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Abstract— Geographic routing based on virtual coordinates
has been studied extensively, especially in environments ex-
pensive localization techniques are infeasible. Even though,
the construction of virtual coordinate system is theoretically
understood, their practical deployment is questionable due to
computational requirements. An alternative approach is to use
raw range measures from a special set of nodes called ’anchors”
as virtual coordinates, which only preserve partial geographic
knowledge. In this paper we follow a similar approach, but focus
on answering the question ”what are the minimal geometric
primitives required to perform geometric routing?”. We take
the first step towards answering this question, based on a node
centric local geometric view of localized nodes. We define local
geometric primitives and show that geographic face routing can
be performed with those primitives.

Index Terms— Wireless ad-hoc routing, Geographic Routing,
Localization, Virtual Coordinates, Geometric Primitives

I. INTRODUCTION

Geographic routing is a routing paradigm proposed for
wireless ad-hoc networks, which are capable of geographically
locating nodes in the network [1], [2]. This approach is
promising due to its scalability and efficiency in the face
of network dynamics, compared to the on-demand routing
schemes proposed for wireless ad-hoc networks. Even though
its seminal work on geographic routing focused on one-to-
one routing, subsequent proposals on routing schemes like
multcast [3] were proposed later. Further more geographic
aware mechanisms are used to build higher level communi-
cation abstractions like geographic hash tables, following a
data centric approach.

Geographic routing relies on geographic information of
nodes in the network. Therefore it should be supported by an
auxiliary localization service. Localization is an independent
problem, which was extensively studied, especially for the net-
works where expensive localization methods are not feasible.
Thus most of the localization schemes assume that, only a
small number of nodes (referred as beacons or anchors) know
their exact geographic location information and they propagate
this information so that the rest of the nodes can derive their
geographic information with certain geometric computations.
Alternatively some other schemes localize nodes purely based
on connectivity information (neighborhood) available to the
nodes.

Virtual coordinate based localization is an approach which
deviates from both these approaches. It suggests to derive a
virtual coordinate system which corresponds with the physical
space. Virtual coordinate systems can be categories as either
topological or metric based. Topological virtual coordinates
use topology information and arrive on a virtual coordinate

space, without any geometric correspondence with the physical
space. Contrarily metric based systems derive virtual coordi-
nate systems which bares correspondence with the physical
space.

In this paper, we present key geometric constructs re-
quired to perform geographic routing when minimal geometric
knowledge is locally available. In other words we rely on a
virtual coordinate system which uses raw distance measures
as coordinates, rather than using localization techniques like
trilateration.

II. BACKGROUND
A. Geographic Routing

Compass routing [4] was the first geographic routing algo-
rithm proposed for the broader context of geometric networks.
Conceptually this scheme is considered to be a local routing
scheme, since it does not need to keep any routing information
other than its one-hop neighborhood. It performs a “greedy”
selection on its next hop in a point to point routing scenario,
based on the angle towards the destination, hence called
compass routing. GPSR/GFG are the first notable geographic
routing schemes which promise delivery inaugurates, specifi-
cally in the context of wireless ad-hoc networks. Both these
approaches initially continues with forwarding the point to
point traffic to the geographically closest neighbor to the
destination. Subsequently they suggest face_routing, when
greedy forwarding hits a dead end (local minima). “sentence
on face routing extensions”. In [5], they further studied and
reports a comprehensive analysis of delivery grantees in all the
well established face routing schemes, based on planarity sub
graphs. Furthermore it provides an insight into the required
geometric properties of the underlying planer sub graphs.

B. Localization

Even though localization is assumed by all geographic
routing algorithms, making nodes available with location in-
formation is not straight forward in environments like wireless
sensor networks. WSNs are equipped with tiny embedded
devices with limited processing and communication capabili-
ties, which are powered by limited energy sources. Therefore,
localization in these devices is always not trivial due to
their intrinsic resource constraints. For instance, localization
based on globally adopted technologies like Global Positioning
System (GPS) has not become a viable candidate for WSNs.
On the other hand due to extreme nature of these networks and
the large number of nodes in a deployment, it is not possible
to statically assign locations for each node in the network. A
typical solution is to equip small number of devices (so called



anchor nodes) with location information (with GPS or with
other locating mechanism), and let the rest of the nodes (non-
anchor nodes) to derive their location. In order to calculate
their position, non-anchor nodes have to measure the distances
from anchor nodes (from minimum of three anchors in a two
dimensional surface) and utilize basic algebraic principles to
arrive on their coordinates. This is called trilateration in the
literature, while measurements from more than three anchors
are used to get more accurate positions in the presence of
erroneous range measures, which is called multilateration.

C. Virtual Coordinate Systems

A rather different direction of localization research is to
localize nodes with a virtual coordinate systems (VCS), which
is different from the Euclidean system. VCS, as opposed to
real coordinates are desirable in some applications, which
only need to preserve topological structure rather than their
exact geographic locations. Geographic routing is one such
application of this nature. Rao et.al proposed a mechanism to
assign synthetic coordinates to perform geographic routing,
commonly referred to as NoGeo [6]. NoGeo computes an
embedding of the network on the Euclidean space, starting
from an initial coordinate assignment at each node. It models
the coordinate assignment problem as a mass-spring model
and performs an iterative relaxation algorithm to achive on an
approximation of the optimum coordinate assignment. Shang
et.al have incorporated inter distances between nodes into
the coordinate construction problem, hence to compute an
embedding of the network preserving the topological structure
of the network [7]. The problem formulation was based on a
technique borrowed from psychometrics called multi dimen-
sional scaling and based on an iterative approach. These virtual
coordinate systems does not to bare any correspondence with
their geographic coordinates in the Euclidean space. Therefore
on these coordinate systems, it is not possible to perform
operations which resemble geometric relationships with the
physical topology. Specifically when considering geographic
routing, face routing as a local minima recovery scheme is
not a candidate, thus failing to provide delivery guarantees.

D. Virtual Raw Anchor Coordinates

Even though virtual coordinate systems offer sound ground-
ing to the localization problem, in a more realistic setting
their applicability is questionable. This is mainly due to
most of these mechanisms being iterative in nature, making
them impractical for large networks. Additionally individual
nodes would be computationally burdened with the numerical
calculations involved in such algorithms. Identifying these
discrepancies, [8] and [9] have independently proposed a
virtual coordinate scheme relying only on the raw measures
from anchor nodes. Both these mechanisms assign nodes
their coordinates, simply as a hop-count vector from the
anchors. Therefore this mechanism does not demand any
further computational manipulations as in virtual coordinate
construction schemes. It is similar to VCS, as it does not
physically related to the geographic locations. Huc et.al have

studied its physically consistent counter part with raw dis-
tances from anchors as the coordinates; VRAC [10]. Further
more they have proposed a combinatorial approach to planarity
a network, localized with raw anchor coordinates.

E. Minimal Geometry for Geographic Routing

In this paper we emphasis that, non of the virtual coordinate
system approaches do not construct coordinates, which corre-
spond to their physical locations. Therefore important geomet-
ric routing notions like face routing are not able to perform
on virtual coordinates studied up to now. In this respect we
further state that, topological structure of a virtual coordinate
space which consists minimal geometry for geographic routing
is to be understood, while we take the first step forward.

III. VIRTUAL LOCAL GEOMETRY

In this section we present a virtual coordinate system and
the associated geometric concepts. We follow a node centric
approach and define local geometric constructs in order to be
utilized in geographic routing.

A. Raw distance measurements as virtual coordinates

Virtual Raw Anchor Coordinate system (VRAC), which
was introduced in [10], assigns coordinates based on the
raw distance measurements from anchor nodes. Use of raw
distance measures as its coordinates alleviate several problems
associated with other localization schemes like trilateration.
Most importantly it is the cheapest possible way to assign
coordinates to the nodes, since no further processing is needed
when the raw distances are obtained. Furthermore it does
not propagate raw measurement errors as there is no further
processing takes place.

Without loss of generality, VRAC can be considered as
a mapping between the physical space (either three or two
dimensional) and a n dimensional virtual space, where n is
the number of nodes which serve as anchors. Anchor nodes
are pre-configured and know that they serve as anchors. Both
anchor nodes and non-anchor nodes are able to estimate the
distances between nodes. Anchor nodes either know their
geographic location or not depending on the application re-
quirement. In both cases they preserve the topology and the
physical correspondence, hence local geometric notions can
be defined. As the first attempt to understand the nature
of the problem, we assumes that nodes locate inside the
convex triangle formed by the anchors and distributed on a
two dimensional surface. According to the definition, VRAC
is a multi dimensional coordinate system (depends on the
number of anchor nodes), which can represent the physical
space of three dimensions, but in this paper, we focus on two
dimensional case as most of the routing algorithms are well
established and evaluated for such networks.

Coordinate construction is simple and does not need any
further processing once the distances estimated from the
anchor nodes are available. Figure 1 , illustrates an example
coordinate assignment, where the distances formed into a
vector serves as the coordinate of a node. Note that we adopt
a slightly varied version of the original VRAC system, where



we derive the perpendicular distance from the edges of the
bounding triangle as depicted in Figure 1. The three compo-
nents of a VRAC coordinate is denoted as z, y, z representing
a coordinate of a given node as (z,y, z). There are several
properties, which make this coordinate system different from
the euclidean coordinate system. Most importantly it is not
possible to define an unique origin (zero vector in vector space
terminology) not adhering to the fundamental properties of
algebra. As a result, the notion of distance and angle is not
implicit in this coordinate system as in the Euclidean system.
We take an alternative approach to define required geometric
concepts in the presence of partial geographic knowledge. In
the next section we present a construction of local geometric
view of a node and how it corresponds with the global
geometry of the network.

A3
A2

Fig. 1: Coordinate assignment in VRAC; it uses the raw
distances dy,ds and ds and calculates x,y and z, which is
assigned as the coordinate

B. Local Geometric View of VRAC Nodes

In order to tackel described deviations from standard eu-
clidean geometry and algebraic concepts, we consider a local
view point of a node. Therefore it can be stated that, our
approach is node centric in contrary to the euclidean space
which is build upon the central definitions. Our aim is to define
the notion of an angle (hence rotation) based on the local view
of the space. As illustrated in Figure 2, a node divides the
physical space into six sectors based on its coordinate value.
Sectors are numbered according to the Figure 2, and two of
the components of the coordinate happen to be the borders of
the sector.

Drawing a similar analogy with the Euclidean space, we
treat those two components as axes. In order to incorporate
the notion of direction, we define the left borders of a sector
as follows. Due to the symmetry of the sector definition of
right borders are trivial.

x, if sector = 1 or 4.
border left(u,sector) = ¢y, if sector = 2or 5. (1)
z, if sector = 3 or 6.

A sector preserves some important Euclidean geometric
relationships, which are crucial in bridging the two spaces. We
exploit these similarities and define the following geometric
primitives.

-

Fig. 2: Sectors are numbered from O to 6 and the sector borders
are implicitly defined

1) Sector Gradient: Consider any sector s of a given node
U = (Ty,Yu,2,) and a neighboring node v = (), Yo, 24)
lying in the same sector. We observe that any point on the line
connecting v and v (extended edge), can be represented by an
unique ratio, namely the sector gradient. Sector gradient is a
similar notion to the gradient of a line in the euclidean space,
but only valid with in a given sector. We formally define the
sector gradient of a line, as follows.

, border left(u,s) — border left(v, s)
Gradient =
radient(u, v) border right(u, s) — border right(v, s)
2)

Fig. 3: Concept of gradient which is due to the equvi faced
triangle properties observed in the triangles along the line

This geometrically represents the ratio between the dif-
ferences from sector borders at a given point on a line, as
illustrated in Figure 3. Sector gradient can only represents
a line passes through the origin of the sector (node it self
of concern). Similar to the analogous euclidean notion of
the gradient, sector gradient has a correspondence with the
rising angle from the left sector border and a given line.
This relationship is used to make the comparison between two
angles created by two different nodes with in a given sector.

2) Sector Angle: Comparing the angle between two or more
network edges is an important geometric primitive, in the
geographic routing context. Even though sector angle provides
a sector dependent notion of the angle, it is not sufficient to
compare two angles. This is due to the non orthogonal shape
of the sectors, as opposed to the orthogonal Euclidean space.

Consider another neighboring node w in the sector of the
node u.In order to make v — v line and u — w line (edges in



the network) comparable, we project the node w onto the line
segment line segment u—v. Trivial geometric relationships can
be used to calculate the projection of w on to line segment
u — v is defined as below.

Projection(w, u,v) = Sector Gradient(u,v)x

3
border left(u,s) — border left(w, s) ®)

Once the value of the projection is calculated, considering the
sector gradient of u—v and the value of right(v), rising angle
of the two edges u—v and u—w can be compared. Algorithm
1 illustrates the angle comparison within a sector.

Data: u, v, w

Result: Node which makes the biggest angle with the

sector border
p = Projecion(w, u,v);
if p > border right(w, s) — border right(u, s) then
| return v;

else
| return w;

end
Algorithm 1: Comparison of angles within a sector

3) Clockwise/Counter-clockwise Rotation: Rotation about
a given edge in the network is a fundamental operation
used in geographic routing. Once the comparison between
two or more angles is defined as above, it is possible to
construct an algorithm for rotation about an edge. Rotation
algorithm uses the pre-defined sector numbering scheme and
angle comparison algorithm. Ideally a node starts rotation
algorithm about a given edge, and recursively searches for
the first incident edge clockwise or counter-clockwise as
required. Due to the symmetry of the geometry utilized in
the derivation, it is easy to flip the direction of the rotation.
Rotation algorithm is illustrated in Algorithm 2.

Data: u,v

Result: First edge towards the clockwise direction

N = Neighbors in the sector of v,

for each node in N;

n = node locates with the smallest angle //Algorithm 1;

if n/=NULL then
| return n

else
return

n = Recursively call Algorithm 1 on sectors
end
Algorithm 2: Rotation clockwise/counter-clockwise

Proposition suggests that two line segments get intersected,
when the two line segment end points do not locate in the same
side of the other line segment. We illustrate this proposition in
Figure 4. In order to detect whether the two points are in the
same side of a line segment or not, we define the Algorithm
3. It initially attempt to determine this by sector numbers if
the two points are not in the same sector, while the two points
are in the same sector it uses the sector gradients of edges.

4) Line Segment Intersection: Detecting line segment
intersection is often performed in geometric algorithms
for various reasons. We construct a line segment detection

u u

Fig. 4: Detection of intersection of line segments

algorithm based on the geometric concepts defined so far.
More specifically, we utilize a classical proposition in
geometry to decide the intersection.

Data: u, v, w,x
Result: True or False
if w,x in intersecting sectors compared to u,v then
if u, v in intersecting sectors compared to w,x
then

| return TRUFE

else
| return FALSE
end
else
if w,z in same sector as v then
if Algorithml(v,w) AND Algorithm1(v,x)
then
| return TRUE

else
| return FALSE

end
else

end

end
Algorithm 3: Check Intersection

IV. ROUTING WITH VIRTUAL LOCAL GEOMETRY

In this section we utilize the local geometric constructs
defined in previous section in geographic routing algorithms.
In general, point to point geographic routing algorithms op-
erate in two phases; forwarding greedily and avoiding local
minima (routing voids), when greedy forwarding is not able
to proceed further. Face routing proposed in [1] and [2], is
a delivery guaranteed mechanism to recover from routing
voids, which employs right/left hand rule on a planarized
subgraph. In this section we show that with local geometry
defined in VRAC, it is possible to perform necessary and
sufficient geometric operations in order to perform geometric
face routing guaranteeing the delivery of point to point traffic.

A. Greedy Forwarding

Greedy forwarding is a simple forwarding mechanism,
where it sends the packet to the closest neighbor to the
destination. As VRAC is a non-metric space, defining a metric
to perform greedy forwarding (i.e to find the closest neighbor
to the destination) is not trivial. In order to overcome this
limitation, we defined a greedy region based on the local
geometric knowledge of a node as depicted in the Figure 5. In



greedy forwarding, it maintains a progress condition based on
the geographic distance towards the destination, similarly we
use this greedy region which progressively shrinks and hence
ultimately lead to arrive at the destination.

Destination

Source

Fig. 5: Greedy region based on the local geometric view of
a node

In order to define the greedy region a node identifies the
sector where the destination resides according to it. Since
a node has the coordinate of the destination node during a
routing session, it identifies the sector of it self according
to the destination node. We define the intersecting region of
those two sectors as the greedy region. hence a node looks for
greedy neighbors in this region. As shown in the Figure 5, if
there are nodes in this region, progressing in this manner will
shrink the region and eventually reach the destination. Since a
node does not forward the packet to the closest neighbor, this
approach differs from standard greedy forwarding. We analyze
the difference based on our simulation environment and which
is presented in Section V.

B. Face Routing

We consider face routing on a planarized sub graphs. Dis-
tributed planarization on VRAC was proposed in [11], is used
as the planarization algorithm, as VRAC explicitly consists
of necessary geometric properties. Face traversal performed
with the classical right/left hand rule, where a node rotates
according to the rule and finds the first neighbor clockwise
or counter clockwise. In addition to the face traversal, face
changes should be performed accordingly. While there are
several variants of the face changing criteria, all of them
checks whether whether the face traversal intersects with the
connecting line between current local minima and the destina-
tion. We use the defined geometric concepts to implement the
face routing algorithm proposed in GFG, which is proven its
delivery grantees in an arbitrary graph. Face routing algorithm
is illustrated in Algorithm 4. It uses the rotation algorithm
to search its neighbors clockwise or counter-clockwise and
check for intersections based on the Algorithm 3. If it detects
an intersection, following the GFG algorithm it changes the
rotation direction accordingly.

Data: current, previous, localmin, destination, direction
Result: Next hop
if current ! = localmin then

repeat
| n = Rotate(current,previous)

until Check Intersection(n,localmin,destination) ;
Intersection detected, changing the rotation direction
Face

Routing(current, previous, localmin, dest, oposite)
else

end
Algorithm 4: Face routing utilizing local geometric proper-
ties

V. ROUTING PERFORMANCE EVALUATION

In this section we evaluate geographic routing performance
over VRAC system. Evaluation is done in a simulation
environment, which purely focuses on routing algorithms,
while ideal radio characteristics and link layer complexities
are abstracted. We consider greedy and face routing phases
separately and compare them with geographic routing done
over Euclidean coordinates. An important point is that, our
approach differs from geographic routing over Euclidean co-
ordinates only in the greedy phase, as described in earlier
sections. As proved earlier with the local geometric primitives,
on VRAC system it is possible to perform face routing
algorithms exactly as in the Euclidean coordinate system.
Therefore to compare the overall performance, we analyze
a metric called stretch factor which is commonly used in
performance analysis of geographic routing. Stretch factor
represents the ratio between the number of hops required by
the geographic routing over the shortest path from the source
to the destination node. Further more to illustrate face routing
behavior on VRAC system and Euclidean coordinates, we
present two example simulation outputs.

A. Stretch factor

We perform simulations varying the node density within an
area of 400X400. Radio ranges of nodes are set to be 50 units
and nodes are spread uniformly throughout the area. Shortest
path is found between two randomly selected source and
destination nodes in the randomly deployed topology using
the Dijkstra’s algorithm in a centralized manner.

B. Face routing

In order to demonstrate the performance of face routing over
VRAC is exactly same as in the Euclidean space, we present
two examples of face routing when the node density is 1/1600
nodes per unit area. We perform only face routing to highlight
that both approaches follow exactly the same path towards
the destination. Figure 7 shows an outer face traversal until it
reaches the destination while Figure 8 shows a face traversal
through an inner face of the graph with face switchings taking
place.



14 VRAC —&— |
Euclidean -——@-—

Stretch Factor

1 1.5 2 2.5 3 35 4 45 5 Py (R Py AN
Node Density ° i * e
(a) VRAC (b) Euclidean

Fig. 6: Stretch factor vs node density for VRAC and

Euclidean coordinate systems Fig. 8: Face routing along an inner face of the graph

how well these geometric primitive perform in the presence
of errors. Once the effect of errors are identified, implementing
a localization protocol in real wireless environment would be
a possible future work.
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