
Gossiping Differential Evolution: a decentralized
heuristic for function optimization in P2P networks

Marco Biazzini
University of Trento, Italy

biazzini@disi.unitn.it

Alberto Montresor
University of Trento, Italy

alberto.montresor@unitn.it

Abstract—P2P-based optimization has recently gained interest
among distributed function optimization scientists. Several well-
known optimization heuristics have been recently re-designed to
exploit the peculiarity of such a distributed environment. The
final goal is to perform high quality function optimization by
means of inexpensive, fully decentralized machines, which may
either be purposely organized in a P2P network, or voluntarily
join a running P2P optimization task. In this paper we present
the GoDE algorithm (Gossip-based Differential Evolution), which
obtains remarkable results on several test functions. We describe
in detail the algorithm design and the epidemic mechanism that
greatly improves the performance. Experimental results in a
simulated environment show how GoDE adapts to network scale
and how the epidemic communication protocol can make the
algorithm achieve good results even in presence of a high churn
rate.

Keywords- peer-to-peer, function optimization, differential evo-
lution, heuristic, churn

I. PROBLEM AND GOAL

When confronted with a function optimization problem,
scientists are presented with a large choice space of algorithms
and techniques. Recently, a new dimension has been added to
this space: distribution. Optimization tasks could be distributed
among a collection of independent machines, with the obvious
goal of obtaining a speed-up.

Most of the existing research in distributed optimization,
however, has been focused on tightly-coupled architectures,
such as parallel systems [14] or high-performance clusters,
usually managed by a central coordinator [15]. These sys-
tems either have strict synchronization requirements or rely
completely on a central server, which coordinates the work of
clients and acts as a state repository.

Quite recently, the possibility to perform optimization tasks
in a P2P decentralized network of solvers has been investigated
and explored. Our target networking environment consists of
independent nodes that are connected via an error-free message
passing service. All nodes have an identical role running an
identical algorithm. Joining and failing nodes are tolerated
automatically via the inherent (or explicit) redundancy of
the algorithm design. While such a distributed environment
sounds like “no big issue” concerning nodes cooperation,
communication and connectivity, it is not trivial at all from the
point of view of executing a distributed function optimization
task.

To simplify the discussion, we briefly define some basic
terminology. The system we target is composed by a (poten-
tially large) number of solvers, each of them being a running
instance of an optimization algorithm. Each solver iteratively
evaluates one or more points of an objective function, with
the goal of finding a better objective value (minimum or max-
imum). Solvers may share information with each other about
the progress of the optimization process (solution quality).
Subsequent iterations of the local instance of the algorithm
may depend not only on the objective values that have been
found locally, but also on the information coming from other
solvers in the network.

Performing function optimization tasks in a P2P distributed
environment requires the user to pay attention to some novel
and interesting design issues:

– Synchronization. Depending on the kind of algorithms
and on the way their computations that are distributed
among the solvers, there may be performance decays
due to synchronization needs. Not all the algorithms
have strict synchronization requirements; for those which
have them, it is likewise fundamental to know when the
synchronization is strictly needful and when it is not.
Thus, it is important to achieve a good understanding
of the relation between performance drifts and ratio of
communication events, in order to find, for each kind
of algorithm, the maximal amount of synchronization
occurrences that does not penalize performance.

– Information sharing. How much information has to be
shared among the distributed instances of an algorithm?
Of course, it depends on what algorithm is running, but
also on how many of its instances are active in the
network at the same time. A careful consideration of what
has to be shared and what can be kept as local is crucial
for each kind of algorithm.

– Convergence and communication rate. How often shared
information must be updated? The spreading of the infor-
mation relies on both the frequency of message exchanges
and the interconnection topology. The behavior of the
same algorithms in different kinds of P2P topologies
may present significant differences. A tradeoff between a
good information exchange and a rapid advancement of
each individual search process has to be found. Moreover,
particular attention has to be paid to the effect of delays

when propagating updates.

Each of these aspects demands careful analysis and un-
derstanding. The present contribution shows how a specific
distributed meta-heuristic (Differential Evolution) can be de-
signed in a P2P fashion and how spreading relevant infor-
mation in an epidemic fashion helps improving the solution
quality, in spite of overlay dynamism and churn.

The rest of the paper is organized as follows. Some back-
ground and the description of our novel algorithm are given in
Section II. Experimental results based on extensive simulations
are discussed in Section III. Section IV summarizes recent
related works, while in Section V we present some final
remarks.

II. GOSSIPING DIFFERENTIAL EVOLUTION

This section provides a brief description about the original
DE meta-heuristic and describes in details our novel GoDE
algorithm, a distributed flavor of DE augmented by means of
an epidemic diffusion mechanism among cooperating solvers.

A. Differential Evolution overview

DE is a well-known and broadly studied method for the op-
timization of multidimensional functions that particularly suits
multimodal (i.e. having more than one minimum) functions,
introduced by Storn and Price in 1997 [13].

Basically, DE is a scheme for generating trial parameter
vectors, commonly denoted as individuals. We can see an
individual as a vector of coordinates in the objective function
domain, thus denoting a point in which the function may be
evaluated. A group of individuals is called a population.

DE generates new individuals by linearly combining two or
more individuals already included in the current population,
through the execution of a specific operator. The set of
available operators defines different DE variants; an example
is given in Table I, which summarizes the most common
instances.

In the table, T is the new individual generated by the com-
bination of other individuals. A,B,C,D,E are individuals
chosen at random within the current population, while Best
is the individual representing the current optimal solution.
Fact ∈ [0 . . . 2] is a user-defined real constant factor that
controls the amplification of the differential variation.

Operators are usually classified according to the notation
DE/x/y/z proposed in [13], where:

x specifies the vector to be mutated; it can be either RAND,
meaning a random selection from the whole population,
or BEST, meaning that the best known solution Best is
used.

y is the number of difference vectors used (1 or 2).
z denotes the way the probability of performing the linear

combinations is drawn; it can assume either the value
BIN, that corresponds to independent binomial experi-
ments for each dimension; or the value EXP, that cor-
responds to a conditional probability for each dimension
w.r.t. the precedent one.

Notation Linear combination
DE/rand/1/* T = E + Fact · (A− B)
DE/rand/2/* T = E + Fact · (A+ B − C −D)
DE/best/1/* T = Best+ Fact · (A−B)
DE/best/2/* T = Best+Fact · (A+B −C−D)

TABLE I
DE OPERATORS

Until a termination criterion is met (e.g. number of iterations
performed, or adequate fitness reached), the DE algorithm
generates trial individuals by repeatedly applying one or more
operators to a given population and substitutes population
members if their quality is greater. No global probability distri-
bution is required to generate trial individuals while moving
toward the optimum (being it a maximum or a minimum),
thus the algorithm is completely local and self-organizing. It
is easy to see that, provided a way to properly distribute the
overall population, DE is a suitable candidate to distributed
optimization tasks.

It is well known that distributed versions of evolutionary
algorithms can outperform sequential ones (compared under
the same computational effort, measured in number of function
evaluations). This motivates the growing amount of research
about the ways the local populations can be made interact with
each other in order to improve the final result.

An important requirement for distributed DE algorithm is
the preservation (if not the enhancement) of diversity, to avoid
a premature convergence of the local populations to sub-
optimal solutions [4]. Our novel GoDE algorithm implements
a simple yet very effective migration policy that proves to
boost the performance of the heuristic while adapting well to
the number of solvers cooperating in the P2P network.

B. GoDE

In the decentralized version of DE proposed in this paper,
each solver is associated with an independent population of
individuals, potentially exploring a distinct portion of the
search space.

Solvers exchange individuals between different populations
by means of an epidemic protocol. In this way, each population
is modified in two ways: by the local computation performed
by the solver, and by foreign individuals obtained from other
solvers.

This approach makes the various GoDE instances capable of
exploiting a far richer population, while operating on the usual
amount of local individuals. Moreover, poorly performing
individuals are gradually substituted by better newcomers, so
that a local population is not simply “killed” and overtaken by
a bald new one. This preserves the precious local diversity of
the global population and the fair partitioning of the function
domain space among the solvers.

GoDE assumes the existence of a peer sampling service
that returns a uniform random sample of the entire network
population. In our implementation, this service is provided
by NEWSCAST, that maintains a random topology over the
collection of solvers.

Apart from the local best known individual, denoted as
lBest, each GoDE solver maintains information about the
global best-known individual, denoted gBest.

GoDE solvers spread information about their current pop-
ulation in an epidemic fashion, following a push-pull policy.
The heuristic propagates two pieces of information:

• the current global best individual;
• the sub-optimal individual that has been more recently

introduced in their local population.

The rate of epidemic spreading is correlated to the length of
a function evaluation; we assume that an epidemic exchange
for the global best individual is initiated after each function
evaluation, while an epidemic spread of the sub-optimal in-
dividual is initiated with probability G after every function
evaluations.

GoDE iterates the following actions until the termination
criterion is met:

1) Process any new message from other nodes in the
network, updating the internal state as needed;

2) Perform the next optimization step, thus evaluating the
function and updating the internal state;

3) According to the defined communication strategy, spread
relevant information to other solvers.

The time to propagate a new current best solution to every
node this way takes O(logN) periods in expectation where
N is the network size [10]. In principle, the time to propagate
the selected population individual would asymptotically be the
same, but it is quite unlikely that the very same individual can
be spread to more than one node without being modified by
the DE operators. We believe that this is the very reason why
our mechanism turns out to be so effective in achieving good
results: the global population gradually improves, because the
single individuals, one at a time in each local population,
gently improve, thus focusing the evaluated search domain
toward more promising areas.

III. EXPERIMENTAL RESULTS

The results we present are obtained by implementing GoDE
on PEERSIM [6]. Table II recalls some characteristics of the
test functions we challenge. Sphere10 is an easy unimodal
function. Rosenbrock10 and Zakharov10 are non-trivial uni-
modal functions. The rest of the functions are multimodal.
Griewank10 is similar to Sphere10 with high frequency sinu-
soidal “bumps” superimposed on it. Schaffer10 is a sphere-
symmetric function where the global minimum is surrounded
by deceptive spheres. Rastrigin10 is highly multimodal and its
local minima are regularly distributed. It is a difficult test case
for most optimization methods.

The set O of DE operators we use is shown in Table III. We
adopt the standard notation presented in Table I, keeping the
proper semantics. We recall that, while operators with gBest
use the global best solution in the network (as learned through
gossip), the lBest variants ignore the global best solution
and just consider gossiped newcomers among their population
individuals.

We assume that every node maintains a local population of
8 individuals. In all our experiments we vary the following
parameters:

• network size (N) the number of nodes in the network;
• individual gossip rate (G) the probability to send, after

every function evaluation, the sub-optimal individual in
the local population that has been updated more recently.

A total number of 220 function evaluations are performed
during each experiment, equally divided among the N solvers.

We run 10 independent experiments for all parameter com-
binations using

N ∈ {21, . . . , 214} and G ∈ {0, 0.016, 0.125, 0.25, 0.5, 1}
combined with all the operators in Table III, on all test
functions.

For every experiment, we trace the best solution known in
the overall network every time 8 new iterations of the solver
have been performed in each node. Thus we collect the current
best result at the end of each DE generation cycle. The sets
of experiments described so far are run separately in different
network conditions. We considered the following scenarios:

– No churn.
– Churn drawn by replacing 5% of nodes during a time

interval taken by 20 function evaluations.
– Churn drawn by replacing 10% of nodes during the same

time interval.

Our metric of interest is based on the number of function
evaluations performed at each node. Objective functions can
differ in complexity by several orders of magnitude. Thus,
generally we cannot fix, in absolute terms, the amount of
time these churn rates represent. Considering that a non-trivial
function may take 1 second per evaluation, the simulated
scenarios are extremely challenging, because 5% and 10% of
the nodes may fail and be substituted every 20 seconds.

Function f(x) D f(x∗) K
Sphere10 [−5.12, 5.12]10 0 1
Rosenbrock10 [−100, 100]10 0 1
Zakharov10 [−5, 10]10 0 1
Griewank10 [−600, 600]10 0 ≈ 106

Schaffer10 [−100, 100]10 0 ≈ 63 spheres
Rastrigin10 [−5.12, 5.12]10 0 ≈ 106

TABLE II
TEST FUNCTIONS.D: SEARCH SPACE; f(x∗): GLOBAL MINIMUM VALUE;

K : NUMBER OF LOCAL MINIMA.

Notation Linear combination
DE/gBest/1/exp T = gBest+ Fact · (A− B)
DE/lBest/1/exp T = lBest+ Fact · (A− B)
DE/rand/1/exp T = E + Fact · (A− B)
DE/rand/2/exp T = E + Fact · (A+ B − C −D)
DE/randToGBest/2/exp T = E + Fact · (gBest −A+ C −D)
DE/randToLBest/2/exp T = E + Fact · (lBest −A+ C −D)

TABLE III
THE SET O OF OPERATORS USED BY GoDE

In the rest of this section, we show a collection of plots
representing a selection of our results. Our comments and
remarks derive from the analysis of all sets, of course, but
being the overall number of experiment sets more than 3000,
we collect here just some representative examples. On the
vertical axis, we always plot the quality of the solution
achieved by the algorithm, that is the difference between the
best value found so far in the entire network and the the real
optimum (the minimum value of the function we tackle). All
the values shown in the plots are the averages of the best
values found over ten experiments.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

 0 50 100 150 200 250 300 350

s
o
l
u
t
i
o
n

q
u
a
l
i
t
y

iterations

G = 0
G = 0.016
G = 0.125
G = 0.25
G = 0.5

G = 1

Fig. 1. Rastrigin - DE/gBest/1/exp. N = 212 . How the gossip rate G
improves performance.

The first evidence we find is that the individual spreading
mechanism is definitely effective. All the operators remarkably
improve their performance when the gossip rate G is set to a
non-zero value. There is an interesting dependence from the
network size, though, which is worth investigating in some
details. It is not true that setting G > 0 is always beneficial to
the computation, but it can have a significant impact if done in
the appropriate way with respect to the network size, leading
to a huge performance boost.

Generally we see that lower gossip rates improve the
performance in small and medium networks, while higher
gossip rates have a surprisingly good impact in large networks.
Of course there are no “magic numbers” that can suit all
the network sizes for all the operators, but this kind of
behavior appears in all our experiments, with a surprising
consistency. Figure 2 illustrates how an appropriate choice of
G leads to very good results even when using a very large
number of nodes. This fact is not usual at all and shows
that exploiting large decentralized P2P networks to perform
function optimization tasks can be not only efficient, but most
of all effective. A large number of function evaluations can be
partitioned among thousands of distributed solvers, resulting in
a lighter workload per machine, while ending up in an equally
good, if not better, result.

Not only our gradual shuffling of population individuals
improves the final results, but it also speeds up the improve-
ment during the computation, with respect to the case in
which no population gossiping is provided. As we examine the
experiments in which an operator is able to find the optimum
of a function even if G = 0, we see that most of the time,
for N > 24, a small gossiping rate helps finding the optimum
within a smaller number of function evaluations. This effect
is even more evident in those cases when the operator is not
performing well by itself, as Figure 1 clearly illustrates.

Figure 3 shows how performance changes in presence of
churn. As we can see, population gossiping helps even in
case of high churn. Paying attention to these graphs, we see
something unexpected: churn can even be helpful for large
networks, given that an adequate gossip rate is enabled! We
find — not only in this specific case: as we said, these
considerations can be generally drawn out of the whole set
of experiments we performed — that when churn is expected,
a higher gossip rate is preferable. As a matter of fact,
making individuals circulate the network after every function
evaluation can successfully cope with the higher churn rate,
provided we have networks that are large enough to guarantee
a proper amount of individuals. In some cases, churn even
helps improving the final outcome, as Figure 4 clearly shows.

Our result give us some insights about how the behavior
of a given operator changes with respect to the two variable
parameters. If the gossip rate is too high with respect to the
number of nodes in the network, it has the undesired effect to
make the distributed algorithm converge too quickly to a sub-
optimal value. Anyway, if churn is really high — thus causing
a sort of frequent local restart of the algorithm in the affected
nodes — a high gossip rate helps the distributed algorithm
keeping the explorative drift under control, achieving nearly
optimal performance even in such an adverse situation.

In a recent work about a P2P flavor of Particle Swarm
Optimization (PSO) [2], we showed that in some test cases
churn can be beneficial for the P2P-PSO heuristic. We think
this similar behavior is due to common reasons. When churn
occurs during a P2P-PSO optimization, the particles actually
restart in random positions. Churn during GoDE optimization
makes local populations disappear and be substituted by new
individuals. These two scenarios present important similar-
ities and, in both cases, what actually happens is that the
exploration of the search space is boosted. Of course, the
performance benefit is not guaranteed. It may greatly improve
the solution quality if the particles/individuals are suffering
for lack of possibilities to escape from local minima. But it
just spoils the chance to improve, if the solvers are on a good
“track” within a promising attraction basin.

According to our experience, GoDE shows a higher re-
silience than P2P-PSO with respect to this issue. It seems
that the way the individuals are combined by DE operators
is more capable to provide recovering from “bad choices” or
unfortunate events. Any new generation of DE individuals is
not only a bunch of better candidate solutions; it is a better
domain region to search within.

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

20 22 24 26 28 210 212 214

s
o
l
u
t
i
o
n

q
u
a
l
i
t
y

size

DE/gBest/1/exp
DE/lBest/1/exp
DE/rand/1/exp
DE/rand/2/exp

DE/randToGBest/2/exp
DE/randToLBest/2/exp

(a) G = 0

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

20 22 24 26 28 210 212 214

s
o
l
u
t
i
o
n

q
u
a
l
i
t
y

size

(b) G = 0.016

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

20 22 24 26 28 210 212 214

s
o
l
u
t
i
o
n

q
u
a
l
i
t
y

size

(c) G = 0.125

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

20 22 24 26 28 210 212 214

s
o
l
u
t
i
o
n

q
u
a
l
i
t
y

size

(d) G = 0.25

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

20 22 24 26 28 210 212 214

s
o
l
u
t
i
o
n

q
u
a
l
i
t
y

size

(e) G = 0.5

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

20 22 24 26 28 210 212 214

s
o
l
u
t
i
o
n

q
u
a
l
i
t
y

size

(f) G = 1

Fig. 2. Griewank - How the gossip rate G improves performance in different networks. No churn.

 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 1e+10

20 22 24 26 28 210 212 214

s
o
l
u
t
i
o
n

q
u
a
l
i
t
y

size

G = 0
G = 0.016
G = 0.125
G = 0.25
G = 0.5

G = 1

(a) DE/Rand/1/Exp – No churn

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 1e+10

20 22 24 26 28 210 212 214

s
o
l
u
t
i
o
n

q
u
a
l
i
t
y

size

G = 0
G = 0.016
G = 0.125
G = 0.25
G = 0.5

G = 1

(b) DE/Rand/1/Exp – 5% churn

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 100000

 1e+10

20 22 24 26 28 210 212 214

s
o
l
u
t
i
o
n

q
u
a
l
i
t
y

size

G = 0
G = 0.016
G = 0.125
G = 0.25
G = 0.5

G = 1

(c) DE/Rand/1/Exp – 10% churn

Fig. 3. Rosenbrock - How the gossip rate G improves performance in
different networks.

This happens because individuals with low fitness can still
help by providing diversification as needed, whereas PSO
particles which are performing poorly are quite useless to the
swarm. We think this fact makes GoDE more able to cope with
different problems in those cases when a specific tuning is not
possible. We are not talking about state-of-the-art solutions,

but about good outcomes given a limited (or null) amount of
information about the problem. It is understood that a “good
parametrization” can change this situation quite radically.

Trying to come up with general guidelines to successfully
set up our DE operators for a P2P decentralized optimization
task, we may observe what follows:

– For small networks (up to 26 nodes), a very small
gossip rate is preferable, to avoid premature sub-optimal
convergence of the local populations.

– For large networks (more than 210 nodes) gossip should
better occur with a probability of 0.5 or higher.

– Churn change the situation in a way that is hard to predict
with respect to the relation between performance and
network size. Anyway, almost in any case a high gossip
rate produce better results.

– Operators biased toward exploration generally capitalize
more the gossiping of sub-optimal individuals.

It is hard to state a general conclusion, because the behavior
of the different operators and their absolute performance
always differ as problems change. Anyway, the patterns we
describe appear in almost any case and we think they show
a clear correlation between performance, gossip rate and
network size. More precisely, the gossiping mechanism makes
the set of local populations at each node behave like a unique
large global one. Anyway the effect is not simply analogous
to the one we could see if we had a single node hosting all
the individuals that are actually spread on our network. In
that case, the generation cycle length would be so huge, that
the convergence of the individuals to a good outcome would
require an unacceptable amount of time.

The parallel islands are meant to cope with this problem,
although this paradigm may suffer from premature conver-
gence to local sub-optima, that pins down the computation
to a poor performance. Among the various known migration
policies that have been devised to solve this issue, we believe
that our variable gossiping diffusion of sub-optimal individuals
proves to be both effective and robust.

IV. RELATED WORK ABOUT P2P OPTIMIZATION

P2P heuristic optimization is quite a newborn branch of
distributed optimization. As it happens in all the happy begin-
nings, researchers are extensively exploring the various issues
this new field entails. We give here a brief overview of the
recent publications, mostly related to P2P implementations of
population-based algorithms.

In [9] the authors presented some preliminary evaluations
of a parallel hybrid MO-EA (multi-objective evolutionary al-
gorithm) deployed in a P2P environment. Several results show
that is possible to successfully parallelize such an evolutionary
algorithm in a P2P fashion, exploiting the resources available
in a network of 120 heterogeneous PCs.

In [5] an extensive experimentation was performed, to test
the fault tolerance of the island model on genetic algorithms
(GA), when executing them on a distributed system. The
results show that this model can be trusted when running

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

20 22 24 26 28 210 212 214

s
o
l
u
t
i
o
n

q
u
a
l
i
t
y

size

(a) G = 1 – No churn

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

20 22 24 26 28 210 212 214

s
o
l
u
t
i
o
n

q
u
a
l
i
t
y

size

DE/gBest/1/exp
DE/lBest/1/exp
DE/rand/1/exp
DE/rand/2/exp

DE/randToGBest/2/exp
DE/randToLBest/2/exp

(b) G = 1 – 5% churn

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 100

20 22 24 26 28 210 212 214

s
o
l
u
t
i
o
n

q
u
a
l
i
t
y

size

(c) G = 1 – 10% churn

Fig. 4. Rastrigin - Churn may increase population diversity and improve
performance.

experiments on a non-reliable parallel or distributed infras-
tructure, the quality of the outcomes being at most 2% worse
(on average) than when a reliable infrastructure is employed,
without adding any special techniques required for dealing
with faults.

Battiti et al. [3] presented an implementation of Particle
Swarm Optimization (PSO) in a distributed peer-to-peer en-
vironments. Global information sharing among processes is

managed by epidemic protocols, that ensure spreading of
relevant data generated during the search. The results show
that the message complexity needed to outperform a single-
node sequential algorithm can be low and that the proposed
approach is therefore viable.

Almost the same PSO distributed algorithm has been pro-
posed by different authors in [11] to address multi-objective
optimization problems, in which the main goal is to find a set
of values lying on the Pareto-frontier that can be found for the
objectives being tackled. In spite of the different experimental
environment (simulated very large networks in the former
case, small real network in the latter), the results confirm the
usefulness of the approach.

Recently, the same authors [12] proposed new models to
substitute failing particles of the same kind of multi-objective
PSO algorithm, in such a way that the capability of the affected
swarm to explore the search space can be enhanced. The
initialization of the new particles is performed using a com-
bination of binary search to fill the gaps in the space between
the two known Pareto-front extremes and edge extension, to
improve the exploration beyond the known Pareto-front.

Van Steen et al. [16] presented a fully decentralized evolu-
tionary algorithm in which the population size is kept stable by
locally adapting the surviving rate of the individuals according
to global population estimations, performed by means of
gossiping protocols. The parent and survivor selection can be
done completely autonomously and asynchronously, without
central control, yet avoiding the risk of population explosion
or implosion.

Laredo et al. [7] proposed the Gossiping-based Evolvable
Agent model, where every individual of an evolutionary
algorithm’s population self-schedules its own action as an
agent (evolvable agent) and dynamically self-organizes its
neighborhood via NEWSCAST (gossip-based). Tests run in a
really distributed deployment with multi-threaded configura-
tions confirm that P2P evolutionary algorithms are competitive
with respect to not-distributed ones.

Recently, in [8] the authors presented an extensive evalu-
ation of a generic P2P evolutionary algorithm with respect
to different (simulated) network size and churning conditions,
while tackling a known hard test function. Results show that
the gossiping enabled small-world structure of the network
makes the algorithm very robust even when very high churn
rates are applied.

Finally, we proposed a distributed DE algorithm based
on epidemic communication in [1]. The main purpose was
to compare different hyper-heuristics using DE operators on
several test functions. While that work paid great attention to
periodically spreading the best known results, no interaction
was provided among distinct populations on different nodes.
That is precisely the issue we address with GoDE.

Our GoDE meta-heuristic proves to be able to cope with
churn while scaling well up to thousands of nodes. Without
reaching the extreme design of the Evolvable Agents (which
would be, if every node hosted a single individual, instead of a
small population), it is able to overcome the known drawbacks

of an island-based design (local population size maintenance,
premature sub-optimal convergence, poor adaptivity to dif-
ferent problems) by wisely using an epidemic spread of
individuals among local populations, that both improves the
final performance of the algorithm and speed up the gradual
convergence to the global optimum.

V. CONCLUSION

P2P distributed function optimization is a recently born
research field that is attracting the interest of both the scientific
community and the industries. We introduced some relevant
aspects that an effective and scalable distributed optimization
algorithm design must take into account.

We proposed a novel gossip-based Differential Evolution
algorithm, that implements the traditional DE heuristic in a
P2P fashion. GoDE exploits the epidemic paradigm to share
relevant information in a P2P network of cooperating solvers,
coping with the lack of a central coordinator and the possibility
of high churn.

We showed how, by choosing the appropriate gossip rate
to spread local individuals — besides the current best results
— during the computation, GoDE is able to achieve optimal
results even in presence of very high churn rates. The key
point of our design is that not only the best individuals, but
also a proper management of the global population are crucial
aspects of a distributed DE heuristic. This issue is not trivial,
given that the population is spread among several distinct
nodes belonging to a P2P overlay network.

We showed that our gossip-based migration policy is able
to cope with adverse network conditions. Moreover, it can
somehow turn the adversity in a benefit, transforming the
destabilizing effect of churn in a beneficial restart mechanism,
that may even speed up the final convergence to the global
optimum.

By an extensive experimentation in a simulated environ-
ment, we proved that GoDE generalizes well with respect to
various DE operators and different test functions, thus show-
ing to be able to deal with different problems, successfully
exploiting a number of resources that can vary between less
than 10 to tens of thousands.

Our future work will be testing the performance of our
algorithm in a real deployment and moving to the design of
distributed meta-heuristics that combines different optimiza-
tion algorithms in a P2P fashion.

VI. ACKNOWLEDGEMENTS

This work is supported by the Autonomous Security project,
financed by MIUR Programme PRIN 2008.

REFERENCES

[1] Marco Biazzini, Balázs Bánhelyi, Alberto Montresor, and Márk Jelasity,
Distributed hyper-heuristics for real parameter optimization, Proceed-
ings of the 11th Genetic and Evolutionary Computation Conference
(GECCO’09) (Montreal, Québec, Canada), July 2009, pp. 1339–1346.

[2] Marco Biazzini, Balázs Bánhelyi, Alberto Montresor, and Márk Jelasity,
Peer-to-peer optimization in large unreliable networks with branch-and-
bound and particle swarms, Applications of Evolutionary Computing
(Mario Giacobini, Anthony Brabazon, Stefano Cagnoni, Gianni A. Di
Caro, Anikó Ekárt, Anna Isabel Esparcia-Alcázar, Muddassar Farooq,
Andreas Fink, and Penousal Machado, eds.), Springer, 2009, pp. 87–92.

[3] Mauro Brunato, Roberto Battiti, and Alberto Montresor, Gosh! gossiping
optimization search heuristics, Proceedings of the Learning and Intelli-
gent Optimization Workshop (LION 2007), 2007.

[4] E. Cantú-Paz, Migration policies, selection pressure and parallel evolu-
tionary algorithms, Journal of Heuristics, 7(4), 2001.

[5] J. Ignacio Hidalgo, Juan Lanchares, Francisco Fernández de Vega, and
Daniel Lombra na, Is the island model fault tolerant?, GECCO ’07:
Proceedings of the 2007 GECCO conference companion on Genetic and
evolutionary computation (New York, NY, USA), ACM, 2007, pp. 2737–
2744.

[6] Márk Jelasity, Alberto Montresor, Gian Paolo Jesi, and Spyros Voulgaris,
The Peersim simulator, http://peersim.sf.net.

[7] J.L.J. Laredo, P.A. Castillo, A.M. Mora, and J.J. Merelo, Exploring
population structures for locally concurrent and massively parallel
evolutionary algorithms, Evolutionary Computation, 2008. CEC 2008.
(IEEE World Congress on Computational Intelligence). IEEE Congress
on, June 2008, pp. 2605–2612.

[8] J.L.J. Laredo, P.A. Castillo, A.M. Mora, J.J. Merelo, and C. Fernandes,
Resilience to churn of a peer-to-peer evolutionary algorithm, Interna-
tional Journal of High Performance Systems Architecture, 2008, Volume
1, Number 4.

[9] N. Melab, M. Mezmaz, and E-G. Talbi, Parallel hybrid multi-objective
island model in peer-to-peer environment, IPDPS ’05: Proceedings of the
19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05) - Workshop 6 (Washington, DC, USA), IEEE Computer
Society, 2005, p. 190.2.

[10] Boris Pittel, On spreading a rumor, SIAM Journal on Applied Mathe-
matics 47 (1987), no. 1, 213–223.

[11] I. Scriven, A. Lewis, D. Ireland, , and J. Lu, Distributed multiple
objective particle swarm optimisation using peer to peer networks, IEEE
Congress on Evolutionary Computation (CEC), 2008.

[12] I. Scriven, A. Lewis, and S. Mostaghim, Dynamic search initialisation
strategies for multi-objective optimisation in peer-to-peer networks,
IEEE Congress on Evolutionary Computation, CEC ’09 (2009), 1515
– 1522.

[13] Rainer Storn and Kenneth Price, Differential evolution: A simple and ef-
ficient heuristic for global optimization over continuous spaces, Journal
of Global Optimization 11 (1997), no. 4, 341–359.

[14] E. G. Talbi, Parallel combinatorial optimization, John Wiley and Sons,
USA, 2006.

[15] T. Vinkó and D. Izzo, Learning the best combination of solvers in a dis-
tributed global optimization environment, Proceedings of the Workshop
on Advances in Global Optimization: Methods and Applications (AGO
2007) (Mykonos, Greece), 2007, pp. 13–17.

[16] W. R. M. U. K. Wickramasinghe, M. van Steen, and A. E. Eiben, Peer-to-
peer evolutionary algorithms with adaptive autonomous selection, Proc.
of GECCO, ACM Press New York, NY, USA, 2007, pp. 1460–1467.

