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Abstract—We analyze the problem of downlink resource allo-
cation in a non-cooperative multi-level tree topology structured
wireless mesh network in which a selfish mesh router (MR)
may refuse to relay other MRs’ traffic so as to improve its
own performance at the cost of overall system performance.
Based on game theory, we propose an auction framework,
where the parent MR serves as the auctioneer while its children
MRs act as bidders and compete for time-slots. We derive a
payment function from radio resource used for relaying traffic
instead of money, so as to simplify the implementation and
avoid the possible security problems from monetary payment.
We prove the existence and uniqueness of Nash Equilibrium
and propose a stochastic best response updating algorithm to
allow the bids to iteratively converge to NE in a practical
distributed fashion. Simulation results show the proposed
auction algorithm greatly outperforms traditional algorithms
in non-cooperative environments.

Keywords-Wireless mesh networks, resource allocation, auc-
tion algorithms, game theory.

I. INTRODUCTION

With the capability of providing universal Internet access

services at affordable monetary and infrastructure costs,

infrastructure wireless mesh network (WMN) has become

one of the key topologies for future wireless networking

[1], [18]. In a typical WMN, mesh routers (MRs) form the

backbone of the network to provide wireless access for mesh

clients (MCs). A special MR, i.e., the gateway (GW), is

installed between the mesh backbone and the Internet to

provide broadband out-bound access. In WMNs, wireless

resource is usually scheduled in a centralized manner [4],

that is, the GW serves as a cluster head and determines to

resource allocated to each MRs. This centralized approach

tend to organize all MRs in a tree structure rooted at the

GW. Consequently, to provide broadband Internet services

to a remote area, the MRs close to the GW shall work as

relay nodes transmitting traffic between the Internet and the

MRs far away from the GW.

Among contemporary wireless technologies, IEEE 802.16

standard has been regarded as a promising solution for

WMNs due to its capacity of combating channel fading and

supporting high data rate. The research and deployment of

IEEE 802.16-based WMNs have gained enormous popular-

ity recently [14]. However, one of the key enabling features

behind such an infrastructure WMN is that a MR should not

only serve the MCs in its own local cell, but also relay traffic

for outer level MRs. Unfortunately, this kind of cooperation

among MRs is not always practical in reality, especially

when these MRs are owned by different profit-maximizing

entities. In such a non-cooperative environment, a MR will

rationally exhibit selfish behaviors driven by self-interests in

that the MR may report a bogus channel information or valu-

ation so as to improve its own benefit [11], or refuse to relay

other MRs’ traffic because relaying traffic will inevitably

consume its own resource and consequently degrade its own

performance. This selfish problem is further complicated in

a multi-level tree topology WMN environment, where the

centralized scheduler at the GW can only impose limited

loose control over the distributed remote MRs. Though these

non-cooperative behaviors could improve the performance

for the selfish MR itself, they may lead to inefficient or

unfair resource utilization from the system perspective.

Several recent work has addressed the problem of resource

allocation in WMNs. In [4], the authors studied the op-

portunistic scheduling in an IEEE 802.16j based WiMAX

relay networks so as to serve the mobiles in a fair manner

and improve the throughput and increase range of WMN

effectively. But they didn’t take the selfish behavior of mesh

routers into account. In [5], the problem of joint routing and

scheduling in 802.16 based mesh networks was investigated

and an ILP optimization model was proposed to determine

a minimum schedule period and maximize the spectrum

spatial reuse. While in [3], a joint power-frequency-time

resource allocation algorithm was designed to optimize the

system performance of a clustered WMN. But these two

studies were both based on global optimization, and the

competition among different MRs was not considered. In

[14], a radio resource management framework for scheduling

and admission control in an IEEE 802.16-based WMN was

proposed to maximize transmission rate as well as satisfy

QoS requirements under power constraint in a wireless MR.

It just provided a study of the performance of an individual

router; overall system performance was not analyzed. In

[17], the throughput maximization problems in a WMN for

both cooperative and non-cooperative scenarios were ana-

lyzed, and a linear pricing scheme was proposed to combat
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the selfish behavior of non-cooperative MRs. However, the

strategy to relay traffic was not considered. In [7], two

auction-based approaches were proposed to help relay nodes

to determine how to allocate transmission power among

users as well as improve fairness and efficiency perfor-

mances. In their model a relay node itself does not have

local users to serve, which is different with our model where

a relay MR should serve both local and relay connections.

In this paper, we design a novel auction-based resource

allocation scheme. In this scheme, the whole WMN is

divided into multiple auction sub-markets. Each sub-market

comprises of a parent MR and its children MRs. The

parent MR serves as the auctioneer, who has traffic for its

children and grandchildren MRs, while the children MRs

act as bidders and compete with each other for the time-

slots from their parent. Within this model, we propose a

relay auction (RA) algorithm based on a concave utility

function, where a MR’s bid is a scalar directly associated

with its reported valuation, and the payment is proportional

to this bid. Though in some auction algorithms [7], [19], the

payments are expressed in terms of money, they cannot be

easily implemented in practice and may suffer from security

problems. In this paper, one of our major contributions is

that we associate the payment with the time-slots used by

a MR to relay others’ traffic. Specifically, to win time-

slots allocated by the auctioneer, a bidder must “pay” some

wireless resources, i.e., time-slots, and use them to forward

its children’s traffic. We prove the existence and uniqueness

of Nash equilibrium (NE) [15] for the bidding profile. We

also present a stochastic bid update algorithm to achieve

NE in a practical situation and prove its convergence. The

simulation show that the proposed RA algorithm greatly

outperforms traditional algorithms in non-cooperative en-

vironments, while having the capability of balancing the

efficiency and fairness by adjusting the payment function

parameter.

The rest of this paper is organized as follows. We present

the system model and auction framework in Section II. In

Section III, our novel relay auction approach is proposed.

Section IV gives the simulation results. We conclude in

Section V.

II. SYSTEM MODEL

In this paper, we consider an IEEE 802.16-based WMN

with tree topology and focus on downlink resource alloca-

tion. Such a hierarchical network structure is highly practical

and can be used to model a WMN in a rural area [4]. We

assume the tree structure has been already determined using

link metrics such as Expected Transmission Time (ETT)

[16]. The proposed WMN model is represented by a tree

graph G = (V,E). Here, V is a set of MRs in the WMN,

and E is a set of edges between every parent and child

MR, i.e., the wireless links on the routing tree. There are

|V | = N + 1 MRs in the tree, where N is the number of

MRs other than the GW. The tree’s maximal level is L, and

the root GW is at level 0. Specifically, a MR i ∈ V is at

level l if it is l hops away from the GW, and the edge e(i)
between node i and its parent MR Pi is also at level l.

We assume every cell centered on a MR operates under

IEEE 802.16 OFDM/TDMA-TDD mode, and each adjacent

cell uses a different frequency band. Except the MRs at the

farmost level L, every MR has both local MC connections

served in its local cell and relay connections for its children

MRs. The MAC frame is composed of downlink and uplink

subframes. Each downlink subframe is composed of Td time-

slots, each of which is used for transmission of packets

corresponding to one connection. For uplink and downlink

transmission using OFDM, each MR uses M subchannels

with total bandwidth of B MHz. Without loss of generality,

we show in Fig. 1 a part of tree graph which consists of the

MR i at level l, its parent Pi at level l−1, its siblings j ∈ Si

with the same parent, and its children MRs Ci at level l+1.

Si is the set of i’s siblings, Ni is the number of MRs in

Si. For the sake of ease, we also let i ∈ Si. For MR i, aLi
and aRi are the average number of local packets and relay

packets that can be successfully transmitted to its local cell

and its children MRs per time-slot, respectively. They can

be measured according to channel and traffic conditions.

Figure 1: Tree model.

To implement auction, we first divide the WMN into

several sub-markets. A sub-market is made up of a MR,

its siblings and their parent. For example, in Fig. 1, the MR

i’s siblings Si and their parent Pi form a sub-market Ψi,

where each MR i acts as bidder and competes for time-slots

from the auctioneer Pi through auction. Each sub-market can

operate independently and locally. To be noticed, because the

outmost MRs at level Y do not have relay connections, they

are not organized into auction sub-markets and we assume

they get resources through their parents’ scheduling.

In our model, we assume if receiving ti time-slots per

frame, MR i’s valuation is V L
i (a

L
i , ti), thus its valuation

function can be fully characterized by the scalar parameter

aLi . Further, as in [9], we consider to use the following

logarithmic function to express MR i’s valuation on its

579



received resource, i.e.,

V L
i (a

L
i , t) = NL

i · log(
aLi
NL

i

· t+ 1), (1)

where NL
i is the number of MCs served by MR i. Thus,

V L
i (a

L
i , t) also represents MR i’s local valuation when it

serves NL
i local MCs. Similarly, we let V R

i (aRi , t) be MR

i’s relay valuation, i.e,

V R
i (aRi , t) = NR

i · log(
aRi
NR

i

· t+ 1), (2)

where NR
i is the number of its relay connections. We assume

that Pi has already obtained aRi during the process of routing

tree construction. It can also know NR
i and NL

i according

to the buffered traffic.

In an auction, a succinct and expressive bidding language

related to bidders’ valuation is necessary. According to (1),

a bidders valuation function on the allocated resource is

actually fully characterized by a single scalar parameter

aLi . Because aLi is only related to MR i’s local downlink

transmission and is not used for WMN tree construction, the

auctioneer doesn’t know it before auction. Thus, this scalar

aLi can be utilized as bidding language and submitted to the

auctioneer to represent bidder’s valuation, then it leads to an

efficient and practical bidding process.

Specifically, during the auction, every bidder i calculates

the valuation parameter aLi and submits a bid bi = μi(a
L1
i )

to the auctioneer according to a rationally selfish strat-

egy. After receiving the announced bidding profile B =
{b1, b2, . . . , bNi} from its children, the parent Pi knows each

bidder’s reported valuation, and then calculates the allocation

T = T (B) = {T1, T2, . . . , Ti, . . . , TNi}, which represents

the number of time-slots allocated to each bidder, as well as

the payment TR = TR(B) = {TR
1 , TR

2 , . . . , TR
i , . . . , TR

Ni
}

representing the number of time-slots that should be used

by MR i to relay its descendant MRs’ traffic. Subsequently,

the allocation and payment results are transmitted to each

bidder. Then, each MR i gets to know TL
i = Ti − TR

i and

payment TR
i .

In a typical auction, the utility of a bidder is the value

received by this bidder minus the payment assigned by

the auctioneer. However, in our model, to provide practical

meanings for payment, we associate the payment with the

practical radio resource, i.e., time-slots. Thus, when MR i
receives Ti time-slots and accept TR

i time-slots as payment,

its utility for serving local connections is its true valuation

when getting TL
i = Ti − TR

i time-slots, i.e.,

UL
i (a

L
i , a

R
i , Ti, T

R
i )

=V L
i (a

L
i , Ti − TR

i )− ci · (aLi · (Ti − TR
i ) + aRi · TR

i ),
(3)

where the second item of (3) is the cost of packet trans-

mission, such as power consumption and so on. ci is the

average cost per packet for MR i. On the other hand, its

relay connections can get a net benefit of

UR
i (a

R
i , T

R
i ) = V R

i (aRi , T
R
i ). (4)

III. RELAY AUCTION

One well known auction is the Vickrey-Clarke-Groves

(VCG) auction, which has been regarded as one of the most

effective mechanisms to induce truth-revealing strategies

[12]. However, the VCG auction does not consider fairness

performance. Furthermore, it just applies to the problem

where bidders have a quasilinear utility function [2]. From

(3), we see the utility function cannot be expressed as the

difference between the valuation and payment, implying that

they are not quasi-linear. Thus, the VCG method cannot

be applied here. We need to propose another new auction

approach.

Generally, the auctioneer wants to maximize the aggregate

utility of it transmitted packets. At the same time, it also

need to enforce the bidder to relay other’s traffic through

payments. Specifically, the more resource a bidder requests,

the higher payment it should pay to the auctioneer. Thus, we

define the payment as a function increasing with the bidding

scalar bi, and propose a relay auction (RA) algorithm in sub-

market, which is formalized as follows.

A. Auctioning Mechanism

1) Bidding rule: In a sub-market Ψi, bidder i submits

a scalar value bi to its parent Pi, and let b = {bi :
bmin ≤ bi ≤ bmax}.

2) Payment rule: If bidder i gets Ti time-slots, it must

use TR
i = f(bi) · Ti time-slots for relaying its chil-

dren’s traffic, where f(bi) is increasing with bi, and

0 ≤ f(bi) ≤ 1. Here, we consider a linear payment

function: f(bi) =
bi
A , where A is a payment parameter

and A > bmax.

This payment scheme has two implications. First, it

can restrict bidder’s selfish behavior due to the fact that

when given a payment parameter A, larger resource

request means more obtained time slots should be

used for relay. Thus, a rational bidder must request

resource strategically. On the other hand, for a fixed

bid, a larger A implies that larger portion of resource

can be used for local traffic; while more resource are

utilized for relay connection in terms of a smaller A.

Therefore, it can adjust the tradeoff between efficiency

and fairness in the system, which is further verified

through simulations in Section IV.

3) Allocation rule: We assume the auctioneer’s objective

is to maximize the aggregate utilities of all local

connections and relay connections in its sub-market,
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i.e.,

T∗ = {T ∗1 , T ∗2 , · · · , T ∗N}
= argmax

{Ti}

∑
i∈Si

UL
i (Ti − TR

i ) + UR
i (T

R
i )

= argmax
{Ti}

∑
i∈Si

(NL
i · log(

bi
NL

i

· (Ti − TR
i ) + 1)

+NR
i · log(

aRi
NR

i

· TR
i + 1)

− ci · (bi · (Ti − TR
i ) + aRi · TR

i ))

(5)

subject to

(I)
∑
i

(TL
i + TR

i ) = Td

(II) TR
i = f(bi) · Ti.

where the constraint (I) implies the time-slots constraint in

one frame, and the constraint (II) is the payment function.

B. Nash Equilibrium

When the bidder i and its siblings compete with each

other in a sub-market Ψi, our proposed relay auction can

be formulated as a strategic non-cooperative game with Ni

players, i.e., Γ � [Si, {bi}i∈Si , {UL
i (B)}i∈Si ], where Si is

the player set, {b1, · · · , bNi} is the action profile, and UL
i

is the utility function of player i.
A useful solution concept of such a game is called a Nash

equilibrium (NE) [15], which is a bidding profile B∗ where

no MR wants to deviate unilaterally, i.e.,

UL
i (b

∗
i ; b

∗
−i) ≥ UL

i (bi; b
∗
−i), ∀i ∈ Si, ∀bi ≥ 0, (6)

where b−i is the bidding profile of bidder i’s opponents. We

first establish the existence of the NE.

Theorem 1. In Ψi, there exists a bidding profile B∗ =
{b∗1, · · · , b∗Ni

} to achieve Nash equilibrium in the relay
auction.

Proof: A Nash equilibrium B∗ exists in the game if the

following two conditions are satisfied for all i ∈ Si:

1) the bidding strategy bi is a nonempty, convex and

compact subset of some Euclidean space �N ; and

2) UL
i (B) is continuous in B and quasi-concave in bi

The first condition is easily satisfied because we have bi ∈
[bmin, bmax]. For utility function UL

i , because
∂2UL

i

∂b2i
< 0,

it is strictly concave on bi. As a concave function is also

quasi-concave, the second condition is then satisfied. Thus,

the existence of NE is proven.

We then construct MR i’s best response function (for fixed

b−i) as:

βi(b−i) = {bi | bi = arg max
˜bi≥0,i∈Si

UL
i (b̃i; b−i)}. (7)

Then, similar to the proof in [6], we show the uniqueness

of NE in the following.

Theorem 2. In Ψi, there exists a unique NE B∗ =
{b∗1, · · · , b∗Ni

} in the relay auction.

Proof: We assume that NE is not unique, and there

exists at least another one B̃ = {b̃1, · · · , b̃N1}, and B∗ �= B̃.

According to the definitions of NE and the best response

function, if given b−i, b
∗
i and b̃i must satisfy:

b∗i = maxb∗i U
L
i (b

∗
i , b−i), (8)

b̃i = maxb̃i
UL
i (b̃i, b−i). (9)

However, because UL
i is concave and differentiable, for a

fixed b−i, there is a unique best strategy bi that satisfies

bi = maxbiU
L
i (bi, b−i). These contradict the assumption

that B∗ �= B̃. Thus, B∗ = B̃, and there is a unique NE in

this auction sub-market.

C. Iterative Best Response Update Algorithm to Achieve NE

In our model, it is difficult to get the close-form βi(b−i)
and UL

i (bi, b−i). However, because the nonlinear con-

strained optimization problem defined by (5) can be ef-

ficiently solved by numerical methods, and there exists a

unique NE in the auction, and MR i’s utility function UL
i in

(3) is differentiable and concave related to bi, we can still

design an stochastic bid updating algorithm to achieve NE

based on each bidder’s local information and the limited

feedback received from the auctioneer. Although it is still

hard to obtain the exact expression of UL
i (bi,b−i), we can

regard the optimization problem to find the best response in

(7) as a stochastic approximation problem [13], and then

get recursive solutions for the best response through the

stochastic gradient form of Robbin-Monro algorithm [13]

and the finite difference (FD) method. The key idea is to let

the auctioneer gives the bidders some additional information

besides the auction results so that the bidder can use it to

estimate the gradient of its utility by FD method and then

update its bid according to Robbin-Monro algorithm.

Specifically, at time t, when the auctioneer Pi receives b
and calculates the allocation T (b) and payment TR(b), it

also calculates TL+
i = TL

i (b + ct · ei) and TL−
i = TL

i (b−
ct · ei). Here, ct → 0 is a FD interval and ei be the standard

unit vector in the ith coordinate direction. Then they are all

sent to bidder i. With this knowledge, MR i can estimate

its utility gradient ∇bi(t)Ui(bi(t), b−i(t)) by FD method as

follows:

∇bi(t)Ui(b) =
UL
i (b + ct · ei)− UL

i (b− ct · ei)
2ct

=
UL
i (T

L+
i )− UL

i (T
L−
i )

2ct
.

(10)

It further apply Robbin-Monro algorithm to update the

best response by

bi(t+ 1) = bi(t) + at · ∇bi(t)Ui(b), (11)
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where the gain sequence at > 0, at → 0,Σ∞t=o(at) = ∞.

Then bidder i submits bid bi(t + 1) again at time t + 1.

We let the bids update asynchronously, e.g., the auctioneer

Pi only calculates bidder i’s additional information at time

{i, i + Ni, i + 2Ni, · · · }. Then the NE can be achieved

gradually. The stochastic best response update algorithms

for the auctioneer and the bidders are formalized as follows

in Algorithm 1, and Algorithm 2, respectively.

Algorithm 1 The stochastic best response update algorithm

for the auctioneer

1: In sub-market Ψi, at time t, the auctioneer Pi receives

bidding profile b from all children i ∈ Si;

2: Calculates Ti and TR
i for every bidder i ∈ Si;

3: j = (t mod Ni) + 1;

4: Calculates TL+
j , TL−

j

5: Sends Ti and TR
i to every bidder i ∈ Si; and sends

TL+
j , TL−

j and ct to bidder j.

Algorithm 2 The stochastic best response update algorithm

for bidders

1: Initialization: At time t = 0, every bidder i ∈ Si

randomly submits a bid bi(0) ∈ [bmin, bmax];
2: while t = 1, 2, · · · do
3: if i �= (t mod Ni) + 1 then
4: bi(t+ 1) = bi(t);
5: else
6: Bidder i receives Ti, T

R
i , TL+

i , TL−
i and ct;

7: Bidder i approximates the gradient of its utility by

(10) and update its bid according to Robbin-Monro

algorithm by (11);

8: end if
9: Submit bi(t+ 1);

10: end while

Theorem 3. For each bidder i ∈ Ψi, under any initial
condition b(0), the sequence {b(t)} converges weakly (i.e.,
in probability) to NE B∗.

Proof: We first interpolate the iterates b(t) into a

continuous time interpolation process bεt(t) = {bεti (t)} with

interpolation intervals εt, and define bεi(t) as follows:

b
εt
i (t) =

{
bi(0) t < 0
bi(n) nεt − εi ≤ t ≤ nεi, n = 1, 2, · · · .

(12)

Thus, as shown in [13], when εt → 0, bεti (t) converges in

trajectory to bi(t). Here, bi(t) is the solution of the ordinary

differential equation (ODE) function

dbi(t)

dt
= ∇bi(t)

Ui(bi(t), b−i(t)). (13)

Because Ui(bi(t), b−i(t)) is bounded and quasi-concave

with respect to bi, the ODE in (13) is asymptotically

Liapunov stable. Consequently, as εt → 0, the sequence

bi(t) converges weakly to an optimizer of its utility function,

i.e.,Nash equilibrium b∗i .

The convergence of the stochastic bid update algorithm

is also verified from Fig. 2, where aL1 = 10, aL2 = 9, and

A = 90. We can see the bids converge to NE eventually.

0 20 40 60 80 100 120
0

1

2

3

4

5

6

Bid iterations 
B

id

B1’s bid
B2’s bid

Figure 2: Convergence of bids to NE.

IV. PERFORMANCE RESULTS

In this section, we evaluate the performance of the auction

algorithm through simulations. In the simulated tree topolgy

WMN, we assume each MR has 64 subcarriers with a

total frequency band of 10 MHz. The frequency bands for

adjacent MRs are non-coverlapping and frequency reuse

is utilized. The DL-subframe length is 2ms. The wireless

channel is modeled as six-path frequency-selective Rayleigh

slow fading channel; each path is simulated by Clark’s

fading model and suffers from different Rayleigh fading

with the maximum Doppler frequency of 30 Hz. Because

the coherence time 33.3ms is much larger than the DL-

subframe length, the channel condition can be regarded as

static during the iterative bidding period to achieve NE.

This is a realistic assumption in a WMN because the MRs

are immobile. Furthermore, we assume the average SNR is

identical for all MCs in a cell. Like [4], we do not model

packet arrival process at the GW and MRs, and assume the

GW has infinite backlogged traffic for each MC in WMN

and the downlink mesh tree is constructed by using routing

algorithms, such as ETT by [16]. We assume each parent MR

has at most 3 children, and there are 10 MCs in each cell.

Then the traffics generated at GW can be transmitted across

the WMN and reach MCs through other MR’s relay. bmin

and bmax are 1 and 20, respectively, which also represent

the minimum and the maximum successfully transmittable

packets per time slots.
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We first compare our proposed RA algorithm with two

traditional cooperative resource allocation methods, i.e.,

proportional fairness (PF) [10], and a global optimization

method (GLB) which maximizes the aggregate utilities of

all MRs based on centralized scheduling, in non-cooperative

environments. In this setting, the maximal tree level L is

from 2 to 5, and the payment parameter A is 90. Notice

that in a cooperative situation which is unrealistic in the

operating environment considered in this paper, all MRs

report their true valuations to their parents and relay other’s

traffic according to scheduling results. However, in a non-

cooperative environment, a selfish MR may report a bogus

valuation parameter to increase its own local benefit without

regard to the overall system performance [11] and relay less

traffic to others. In our simulations, we assume in each

sub-market, there is a MR who always reports a higher

valuation in the case of using PF and GLB algorithms.

From Fig. 3, we first notice that the average throughput per

MR decreases with the size of WMN, due to the downlink

transmission capacity limit of the GW. Another reason is

that more packets may be dropped due to increased wireless

transmission error along the longer path when the network

expands. Furthermore, the average throughput per MR of PF

and GLB are both much lower than that of RA algorithm due

to the fact that less traffics are relayed to remote MRs. While

in RA algorithm, a selfish MR may not benefit from bidding

higher value because this will also incur higher payment.

Consequently, the system performance is maintained in NE

state during auctions.
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1

1.5

2

2.5
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x 104
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A
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gh

pu
t (
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co
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)

RA
GLB
PF

Figure 3: Average throughput per MR with the change of

network size in non-cooperative situations.

We then illustrate the throughput and fairness perfor-

mances of RA in terms of payment parameter, where the

maximal tree level L is 2, and compare them with the

performances of GLB and PF in cooperative situations. In

Fig. 4, we notice that the average throughput per MR of

RA algorithm increases with the payment parameter A.

Although GLB and PF generate higher throughput than RA

algorithm, the throughput of RA achieves almost 95% of

that for GLB with the increase of payment parameter, e.g.,

A > 100, even in non-cooperative environments. This is

because the time-slots used for relay will decrease if the

payment parameter becomes larger, then more resources are

utilized to server local MCs’ traffic. Because local MCs are

usually closer to the MR and generally experience better

transmission conditions than relay connections, the overall

system throughput increases when more resources are used

for local traffic. We then investigate the fairness performance

in terms of Jain fairness index [8]. We can see in Fig. 5 that

the Jain fairness index for RA algorithm is dependent on the

payment parameter A. RA achieves its highest index value

0.735 when A = 122, which is about 95% of PF’s fairness

index value. Thus, the proposed RA algorithm can be used to

strike a proper balance between efficiency and fairness by

adjusting payment function parameter. Furthermore, when

utilizing RA algorithm in non-cooperative environments, the

efficiency and fairness performances are comparable with

those obtained by GLB and PF in operative situations.
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Figure 4: Average throughput per MR with the change of

payment parameter.

V. CONCLUSIONS

In this paper, we study the downlink resource allocation

problem in a non-cooperative IEEE 802.16 tree topology

based wireless mesh network. To motivate selfish MRs to

relay other’s traffic, we divide the entire network into multi-

ple auction sub-markets and design an auction framework

to let rationally selfish MRs compete with their siblings

for time-slots from their parent. Based on it, we further

propose a novel relay auction algorithm, where the payment

is designed as the time-slots used for relaying traffic instead

of money, and the allocation policy is to maximize both

local and relay connections’ utilities in the sub-market.

After proving the existence and uniqueness of NE, we also
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Figure 5: Jain fairness index with the change of payment

parameter.

propose a stochastic best response update algorithm to allow

bidders to iteratively update their bids based on their local

information and the limited feedback from the auctioneer

and prove its convergence to NE. We then compare the per-

formances of the RA algorithm with traditional GLB and PF

algorithms through simulations, which indicate that the RA

algorithm excels GLB and PF in non-cooperative situations.

It also can achieve competitive performance in terms of

resource allocation efficiency with high payment parameter

A, while demonstrating good fairness performance with

small payment parameter, so as to strike a proper balance

between efficiency and fairness in the network.
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