
Towards a Human-Centred Approach in
Modelling and Testing of Cyber-Physical Systems

Maria Spichkova∗, Anna Zamansky†, Eitan Farchi‡
∗ RMIT University, Australia, maria.spichkova@rmit.edu.au
† University of Haifa, Israel, annazam@is.haifa.ac.il
‡ IBM Research Lab, Haifa, Israel, farchi@ibm.co.il

Abstract—The ability to capture different levels of abstraction
in a system model is especially important for remote integration,
testing/verification, and manufacturing of cyber-physical systems
(CPSs). However, the complexity of modelling and testing of
CPSs makes these processes extremely prone to human error. In
this paper we present our ongoing work on introducing human-
centred considerations into modelling and testing of CPSs, which
allow for agile iterative refinement processes of different levels of
abstraction when errors are discovered or missing information
is completed.

Index Terms—Testing, human factors, cyber-physical systems

I. INTRODUCTION

An appropriate system model provides a better overview as
well as the ability to fix more inconsistencies more effectively
and earlier in system development life cycle, reducing overall
effort and cost. Nevertheless, modelling assumes abstraction
of several aspects, especially the modelling of cyber-physical
systems (CPSs) on the level when we represent physical
components and the corresponding properties. Even a very
precise model cannot fully substitute for a real system. Many
approaches on CPSs omit an abstract logical level of the
system representation and lose the advantages of the abstract
representation. Some researchers [20], [28] suggested using a
platform-independent architectural design in the early stages
of system development. The approach presented by Sapienza
et al. [20] introduces the idea of pushing hardware- and
software-dependent design as late as possible. In comparison
to [20], the focus of [28] is on adaptation and generalisation
of the software development methodologies. In our work, we
extend these ideas by combining integration of quality-oriented
aspects into the architectural levels with integration of human-
oriented aspects into the process of system testing.

In the context of quality-oriented aspects, we propose
a testing methodology for CPSs which integrates different
abstraction levels of the system representation. The crucial
points for each abstraction level are (i) whether we really
require the whole representation of a system to analyse its
core properties, and (ii) which test cases are required on this
level. In many cases, it is enough to represent some parts
of the system that are relevant to a concrete purpose. This
approach is based on the idea of refinement-based development
of complex, interactive systems [2], [3], [23]–[25].

The above refinement can be thought of as static: once the
abstraction levels have been determined, they remain fixed
throughout the test planning process. In practice, however,
due to the complex and error prone character of modelling
and test planning, the modeller/tester often makes mistakes
and may revisit the different levels of abstractions to make
dynamic refinements. An underlying theory is therefore needed
to understand how such dynamic refinements of one level of
abstraction affects the other levels. This theory can be then
used as a basis for developing tools supporting the human
modeller/tester in such refinements.

Our aim, therefore, is to extend our previous work on
remote cyber-physical integration/interoperability testing [13],
[14] by introducing human-centric elements into it, along
the lines of Human-Centred Agile Test Design (HCATD, cf.
[39]). This is particularly important as, by the Engineering
Error Paradigm [18], humans are seen as they are almost
equivalent to software and hardware components in the sense
of operation with data and other components, but at the same
time humans are seen as the “most unreliable component” of
the total system. Thus, in the case of testing of a CPS the “most
unreliable component” would be the tester. The Engineering
Error Paradigm suggest designing humans out of the main
system actions through automatisation of some system design
steps is considered as a proposal for reducing risk.

The main idea of HCATD is explicitly acknowledging that
that the tester’s activity is not error-proof: errors can happen,
both in the model and the test plan, and should be taken into
account. More concretely, discovery of an error or incomplete
information may cause the tester to return to the model and
refine it, which in its turn may induce further changes in the
existing test plan. The term ‘agile’ is meant to reflect the
iterative and incremental nature of the process of modelling
and test planning.

Contributions: We propose a human-centered agile mod-
elling and testing approach for cyber-physical systems, which
combines two types of refinements: static (or system-oriented,
meant to hide unnecessary details) and dynamic (or tester-
oriented, meant to provide the ability to correct and complete
the developed artefacts). Developing appropriate tools for sup-
porting this new paradigm may increase efficiency of testing
of CPSs and reduce the testing cost and time by following the
agile paradigm.

ar
X

iv
:1

60
1.

06
22

2v
1 

 [
cs

.S
E

] 
 2

3 
Ja

n 
20

16



II. REMOTE TESTING OF CPSS

A crucial question for a quality-oriented architecture in
a global context is which features we need to check at
which level of abstraction. Testing, as well as verification,
at the concrete level is more expensive than on an abstract
one, especially if some corresponding corrections within the
system are necessary. Thus, it makes more sense to have more
intensive testing at logical level to reduce the overall size of
test suite for the next levels as much as possible. In [31] we
have suggested to have three main meta-levels of abstraction:

• Abstract Level, where we operate on the logical ar-
chitecture of the system and an abstract model of the
environment, and test. the interoperability between logical
components of our architecture;

• Virtual Level, where distinguish software and hardware
architectures and operate on both virtual and real repre-
sentations of the hardware components. On this level we
test the interoperability between virtual and real systems.

• Cyber-Physical Level, where we operate on real system
components, and test the interoperability between real
systems that are physically present for testing.

One of the advantages of this approach is the conformity with
the ideas of Virtual Commissioning technology [5], [15], which
promises a more efficient handling of the complexity in assem-
bly systems. Another advantage is the conformity with the
top-down development methodology for the development of
safety-critical software, especially for the automotive domain,
cf. [8], [9], [29]. In our current work we apply the HCATD
methodology on each abstraction level, taking into account the
error-prone nature of the human tester’s tasks, and supporting
the tester in refining and optimising test sets on each abstrac-
tion level. To increase the productivity on the Virtual Level,
we can use facilities as the Virtual Interoperability Testing
Laboratory (VITELab, cf. [1], [32]), where the interoperability
simulation and testing are performed early and remotely. At
some level we need to switch from the pure abstract (logical)
representation of the system to a cyber-physical one, but during
a number of refinement steps we test (and refine) the system
or component using a virtual environment, and then continue
with testing in a real environment.

When we mark some system properties as too concrete
for the current specification layer and omit them to increase
the readability and the understandably of the model, we
have to check whether any important information about the
system might be lost due this omittance, on this level of
abstraction or in general. When we mark some system tests
as unnecessary/optional to increase efficiency of the testing
process, we have to check whether some important system
properties are not covered by the chosen test set. Thus, on each
abstraction level the traceability between the system properties
and the corresponding tests is crucial for our approach.

If the information is not important on the current level, it
could influence on the overall modelling result after some re-
finement steps, i.e., at more concrete levels that are more near
to the real system in the physical world. Therefore, specifying

system we should make all the decisions on abstraction in
the model transparent and track them explicitly – in the case
of contradiction between the model and the real system this
allows to find the problem easier and faster.

III. FORMAL CPS TESTING FRAMEWORK

In general, we can say that any system S can be completely
described by the set PROP(S) of its (cyber-physical) proper-
ties. On each level l of abstraction we can split PROP(S) into
two subsets: set LPROPl(S) of the properties reflected at this
level of abstraction, and set ABSTRl(S) of properties from
which we abstract at this level, knowingly or unknowingly. We
denote by ABSTRKNOW

l(S) the properties of the system from
which we abstract intentionally and which we aim to track dur-
ing system development, ABSTRKNOW

l(S) ⊆ ABSTRl(S).
For any abstraction level l the following holds:

LPROPl(S) ∪ ABSTRl(S) = PROP(S) and
LPROPl(S) ∩ ABSTRl(S) = ∅.

Each property p ∈ LPROPl(S) should be covered by the
corresponding tests on the level l. On the other hand, we
do not need to specify on this level any tests to cover the
properties from the set ABSTRl(S). Thus, we can say that
the set TESTSl(S) of tests required on the level l have to be
generated from the set LPROPl(S) (cf. also Figure 1).

With each refinement step we move some part of system’s
properties from the set ABSTR to the set LPROP. We can say
that in some sense the set ABSTR represent the termination
function for the modelling process: in the case l corresponds
to the real representation of the system, we get LPROPl(S) =
PROP(S) and ABSTRl(S) = ∅.

On each level l we use a number of assumptions on
environment of a system S. We denote this set of assumptions
by ENVASM

l. In practice, we view the abstraction levels
as corresponding to stages in an imperfect process rather
than views which are kept complementary and consistent.
In comparison to the sets ABSTRKNOW

l, it is unrealistic to
expect monotonicity between the number l and the cardinality
of the set ENVASM

l: some assumptions on the environment
could become weaker or unnecessary with the next refinement
step, but for some assumptions stronger versions may be
needed or the system can require some new assumptions in
order to fulfil all its properties. However, it is important to trace
the changes of ENVASM on each level of modelling to find out
which properties of the model on which levels should be re-
tested, if on some refinement step l+1 a contradiction between
the ENVASM

l and the real targeting environment will be found.
Thus, the collected assumption should be checked during the
testing phase, and if something is missed or incorrect, the
model should be changed accordingly to the results of the
testing.

IV. INTRODUCING HUMAN-CENTRED ASPECTS INTO CPS
TESTING FRAMEWORK

An agile software development process (ASDP) focuses on
facilitating early and fast production of working code [10],
[19], [36]. The corresponding ASDP models have support



	  
Logical	  	  

(Abstract)	  	  
Levels	  

	  
	  

Cyber-‐	  	  
Physical	  	  
Levels	  

	  

	  
	  

Virtual	  	  	  
Levels	  

Level	  1	  
	  
	  
	  
Level	  m	  
	  
	  
	  
Level	  m	  +	  1	  
	  
	  
	  
Level	  m	  +	  k	  	  
	  
	  
	  
	  
Level	  m	  +	  k	  +	  1	  
	  
	  
	  
Level	  m	  +	  k	  +	  n	  

LPROP	   ABSTR	  

…	  

…	  

…	  

LPROP	   ABSTR	  

LPROP	   ABSTR	  

LPROP	   ABSTR	  

LPROP	   ABSTR	  

LPROP	  

TESTS1	  

TESTSm	  

TESTSm+1	  

TESTSm+k	  

TESTSm+k+1	  

TESTSm+k	  +n	  

HCATD	  

HCATD	  

HCATD	  

HCATD	  

HCATD	  

HCATD	  

Fig. 1. Abstraction Levels of the Agile Combinatorial Test Design

iterative, incremental development of software. ASDP requires
agile testing practices and guidelines, cf. e.g., [11], [35].

The idea of an human-centered agile test design (HCATD)
was first introduced in the context of combinatorial test design
in [39]. Combinatorial test design (CTD, cf. [6], [7], [22], [40])
is an effective test planning technique, in which the space to
be tested, called a combinatorial model, is represented by a set
of parameters, their respective values and restrictions on the
value combinations. The main challenge of CDT is to optimise
the number of test cases, while ensuring the coverage of given
conditions. Tai and Lei [34] shown in their experimental work
that a test set covering all possible pairs of parameter values
can typically detect 50-75% of the bugs in a program. Kuhn
et al. [12] proved that typically all bugs can be revealed by
covering the interaction of 4-6 parameters. CTD approaches
can be applied at different phases and scopes of testing, includ-
ing end-to-end and system-level testing and feature-, service-
and application program interface-level testing. In [31] we
have suggested to apply an architecture-based combinatorial
testing approach for testing of CPSs, with the aim to increase
the architectural sustainability, in the sense of cost-effective
longevity and endurance, especially from the perspectives of
integration in a global context. In our current work we are
going further bringing the human-centred agile aspects to the
development process.

In CTD a system is modeled using a finite set of system pa-
rameters P = {A1, . . . ,An} together with their correspond-
ing associated values {V(A1), . . . ,V(An)}. Our interest is
in interactions between the different values of the parameters,
i.e., elements of the form I ⊆

⋃m
1 V(Ai), where at most one

value of each parameter may appear. An interaction of size
n (where some value of each system parameter appears) is a

scenario (or test). We say that a set of scenarios T covers a
set of interactions C if for every c ∈ C there is some t ∈ T ,
such that c ⊆ t.

A combinatorial model E of the system is a set of scenarios,
which defines all tests executable in the system. A test plan
is a triple P = (E , C, T ), where E is a combinatorial model,
C is a set of interactions called coverage requirements, and T
is a set of scenarios called tests, where T covers C.

One of the most standard coverage requirements is pair-
wise testing [17], [34]: considering every (executable) pair of
possible values of system parameters. In the above terms, a
pairwise test plan can be formulated as any pair of the form
P = (E , Cpair(E), T ), where Cpair is the set of all interactions
of size 2 which can be extended to scenarios from E .

Typically, the CTD methodology is applied in the following
stages. First the tester constructs a combinatorial model of the
system by providing a set scenarios which are executable in the
system. After choosing the coverage requirements, the second
stage is constructing a test plan, i.e., proposing a set of tests
over the model, so that full coverage with respect to a chosen
coverage strategy is achieved. More concretely, the goal of the
tester is to provide a valid test plan P = (E , C, T ). By the
validity property we mean here that
(i) T satisfies all coverage requirements in C, and

(ii) T is a subset of E .
However, errors are possible at both of these stages, especially
because of the human factor [4], [16], [30], [37]. Moreover,
error discovery in the test plan may cause the tester to return
to the model and refine it, and vice versa. The proposed term
‘agile planning’ reflects the iterative and incremental nature
of these two stages, based on the assumption that errors can
happen, both in the model and the test plan. Therefore, neither



correctness nor completeness of the combinatorial model is not
assumed at the stage of test planning, and the tester may go
back to refining the model at any point.

While in standard CTD approaches it is assumed that (i)
is satisfied before handling (ii), in HCATD they are handled
in parallel. Thus in our framework we do not assume its
availability (and correctness). Rather it is extracted iteratively
when the tester specifies a set of specific test cases T , as well
as some logical restrictions (in the form of formulas as defined
above) on the combinatorial model, which provide only partial
information about E . For this reason uncertainty is explicitly
represented in our framework by dividing the space of tests
into three basic types, according to the information available
from the tester:
(a) Validated: the tester confirmed these tests as executable

(according to some chosen confirmation strategy);
(b) Rejected: the tester rejected these tests as impossible or

irrelevant on the current abstraction level; and
(c) Uncertain: the tester has not classified these tests to be

validated/rejected, as not enough information has been
provided for the classification.

The final goal is a minimization of uncertainty by posing a
series of queries to tester aiming to confirm/reject tests.

Example Scenario: Let us consider a system in which there are
two robots R1 and R2 interacting with each other. Suppose that
on the abstraction level 0, the system is modeled as follows.
Each robot has a gripper which has a mode (GM1 and GM2)
– either open or closed (to hold an object). Each robot is in one
of the specified positions (P1 and P2), which is abstracted by
the finite set of possible values {pos1, pos2, pos3} (on further
meta-level more detailed positioning of the grippers might be
provided).

The most standard coverage requirement in the domain
of combinatorial test design is pairwise testing [17], [34]
considering every (executable) pair of possible values of
system parameters. Thus, let suppose the coverage requirement
is pairwise coverage for the example scenario. We specify
two meta-operation Give and Take to model the scenario
when one robot hands an object to another robot. A meta-
operation Give in which R1 gives an object to R2 can only be
performed when the grippers of both robots are in the same
position, the gripper of R1 is closed and the gripper of R2 is
open. This means that not not all test cases are executable and
further restrictions should be imposed. Suppose, however, that
the tester erroneously omits the information on the position,
providing only the logical condition GM1 = close and
GM2 = open for the system model.

This induces a system model (cf. Table I), in which all tests
may be marked as uncertain, i.e., not yet confirmed by tester.
The tester then goes on to construct a set of tests {t1, t2},
where
t1 = {P1 : pos1, P2 : pos1, GM1 : closed1, GM2 : open2}
and
t2 = {P1 : pos2, P2 : pos2, GM1 : closed1, GM2 : open2},
erroneously omitting a test case including pos3. Once the tester

TABLE I
EXAMPLE SCENARIO: SYSTEM MODEL

P1 P2 GM1 GM2

pos1 pos1 close open
pos1 pos2 close open
pos1 pos3 close open
pos2 pos1 close open
pos2 pos2 close open
pos2 pos3 close open
pos3 pos1 close open
pos3 pos2 close open
pos3 pos3 close open
pos2 pos2 close open

submits the test plan, the two tests are marked as validated by
the tester. At this point the tester’s mistake may be discovered,
as pairwise coverage is not achieved: e.g., the interactions
{P1 : pos1, P2 : pos2} and {P1 : pos3, P2 : pos3} remain
uncovered. This can be either due to the fact that the tester
considered non-executable tests as possible (as in the first
interaction), or forgot to add some tests (as in the second
interaction).

Our framework provides a human-oriented solution to this
kind of problems: the corresponding query from the framework
could prompt the tester to either update the logical condition
with P1 = P2 (thus removing the interaction {P1 : pos1, P2 :
pos2} from coverage requirements) or extend the test plan with
the test {P1 : pos3, P2 : pos3, GM1 : close1, GM2 : open2}.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our ongoing work on human-
centred testing of CPSs. We integrate the ideas of refinement-
based development and the agile combinatorial test design,
a human-centred methodology, which takes into account the
human tester’s possible mistakes and supports revision and
refinement. We also aim at increasing of the readability and
understandability of tests, to conform with the ideas of human-
oriented software development, cf. [26], [27], [33]. The sug-
gested approach can significantly increase efficiency of testing
of CPSs and reduce the testing cost and time by following
the agile paradigm and providing an interactive support to the
tester.

While in agile CTD an iterative process concerns only the
interaction between a model and a test plan, in the current
framework we have several inter-related levels of abstraction
and their corresponding test plans. Incorporating an human-
centred iterative process of refinement into the framework
leads to a number of interesting questions. How does the
refinement of the system model on one of the meta-levels of
abstraction (abstract, virtual, cyber-physical) affect the other
levels? How does a refinement of a test plan for one of the
levels affect the other test plans? How can “propagation” of
errors and of their correction be formalised? These questions
provide us the main directions for our future work.

A further future work direction is an implementation of a
tool prototype for the proposed framework. To this end we



plan to extend the environment of IBM Functional Coverage
Unified Solution (IBM FoCuS, cf. [21], [38]), which is a tool
for test-oriented system modelling, which main functions are
model based test planning and functional coverage analysis.

REFERENCES

[1] J. O. Blech, M. Spichkova, I. Peake, and H. Schmidt. Cyber-virtual
systems: Simulation, validation & visualization. In 9th International
Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE 2014), 2014.

[2] M. Broy. Compositional refinement of interactive systems. ACM,
44(6):850–891, 1997.

[3] M. Broy. Service-oriented Systems Engineering: Specification and
design of services and layered architectures. The JANUS Approach.
Engineering Theories of Software Intensive Systems, pages 47–81, 2005.

[4] B. Dhillon. Engineering Usability: Fundamentals, Applications, Human
Factors, and Human Error. American Scientific Publishers, 2004.

[5] R. Drath, P. Weber, and N. Mauser. An evolutionary approach for the
industrial introduction of virtual commissioning. In IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
pages 5–8, 2008.

[6] E. Farchi, I. Segall, and R. Tzoref-Brill. Using projections to debug large
combinatorial models. In IEEE 6th International Conference o Software
Testing, Verification and Validation Workshops (ICSTW), pages 311–320.
IEEE, 2013.

[7] E. Farchi, I. Segall, R. Tzoref-Brill, and A. Zlotnick. Combinatorial
testing with order requirements. In IEEE 7th International Conference
on Software Testing, Verification and Validation Workshops (ICSTW),
pages 118–127. IEEE, 2014.

[8] M. Feilkas, A. Fleischmann, F. Hölzl, C. Pfaller, K. Scheidemann,
M. Spichkova, and D. Trachtenherz. A top-down methodology for the
development of automotive software. Technical Report TUM-I0902, TU
München, 2009.

[9] M. Feilkas, F. Hölzl, C. Pfaller, S. Rittmann, B. Schätz, W. Schwitzer,
W. Sitou, M. Spichkova, and D. Trachtenherz. A Refined Top-Down
Methodology for the Development of Automotive Software Systems -
The KeylessEntry System Case Study. Technical Report TUM-I1103,
TU München, 2011.

[10] O. Hazzan and Y. Dubinsky. The agile manifesto. In Agile Anywhere,
pages 9–14. Springer International Publishing, 2014.

[11] T. D. Hellmann, A. Sharma, J. Ferreira, and F. Maurer. Agile testing:
Past, present, and future–charting a systematic map of testing in agile
software development. In Agile Conference (AGILE), 2012, pages 55–
63. IEEE, 2012.

[12] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, Jr. Software fault
interactions and implications for software testing. IEEE Transactions
on Software Engineering, 30(6):418–421, June 2004.

[13] H. Liu, M. Spichkova, H. Schmidt, T. Sellis, and M. Duckham. Spatio-
temporal architecture-based framework for testing services in the cloud.
In 24th Australasian Software Engineering Conference (ASWEC 2015),
2015.

[14] H. Liu, M. Spichkova, H. Schmidt, A. Ulrich, H. Sauer, and
J. Wieghardt. Efficient testing based on logical architecture. In 24th
Australasian Software Engineering Conference (ASWEC 2015), 2015.

[15] S. Makris, G. Michalos, and G. Chryssolouris. Virtual commissioning
of an assembly cell with cooperating robots. Advances in Decision
Sciences, 2012, 2012.

[16] T. Mioch, J.-P. Osterloh, and D. Javaux. Selecting human error types
for cognitive modelling and simulation. In Human modelling in assisted
transportation, pages 129–138. Springer, 2011.

[17] C. Nie and H. Leung. A survey of combinatorial testing. ACM Comput.
Surv., 43(2):11:1–11:29, Feb. 2011.

[18] F. Redmill and J. Rajan. Human factors in safety-critical systems.
Butterworth-Heinemann, 1997.

[19] B. Rumpe. Agile test-based modeling. In Proceedings of the 2006
International Conference on Software Engineering Research & Practice
(SERP). CSREA Press, 2006.

[20] G. Sapienza, I. Crnkovic, and T. Seceleanu. Towards a methodology
for hardware and software design separation in embedded systems. In
Proc. of the ICSEA, pages 557–562. IARIA, 2012.

[21] I. Segall and R. Tzoref-Brill. Interactive refinement of combinatorial
test plans. In Software Engineering (ICSE), 2012 34th International
Conference on, pages 1371–1374, 2012.

[22] I. Segall, R. Tzoref-Brill, and A. Zlotnick. Common patterns in
combinatorial models. In Proceedings of the IEEE Fifth International
Conference on Software Testing, Verification and Validation (ICST),
pages 624–629. IEEE, 2012.

[23] M. Spichkova. Refinement-based verification of interactive real-time
systems. Electronic Notes in Theoretical Computer Science, 214:131–
157, 2008.

[24] M. Spichkova. Architecture: Methodology of decomposition. Technical
Report TUM-I1018, TU München, 2010.

[25] M. Spichkova. Architecture: Requirements + Decomposition + Refine-
ment. Softwaretechnik-Trends, 31:4, 2011.

[26] M. Spichkova. Human Factors of Formal Methods. In IADIS Interfaces
and Human Computer Interaction 2012. IHCI 2012, 2012.

[27] M. Spichkova. Design of formal languages and interfaces: formal does
not mean unreadable. In Emerging Research and Trends in Interactivity
and the Human-Computer Interface. IGI Global, 2013.

[28] M. Spichkova and A. Campetelli. Towards system development method-
ologies: From software to cyber-physical domain. In First International
Workshop on Formal Techniques for Safety-Critical Systems, 2012.

[29] M. Spichkova, F. Holzl, and D. Trachtenherz. Verified system devel-
opment with the autofocus tool chain. In 2nd Workshop on Formal
Methods in the Development of Software, WS-FMDS, 2012.

[30] M. Spichkova, H. Liu, M. Laali, and H. W. Schmidt. Human factors in
software reliability engineering. Workshop on Applications of Human
Error Research to Improve Software Engineering (WAHESE2015), 2015.

[31] M. Spichkova, H. Liu, and H. Schmidt. Towards quality-oriented
architecture: Integration in a global context. In Proceedings of the 2015
European Conference on Software Architecture Workshops, page 64.
ACM, 2015.

[32] M. Spichkova, H. Schmidt, and I. Peake. From abstract modelling to
remote cyber-physical integration/interoperability testing. In Improving
Systems and Software Engineering Conference, 2013.

[33] M. Spichkova, X. Zhu, and D. Mou. Do we really need to write
documentation for a system? In International Conference on Model-
Driven Engineering and Software Development (MODELSWARD’13),
2013.

[34] K.-C. Tai and Y. Lei. A test generation strategy for pairwise testing.
IEEE Transactions on Software Engineering, 28(1):109–111, 2002.

[35] D. Talby, A. Keren, O. Hazzan, and Y. Dubinsky. Agile software testing
in a large-scale project. IEEE Software, 23(4):30–37, 2006.

[36] D. Turk, R. B. France, and B. Rumpe. Assumptions underlying agile
software development processes. Journal of Database Management,
16:62–87, 2005.

[37] G. Walia and J. Carver. Using error information to improve software
quality. In IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), pages 107–107, 2013.

[38] P. Wojciak and R. Tzoref-Brill. System level combinatorial testing in
practice – the concurrent maintenance case study. In Proceedings of the
2014 IEEE International Conference on Software Testing, Verification,
and Validation, ICST ’14, pages 103–112. IEEE Computer Society,
2014.

[39] A. Zamansky and E. Farchi. Helping the tester get it right: Towards
supporting agile combinatorial test design. In 2nd Human-Oriented
Formal Methods workshop (HOFM 2015), 2015.

[40] J. Zhang, Z. Zhang, and F. Ma. Introduction to combinatorial testing. In
Automatic Generation of Combinatorial Test Data, pages 1–16. Springer,
2014.


	I Introduction
	II Remote testing of CPSs
	III Formal CPS Testing Framework
	IV Introducing Human-Centred Aspects into CPS Testing Framework
	V Conclusions and Future Work
	References

