression approaches, probabilistic mod-

els are synchronously maintained between sensor nodes 

and the base station. The probabilistic models provide 

statistical information, such as data distributions, about 

sensor readings and can be used to predict future sensor 
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Figure 1. A Temporal Periodicity 
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Figure 2. Opportunities for Reducing Cost for Sensor Data Acquisition 
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readings. In model-based approaches a sensor node sends 

its reading to the base station only if the reading differs 

from the reading predicted by the model maintained in the 

base station. The base station assumes the readings of the 

nodes without reporting remain unchanged, and therefore 

conserve the energy of sensor nodes. 

Many well-developed models [1][3][6][14] for fitting 

the behaviors of individual sensor nodes or a group of 

sensor nodes have been proposed. In [3][4], time-varying 

multivariate Gaussians models are proposed to capture the 

information of sensor readings, including the distributions 

of individual readings, the spatial correlation among read-

ings from different nodes, and the correlations among 

different types of sensor readings. In [6], Jain et al. study 

the use of Kalman filters for fitting the behavior of indi-

vidual sensor readings, in which Kalman filters between 

sensor nodes and the base station are kept in synch to re-

duce the communication cost. In [14], Tulone et al. study 

the use of autoregressive model for predicting readings at 

sensor nodes, and exploit the data similarity [14] between 

sensor nodes that are geographically nearby to further 

conserve the energy for sensor network. 

Deligiannakis et al. [2] propose a novel approach for 

continuous sensor data collections. The idea is to buffer a 

series of sensor readings at a sensor node and then extract 

critical parameters from buffered sensor readings. The 

critical parameters are those can be used to esti-

mate/recovery the readings buffered at the sensor node. In 

the approach, only the critical parameters are sent to the 

base station.  

The drawback of the model-based suppression ap-

proaches is that the existing models such as the multivari-

ate Gaussians models or the autoregressive models are 

expensive to build and maintain in a large sensor network 

deployment. In addition, maintaining sophisticated models 

in sensor nodes is also impractical for the resource limited 

sensor nodes. 

In comparison, our approach only requires some basic 

operation, e.g., mean and variance computation, for the 

model construction and maintenance. Moreover, our ap-

proach only requires sensor nodes to keep very light-

weight information for using the constructed models.  

Value-based Suppression Another direction for reducing 

the cost of continuous sensor data collection is the value-

based suppression approaches [8][9][10]. In the value-

based suppression approaches, rather than relying on the 

pre-constructed models for suppressing sensor readings, 

the suppressions are based on current sensor readings in a 

sensor network.  

In [9], an energy-efficient querying framework is built 

based on the observation that sensor readings often 

change infrequently. The basic idea behind the approach 

is that a sensor node sends its reading only when the read-

ing significantly differs from the last reading.  

Madden et al. [8] study the observation that the read-

ings of sensor nodes often are similar to their neighbors’ 

readings. In the study, a snooping technique is developed, 

with which sensor nodes are allowed to listen the readings 

their neighboring nodes report. With the snooping tech-

nique, sensor nodes suppress their local readings if their 

readings are identical to the neighbors’ readings.  

In addition to individual using the temporal suppres-

sion and the spatial suppression, the problem of combin-

ing temporal correlations and spatial correlations for 

maximal benefit is further studied in [10].  

The value-based suppression approaches reduce the 

amount of communication. However, the approaches still 

require sensor nodes to sense to ascertain whether a sensor 

reading is needed to be sent. In other words, the sensing 

cost cannot be conserved by the value-based suppression 

approaches. However, as the applications of sensor net-

works continue to expand, we find some types of ad-

vanced sensor nodes, such as sap flux sensors in [11] or 

chlorine density sensors, which consume more energy for 

sensor data acquisition than for communications. This fact 

makes the value-based suppression approaches not good 

to be used in these applications. 

 

III. Periodicity-based Sensor Data Acquisition 

In this section, we introduce the PSDA approach. In 

Section III.A, we discuss how we construct models for 

predicting sensor readings, and then in Section III.B, we 

introduce how we use the constructed models. 

Before discussing the PSDA, we first provide the as-

sumptions we use through the paper and the problem we 

want to solve. 

Assumptions We consider a sensor network as one which 

consists of a set of sensor nodes and a base station which 

has no energy and memory limitations. The sensor nodes 

are well-synchronized. The base station keeps the network 

topology and there are no communication delays in the 

sensor network. Also, in this paper, we assume that sensor 

devices are reliable, i.e., there are no data acquisition er-

ror and communication failures in sensor networks. For 

the consideration of the failure problems, the readers can 

refer to [12]. 

Problem Statement Given (i) a sensor network consisting 

of a set of m sensor nodes { Ni | 1≤ i ≤ m} and each node 

Ni produces a value vi,t at timestamp t, and (ii) a data col-

lection task with an accuracy guarantee (ε, δ), where 0 ≤ δ 

≤ 1, ε > 0, which restricts that the maximum absolute er-

ror in reporting vi, t must be within the interval [-ε, ε] with 

a confidence probability δ.  

Formally, , ,Pr(| | ) ,î t i tv v ε δ− < >  where tiv ,
ˆ is the estimate 

of real value tiv ,  

As an example, the data collection task for temperature 

readings with the accuracy guarantee (ε = 1
o
C, δ = 0.8) 

will report an estimate tiv ,
ˆ of the temperature value tiv ,  with 
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a confidence probability 0.8 that C1
o<− |ˆ| ,, titi vv . In the 

following discussion, we call the estimate tiv ,
ˆ with the (ε, δ) 

accuracy guarantee as (ε, δ)-approximation for .,tiv
 
 

 
A. PSDA Model  

The first step of the PSDA model construction is to col-

lect consecutive readings from a sensor node. The col-

lected readings are used as the historical data from which 

the periodicity and the uncertainties in estimating sensor 

readings are learned. In the PSDA approach, the base sta-

tion maintains a sliding window for each sensor node. The 

sliding window for a sensor node keeps n consecutive 

sensor readings of the sensor node.  

Given a time series T with length n, the PSDA model 

construction begins by finding a period in the sensor read-

ings. To this purpose, we use the Shift-and-Compare 

strategy [13], which had been commonly used in periodic-

ity detection applications. As it is named, the basic idea of 

the Shift-and-Compare strategy is to shift the given time 

series and then computes the distance between the original 

time series and the shifted series. Therefore, given a time 

series with length n, we find periods by iteratively shifting 

i time units, for i = 1, ... n/2, of the time series and com-

puting the corresponding distances. The shifting with 

minimum distances is output as the period length. 

The idea behind the PSDA approach is to only perform 

data acquisition at the time points the readings to be ac-

quired are unpredictable. For the time points showing cy-

clic behavior, we derive their readings from past data. 

To enable this idea, we have to distinguish the predict-

abilities of the time points in a period. Note that a time 

point is said to be predictable only if the reading can be 

estimated with the specified accuracy guarantee. In the 

following, we introduce the concept of the PSDA model 

and some of its properties. 

Given a historical data T of length n and with a period 

length p, the PSDA model for the ith time point 

( piZi ≤≤∈ +
1 , ) in the period is defined by the following 

components:  

� Mean µ: the mean of the readings at the )( isp +⋅ th 

time points in T, ,
+∈∀ Zs 0 ≤ s ≤ n/p. 

� Variance υ: the variance of the readings at 

the )( isp +⋅ th time points in T, ,+∈∀ Zs 0 ≤ s ≤ n/p. 

� Predictability-Indicator I: a boolean value that indi-

cates the predictability of the reading at the time 

point. This indicator value is computed by the fol-

lowing equation. 

  

( ) 2
,           1

,           

True if
I

False otherwise

υ δ ε < − ⋅
= 
  

The basic idea behind the PSDA model is as follows. 

At every time point of acquiring sensor readings, the asso-

ciated PSDA model can be consulted. If the PSDA model 

indicates that the reading to be acquired is predictable, 

then the mean µ of the PSDA model is used as an estimate 

for the reading to be acquired. We elaborate more on how 

to use the PSDA models in Section III.B. 

The following theorem shows that if the variance com-

ponent υ of a PSDA model is smaller than ( )
2

1 δ ε− ⋅ , the 

mean component of the PSDA model is an (ε, δ)-

approximation for the reading to be acquired.  

For ease of presentation, in the following discussion, 

we use Mi(µi, υi, Ii) to denote the PSDA model for the ith 

time point ( ,  1i Z i p+∈ ≤ ≤ ) in a period. 

Theorem 1: Given a PSDA model Mi(µi, υi, Ii), if 

 υi < ( ) 2
1 δ ε− ⋅ ,  

then µi is an (ε, δ)-approximation for the readings to be 

acquired.  

Proof:  

Let v be the value to be acquired. By definition, 

if Pr(| | )i vµ ε δ− < > , we say µi is an (ε, δ)-approximation of 

v.  

We proceed with proof by showing Pr(| | ) .i vµ ε δ− < >   

First, note that µi is the mean of the readings at the ith time 

point, which can be viewed as the expectation of value v. 

By the Chebyshev’s Inequality, we have the following 

inequality 

( )Pr
2

1 i
i v

υ
µ ε

ε
− < > −

. 

By rewriting the given condition, i.e. υi < ( ) 2
1 δ ε− ⋅ , 

to / ,2
1 iυ ε δ− > and substitutes it into the above inequality, 

we obtain Pr(| | ) .i vµ ε δ− < >                                             ■ 

Algorithm Description Given a time series T with length 

n and a period length p, the algorithm for the PSDA 

model construction is as follows. 

First, we break T into N equal-length segments T1, …, 

Ti, …, TN, each of a length p, where 1 ≤ i ≤ N. We denote 

the value at the jth time point of Ti as Ti ,j, where 1 ≤ j ≤ p.  

Second, for all j (i.e., for all the jth time point in the 

segments), create a set denoted by PSDAj that consists of 

all values at the jth time unit of Ti, 1 ≤ i ≤ N. Formally, we 

have PSDAj = { Ti,j }, 1 ≤ i ≤ N.  

Third, compute the means, the variances, and the pre-

dictability-indicators for all PSDAj and output the PSDA 

models Mi(µi, υi, Ii).  

We use an example to illustrate the process of the 

PSDA model construction.  

Example 1 Assume we are given the readings in Fig. 3 for 

the PSDA model construction. For ease of illustration, 

assume the period length of the time series is given to be 

eight. The PSDA model construction proceeds as follows. 

First, we break the time series into four segments, T1, T2, 

T3, T4, each with a length of eight time points. Then, we 

create eight sets, denoted by PSDA1, …, PSDA8, which 

consist of the values at the jth time point of Ti, for 1 ≤ i ≤ 

4 and 1 ≤ j ≤ 8. For example, PSDA1 = {18.5, 18.9, 19.9, 
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20.1}. Given the accuracy guarantee (ε = 1, δ = 0.8), we 

have the following PSDA models. They are M1(19.34, 

0.53, False), M2(18.44, 0.18, True), M3(21.69, 0.69, 

False), M4(24.34, 0.38, False), M5(24.35, 0.58, False), 

M6(23.45, 1.38, False), M7(21.70, 0.16, True), and 

M8(20.77, 0.28, False). Note that the value for judging the 

predictability, i.e. ( ) ,2
1 δ ε− ⋅ is 0.2.                                   ■ 

 

B.  PSDA Reporting Scheme  

In this section we introduce the reporting scheme based 

on the PSDA models.  

The basic idea behind the PSDA reporting scheme is as 

follows. If a sensor reading at a time point can be pre-

dicted, the mean of the associated PSDA model is used as 

the estimate for the reading to be acquired. Otherwise, 

sensor data acquisition is performed. 

Therefore, when PSDA models for sensor node Ni are 

constructed, a naïve reporting scheme is to send a se-

quence of the predictability-indicators pII ...,, 1
to Ni. Sen-

sor node Ni then performs data acquisition operations ac-

cording to the sequence.  

However, the problem with this naïve reporting scheme 

is that it may be unaware of the model changes, because 

the readings not acquired are never known and the associ-

ated PSDA models are never updated. 

Therefore, we introduce the maximal delay tolerance 

parameter ,,
+∈ Zττ  which is specified by users to indicate 

the maximal delay for being aware of anomalies. An 

anomaly occurs at some time point means that the updates 

of an associated PSDA model are required. The delay 

tolerance parameter controls the freshness of the PSDA 

models. A long delay tolerance leads to tardy PSDA 

model updates and brings more misreports due to the 

overdue PSDA models.  

The PSDA reporting scheme with parameterτ works as 

follows. On every beginning of a period, the base station 

computes a PSDA reporter for each sensor node and 

sends the PSDA reporters to the sensor nodes.  

A PSDA reporter is a boolean string S1, …, Sp indicat-

ing whether data acquisition are needed to be performed at 

time point i. The value of Si is computed by the following 

equation. 

( )

,     

  1 ,      

  1 1 ,       

i

i i

i

True if I False

S True with a probability /τ if I True

False with a probability /τ if I True

=


= =


− =    

In computing Si, one of the following cases occurs.  

Case 1: The associated Ii indicates that the acquisition 

value cannot be answered under the (ε, δ) accuracy con-

straint. In this case, the sensor node is planned for per-

forming data acquisition at time point i in the period and 

sends the acquired reading back to the base station.  

Case 2: The associated Ii indicates that the acquisition 

value can be answered with the (ε, δ) accuracy guarantee. 

In this case, the sensor node is planned for performing 

data acquisition at time point i with a probability τ/1 . 

Theorem 2 shows that a sensor node performing data ac-

quisition with a probability τ/1 is sufficient to satisfy the 

specified toleranceτ for anomaly detection. 

Theorem 2: When the PSDA reporter indicates that a 

data acquisition operation can be skipped, performing 

data acquisition with a probability τ/1 is sufficient to 

satisfy the specified toleranceτ for anomaly detection. 

Proof:   

By the PSDA reporting scheme, if an anomaly occurs, 

we have a probability τ/1 to be aware of the anomaly. 

Because an anomaly will not vanish if no update is per-

formed, we have a probability τ/1  to detect the anomaly 

in the next period. Therefore, the expected delay for the 

anomaly detection can be given by  

*( / ) * ( / ) /( / ) .
1

1 1 1 1 1 1
i

i i τ τ τ τ
−∞

= − = =∑  
That is, performing data acquisition with a probabil-

ity τ/1 is sufficient to satisfy the specified toleranceτ for 

the anomaly detection.                                                     ■ 

 

With Temporal Suppression The PSDA reporter is en-

hanced with the temporal suppression to further reduce the 

amount of data transmission. The basic idea behind the 

temporal suppression is that a sensor node keeps its last 

transmitted reading vlast and only transmits its acquired 

reading v if |v－vlast| > ε2. The base station assumes that 

any unreported reading changes within the tolerance ε2.  

There are two things to note about the PSDA reporters 

with the temporal suppression. First, there are two kinds 

of unreported sensor readings: the readings not acquired 
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Figure 3(a).   Historical data 
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Figure 3(b).   PSDA models 

491



(by the PSDA approach) and the reading acquired but not 

transmitted (by temporal suppression technique). Note 

that there are no ambiguities between the two kinds of 

readings, because the base station always knows when the 

real data acquisition are performed (by the PSDA reporter 

S1, …, Sp).     

Second, the error of the PSDA approach and the error 

of the temporal suppression will accumulate. To enable 

the use of the temporal suppression, we portion out the 

original error constraint ε into ε1 and ε2, where ε = ε1 + ε2. 

We use ε1 for the PSDA model construction and use ε2 for 

the temporal suppression. In the experiments, we study 

different values for these parameters and discuss the influ-

ences of the parameters in more depth. 

 

IV. Performance Evaluation 

A.  Experiment Setup  

In the experiments, we perform the performance evalua-

tion with LabData [5]. The LabData records the readings 

of 54 sensors deployed in the Intel Research Berkeley 

Laboratory, in which sensor nodes take light, temperature, 

and humidity measurements once every 31 second from 

February 28th to April 5th, 2004. We extract the light 

readings, ranging from 0-800 Lux, of node 2, node 4, and 

node 19 in the data as test data on which to evaluate our 

approach. We use the data of the first ten days as initial 

training data, and run the PSDA approach on the rest data. 

   Note that there are missing readings in the LabData. We 

deal with a missing reading of a node by averaging the 

readings of the previous and the subsequent rounds. In all 

experiments, we show average values of 100 runs. We 

evaluate the performance of the PSDA approach by the 

following two measures: Error Ratio: To measure the 

effectiveness of the PSDA approach, we compute the av-

erage number of misreports by the PSDA approach, i.e., 

how many reported values are away from the actual values 

than the specified error tolerance. Energy Saving Ratio: 

We also measure the efficiency of using the PSDA ap-

proach. We compute the averaged energy conservation 

with the approach continually acquire and report readings.  

 

B.  Comparisons 

There are six parameters related to the effectiveness and 

the efficiency of the PSDA approach. They are the PSDA 

error tolerance ε1, the temporal tolerance ε2, the confi-

dence guarantee δ, the sliding window size n, the time 

between two consecutive readings Γ, (i.e. take a reading 

once every Γ time units), and the delay toleranceτ for the 

anomaly detection. In the following experiments, we study 

the performance of the PSDA approach by varying these 

parameters. The default values of all parameters used in 

the experiments are shown in Table I.  

Note that in LabData [5] the original value of Γ is 31 sec-

onds. For measuring the performance for different values 

of Γ, we acquire the value of the sensor readings every 

Γ/31s time units. For example, if Γ is set to two minutes, 

then the readings of 1
st
 time unit, 5

th
 time unit, 9

th
 time 

unit, etc. in LabData [5] are used as the acquired values 

taken by every two minutes.  

 

Effect of PSDA Error Tolerance In the first set of ex-

periments, we measure the effect of the PSDA error toler-

ance by varying the value of the PSDA error tolerance. 

Fig. 4 shows the results over the default setting, where x-

axis is the error tolerance, y-axis in Fig. 4(a) is the energy 

saving ratio, and y-axis in Fig. 4(b) is the error ratio.  

In Fig. 4(a), as expected, we see that higher PSDA toler-

ances cause higher energy efficiency. The energy effi-

ciency comes from that most sensor readings can be pre-

dicted. That is, most sensor readings can be estimated 

under tolerances without real data acquisition, and there-

fore the energy for sensor nodes is conserved. In addition, 

we can see that the PSDA approach provides significant 

improvements (about 60% energy saving) over a reason-

able error tolerance (75 Lux, which is about 10% in pro-

portion to the Lux value domain, i.e. 0-800).  

Furthermore, Fig. 4(b) shows the effectiveness of the 

PSDA approach. We see that the PSDA approach pro-

vides very low error ratios (less than 0.05) with respect to 

all specified PSDA error tolerances. The reason for this 

effectiveness comes from (i) the confidence parameter 

setting (δ = 0.8), which bounds the number of misreports 

reported by the PSDA approach, and (ii) the sensor read-

ings in LabData possess near perfect periodicity, which 

brings the PSDA approach into full play.    

 

Effect of Confidence In this experiment, we measure the 

effect of the value of the confidence guarantee δ. Fig. 5 

shows our experiment results, where x-axis is the confi-

dence guarantee, y-axis in Fig. 5(a) is the energy saving 

ratio, and y-axis in Fig. 5(b) is the error ratio. In Fig. 5(a), 

we see that a lower confidence brings higher energy effi-

ciency, but comes with a high number of misreports, as 

shown in Fig. 5(b).  

 

Effect of Delay Tolerance In this experiment, we study 

the effect of the value of the delay tolerance. Fig. 6 shows 

our experiment results, where x-axis is the delay tolerance, 

y-axis in Fig. 6(a) is the energy saving ratio, and y-axis in 

Fig. 6(b) is the error ratio. As discussed, the delay toler-

Table I.  the parameters and their default values 

Parameter Default Value 

PSDA Tolerance ε1 

Temporal Tolerance ε2 

ε1 = 60 Lux 

ε2 =15 Lux 

Confidence Guarantee δ δ = 0.8 

Sliding Window Size n= 1440 

Delay Toleranceτ  τ = 10 periods 

Time between two con-

secutive readings Γ 

Γ = ten minutes 
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ance controls the maximal delay tolerance for detecting 

the need of model updates. Therefore, intuitively, a large 

delay tolerance leads to (i) high energy efficiency as few 

PSDA model updates are needed, which can be observed 

from the results shown in Fig. 6(a), and (ii) a high number 

of misreports due to the tardy awareness of the anomalies. 

However, in Fig. 6(b) we do not observe this degeneration 

on the error ratio when increasing the value of delay toler-

ance. In Fig. 6(b), we see that there are no significant dif-

ferences in varying the value of the delay tolerance. The 

reason for such results comes from the fact that LabData 

possesses strong periodicity, with which few updates are 

needed and therefore less chances the misreporting occurs. 

 

Effect of Sliding Window Size In this experiment, we 

study the effect of the size of sliding window. Fig. 7 

shows the results, where x-axis is the size of sliding win-

dow, y-axis in Fig. 7(a) is the energy saving ratio, and y-

axis in Fig. 7(b) is the error ratio.  

There are two observations for this experiment. First, 

we see that smaller sliding window size leads to higher 

error rate. This is because small sliding window are less 

representative to produce an accurate PSDA model for 

future data. The second observation is that the energy effi-

ciency decreases when the sliding window size increases, 

as shown in Fig. 7(a). The reason for such results comes 

from the fact that the larger the sliding window size is, the 

more noises the PSDA model construction encounters. 

The noises come from the missing readings or the shifting 

of the periods, both increasing the uncertainty for PSDA 

models and thus making the PSDA approach to be less 

energy efficient. This influence can also be observed from 

Fig. 7(b), which shows that the error ratio decreases when 

the sliding window size increases. The reason is that if the 

uncertainty in acquiring sensor readings is high, most 

readings are obtained from real data acquisition and there-

fore few errors occur. 

 

Effect of Temporal Tolerance In this experiment, we 

measure the effect of the temporal suppression tolerance 

ε2. Fig. 8 shows our experiment results, where x-axis is the 

value of the temporal tolerance, y-axis in Fig. 8(a) is the 

energy saving ratio, and y-axis in Fig. 8(b) is the error 

ratio. As expected, higher temporal tolerance value leads 

to higher energy saving ratio, similar to the behavior of 

the PSDA error tolerance.  

        
       (a) Energy Efficiency                           (b) Effectiveness                                      (a) Energy Efficiency                           (b) Effectiveness 

             Figure 4.   Effect of Error Tolerance                                                                       Figure 5.   Effect of Confidence 

 

         
       (a) Energy Efficiency                           (b) Effectiveness                                      (a) Energy Efficiency                           (b) Effectiveness 

              Figure 6.   Effect of Delay Tolerance                                                                      Figure 7.   Effect of Sliding Window Size 

 

         
               (a) Energy Efficiency                           (b) Effectiveness  

              Figure 8.   Effect of Temporal Tolerance                                         Figure 9.   Effect of S. Cost                 Figure 10.   Effect of Γ 
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There is an interesting phenomenon on the result of Fig. 

8(b): the error ratio slightly decreases when the temporal 

tolerance increases. The reason for this phenomenon is 

that when the temporal tolerance becomes large, the num-

ber of misreport becomes less; only the estimate away 

from the actual value ± (ε1 + ε2) is considered as a misre-

port.  

 

Effect of Acquisition Cost As mentioned, the existing 

value-based suppression approaches require sensor nodes 

to sense to ascertain whether a sensor reading is needed to 

be sent. In other words, the data acquisition cost cannot be 

conserved, which makes the existing approach not good to 

be used in the applications where the data acquisition op-

eration consumes lots of energy.  

In this experiment, we compare the performance of the 

PSDA approach and the suppression-only approach by 

varying the value of data acquisition cost. Both ap-

proaches use an error tolerance ε = 75 Lux. Fig. 9 shows 

the experiment results, where x-axis is the cost of data 

acquisition and y-axis is the energy saving ratio. We see 

that when the data acquisition cost become large, the 

PSDA approach significantly outperforms the other.  

 

Effect of Other Factors We also measure the effect of 

parameter Γ. Fig. 10 shows the experiment results, where 

x-axis is the value for parameter Γ and y-axis is the ratio 

for energy saving ratio and error ratio. We see that the 

error ratio is always about 2% no matter how we vary the 

parameter value. The reason is that the misreport of the 

PSDA approach is mainly controlled by the error toler-

ance and the confidence, and is irrelevant to the parameter 

Γ. The same reason also holds for the behavior of the 

curve of the energy saving ratio. 

 
V. Conclusion 

This paper studies using temporal periodic patterns de-

rived from past sensor readings to improve the perform-

ance of continuous data collection for sensor networks. 

We propose a novel energy-efficient approach for sensor 

data acquisition. The proposed approach works by finding 

the uncertainties in acquiring sensor readings and avoid-

ing the acquisition that can be predicted such that the en-

ergy of sensor nodes can be conserved. The experiments 

performed with real data show the effectiveness and the 

efficiency of our approach. 

One interesting direction for future work is to build the 

PSDA models in a distributed manner, which reduces the 

cost of learning the uncertainty from acquiring sensor 

readings. We are also currently developing a mechanism 

for exploiting spatial correlations to cluster the sensor 

nodes with similar behaviors. With the clustering mecha-

nism, a sensor node is elected as a representative node and 

its reading used as a representative reading, upon which 

the other readings are estimated, to further conserve en-

ergy for sensor nodes. 
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