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Abstract—Collaborative filtering algorithms are important
building blocks in many practical recommendation systems.
For example, many large-scale data processing environments
include collaborative filtering models for which the Alternating
Least Squares (ALS) algorithm is used to compute latent factor
matrix decompositions. In this paper, we propose an approach
to accelerate the convergence of parallel ALS-based optimization
methods for collaborative filtering using a nonlinear conjugate
gradient (NCG) wrapper around the ALS iterations. We also
provide a parallel implementation of the accelerated ALS-NCG
algorithm in the Apache Spark distributed data processing
environment, and an efficient line search technique as part of
the ALS-NCG implementation that requires only one pass over
the data on distributed datasets. In serial numerical experiments
on a linux workstation and parallel numerical experiments on a
16 node cluster with 256 computing cores, we demonstrate that
the combined ALS-NCG method requires many fewer iterations
and less time than standalone ALS to reach movie rankings
with high accuracy on the MovieLens 20M dataset. In parallel,
ALS-NCG can achieve an acceleration factor of 4 or greater in
clock time when an accurate solution is desired; furthermore,
the acceleration factor increases as greater numerical precision
is required in the solution. In addition, the NCG acceleration
mechanism is efficient in parallel and scales linearly with problem
size on synthetic datasets with up to nearly 1 billion ratings. The
acceleration mechanism is general and may also be applicable to
other optimization methods for collaborative filtering.

Keywords-Recommendation systems, collaborative filtering,
parallel optimization algorithms, matrix factorization, Apache
Spark, Big Data, scalable methods.

I. I NTRODUCTION AND BACKGROUND

Recommendation systems are designed to analyze available
user data to recommend items such as movies, music, or
other goods to consumers, and have become an increasingly
important part of most successful online businesses. One
strategy for building recommendation systems is known as
collaborative filtering, whereby items are recommended to
users by collecting preferences or taste information from
many users (see, e.g., [1], [2]). Collaborative filtering methods
provide the basis for many recommendation systems [3] and
have been used by online businesses such as Amazon [4],
Netflix [5], and Spotify [6].

1Currently at Monash University, School of Mathematical Sciences, Mel-
bourne, Australia

An important class of collaborative filtering methods are
latent factor models, for which low-rank matrix factorizations
are often used and have repeatedly demonstrated better ac-
curacy than other methods such as nearest neighbor models
and restricted Boltzmann machines [5], [7]. A low-rank latent
factor model associates with each user and with each item
a vector of ranknf , for which each component measures
the tendency of the user or item towards a certainfactor or
feature. In the context of movies, a latent feature may represent
the style or genre (i.e. drama, comedy, or romance), and the
magnitude of a given component of a user’s feature vector is
proportional to the user’s proclivity for that feature (or,for
an item’s feature vector, to the degree to which that feature
is manifested by the item). A low-rank matrix factorization
procedure takes as its input the user-item ratings matrixR,
in which each entry is a numerical rating of an item by a
user and for which typically very few entries are known. The
procedure then determines the low-rank user (U) and item
(M) matrices, where a column in these matrices represents a
latent feature vector for a single user or item, respectively,
and R ≈ UTM for the known values inR. Once the
user and item matrices are computed, they are used to build
the recommendation system and predict the unknown ratings.
Computing user and item matrices is the first step in building
a variety of recommendation systems, so it is important to
compute the factorization ofR quickly.

The matrix factorization problem is closely related to the
singular value decomposition (SVD), but the SVD of a matrix
with missing values is undefined. However, sinceR ≈ UTM,
one way to find the user and item matrices is by minimizing
the squared difference between the approximated and actual
value of the known ratings inR. Minimizing this difference
is typically done by one of two algorithms: stochastic gradient
descent (SGD) or alternating least squares (ALS) [8], [9]. ALS
can be easily parallelized and can efficiently handle models
that incorporate implicit data (e.g. the frequency of a user’s
mouse-clicks or time spent on a website) [10], but it is well-
known that ALS can require a large number of iterations to
converge. Thus, in this paper, we propose an approach to
significantly accelerate the convergence of the ALS algorithm
for computing the user and item matrices. We use a nonlinear
optimization algorithm, specifically the nonlinear conjugate
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gradient (NCG) algorithm [11], as a wrapper around ALS to
significantly accelerate the convergence of ALS, and thus refer
to this combined algorithm as ALS-NCG. Alternatively, the
algorithm can be viewed as a nonlinearly preconditioned NCG
method with ALS as the nonlinear preconditioner [12]. Our
approach for accelerating the ALS algorithm using the NCG
algorithm can be situated in the context of recent research
activity on nonlinear preconditioning for nonlinear iterative
solvers [13], [14], [12], [15], [16]. Some of the ideas date back
as far as the 1960s [17], [18], but they are not well-known and
remain under-explored experimentally and theoretically [13].

Parallel versions of collaborative filtering and recommen-
dation are of great interest in the era of big data [19], [20],
[21]. For example, the Apache Spark data processing environ-
ment [22] contains a parallel implementation of ALS for the
collaborative filtering model of [23], [8]. In [19] an advanced
distributed SGD method is described in Hadoop environments,
followed by work in [20] that considers algorithms based on
ALS and SGD in environments that use the Message Passing
Interface (MPI). Scalable coordinate descent approaches for
collaborative filtering are proposed in [21], also using theMPI
framework. In addition to producing algorithmic advances,
these papers have shown that the relative performance of the
methods considered is often strongly influenced by the perfor-
mance characteristics of the parallel computing paradigm that
is used to implement the algorithms (e.g., Hadoop or MPI). In
this paper we implement our proposed ALS-NCG algorithm in
parallel using the Apache Spark framework, which is a large-
scale distributed data processing environment that buildson
the principles of scalability and fault tolerance that are instru-
mental in the success of Hadoop and MapReduce. However,
Spark adds crucial new capabilities in terms of in-memory
computing and data persistence for iterative methods, and
makes it possible to implement more elaborate algorithms with
significantly better performance than is feasible in Hadoop. As
such, Spark is already being used extensively for advanced
big data analytics in the commercial setting [24]. The parallel
Spark implementation of ALS for the collaborative filtering
model of [23], [8] forms the starting point for applying the
parallel acceleration methods proposed in this paper.

Our contributions in this paper are as follows. The specific
optimization problem is formulated in Section II, and the
accelerated ALS-NCG algorithm is developed in Section III.
In Section IV, we study the convergence enhancements of
ALS-NCG compared to standalone ALS in small serial tests
using subsets of the MovieLens 20M dataset [25]. Section V
describes our parallel implementation in Spark1, and Section
VI contains results from parallel performance tests on a high-
end computing cluster with 16 nodes and 256 cores, using
both the full MovieLens 20M dataset and a large synthetic
dataset sampled from the MovieLens 20M data with up to 6
million users and 800 million ratings. We find that ALS-NCG
converges significantly faster than ALS in both the serial and
distributed Spark settings, demonstrating the overall speedup
provided by our algorithmic acceleration.

1Source code available: https://github.com/mbhynes/als-ncg

II. PROBLEM DESCRIPTION

The acceleration approach we propose in this paper is
applicable to a broad class of optimization methods and
collaborative filtering models. For definiteness, we choosea
specific latent factor model, the matrix factorization model
from [8] and [23], and a specific optimization method, ALS
[23]. Given the data we use, the model is presented in terms of
users and movies instead of the more generic users and items
framework.

Let the matrix of user-movie rankings be represented by
R = {rij}nu×nm

where rij is the rating given to moviej
by useri, nu is the number of users, andnm is the number
of items. Note that for any useri and moviej, the value
of rij is either a real number or is missing, and in practice
very few values are known. For example, the MovieLens 20M
dataset [25] with 138,493 users and 27,278 movies contains
only 20 million rankings, accounting for less than 1% of the
total possible rankings. In the low-rank factorization ofR with
nf factors, each useri is associated with a vectorui ∈ R

nf

(i = 1, . . . , nu), and each moviej is associated with a vector
mj ∈ R

nf (j = 1, . . . , nm). The elements ofmj measure the
degree that moviej possesses each factor or feature, and the
elements ofui similarly measures the affinity of useri for
each factor or feature. The dot productuT

i mj thus captures
the interaction between useri and moviej, approximating user
i’s rating of moviej as rij ≈ uT

i mj . DenotingU = [ui] ∈
R

nf×nu as the user feature matrix andM = [mj ] ∈ R
nf×nm

as the movie feature matrix, our goal is to determineU and
M such thatR ≈ UTM by minimizing the following squared
loss function:

Lλ(R,U,M) =
∑

(i,j)∈I

(rij − uT
i mj)

2+

λ
(

∑

i

nui
‖ui‖

2 +
∑

j

nmj
‖mj‖

2
)

,
(1)

whereI is the index set of knownrij in R, nui
denotes the

number of ratings by useri, andnmj
is the number of ratings

of movie j. The termλ(
∑

i nui
‖ui‖

2 +
∑

j nmj
‖mj‖

2) is
a Tikhonov regularization [26] term commonly included in
the loss function to prevent overfitting. The full optimization
problem can be stated as

min
U,M
Lλ(R,U,M). (2)

III. A CCELERATING ALS CONVERGENCE BYNCG

A. Alternating Least Squares Algorithm

The optimization problem in (2) is not convex. However,
if we fix one of the unknowns, eitherU or M, then the
optimization problem becomes quadratic and we can solve for
the remaining unknown as a least squares problem. Doing this
in an alternating fashion is the central idea behind ALS.

Consider the first step of the ALS algorithm in whichM is
fixed. We can determine the least squares solution to (1) for
eachui by setting all the components of the gradient of (1)
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related toui to zero: ∂Lλ

∂uki
= 0 ∀ i, k whereuki is an element

of U. Expanding the terms in the derivative of (1), we have
∑

j∈Ii

2(uT
i mj − rij)mkj + 2λnui

uki = 0 ∀ i, k

⇒
∑

j∈Ii

mkju
T
i mj + λnui

uki =
∑

j∈Ii

mkjrij ∀ i, k,

wheremkj is an element ofM. In vector form, the resultant
linear system for anyui is

(MIi
MT

Ii
+ λnui

I)ui = MIi
RT (i, Ii) ∀ i,

whereI is thenf × nf identity matrix,Ii is the index set of
movies useri has rated, andMIi

represents the sub-matrix
of M where columnsj ∈ Ii are selected. Similarly,R(i, Ii)
is a row vector that represents theith row of R with only the
columns inIi included. The explicit solution forui is then
given by

ui = A−1
i vi ∀ i, (3)

whereAi = MIi
MT

Ii
+λnui

I, andvi = MIi
RT (i, Ii). The

analogous solution for the columns ofM is found by fixing
U, where eachmj is given by

mj = A−1
j vj ∀ j, (4)

whereAj = UIj
UT

Ij
+ λnmj

I, vj = UIj
R(Ij , j). Here,

Ij is the index set of users that have rated moviej, UIj

represents the sub-matrix ofU ∈ R
nf×nu where columnsi ∈

Ij are selected, andR(Ij , j) is a column vector that represents
the jth column ofR with only the rows inIj included.

Algorithm 1 summarizes the ALS algorithm used to solve
the optimization problem given in (2). From (3) and (4), we
note that each of the columns ofU and M may be com-
puted independently; thus ALS may be easily implemented in
parallel, as in [23]. However, the ALS algorithm can require
many iterations for convergence, and we now propose an
acceleration method for ALS that can be applied to both the
parallel and serial versions.

B. Accelerated ALS Algorithm

In this section, we develop the accelerated ALS-NCG algo-
rithm to solve the collaborative filtering optimization problem

Algorithm 1: Alternating Least Squares (ALS)
Output : U,M

Initialize M with random values;
while Stopping criteria have not been satisfieddo

for i = 1, . . . , nu do
ui ← A−1

i vi;
end
for j = 1, . . . , nm do

mj ← A−1
j vj ;

end
end

minimizing (1). In practice we found that the nonlinear conju-
gate gradient algorithm by itself was very slow to converge to
a solution of (2), and thus do not consider it as an alternative
to the ALS algorithm. Instead we propose using NCG to
accelerate ALS, or, said differently, the combined algorithm
uses ALS as a nonlinear preconditioner for NCG [12].

The standard NCG algorithm is a line search algorithm
in continuous optimization that is an extension of the CG
algorithm for linear systems. While the linear CG algorithm
is specifically designed to minimize the convex quadratic
function φ(x) = 1

2x
TAx − bTx, whereA ∈ R

n×n is a
symmetric positive definite matrix, the NCG algorithm can be
applied to general constrained optimization problems of the
form minx∈Rn f(x). Here, the minimization problem is (2),
where the matricesU andM are found by defining the vector
x ∈ R

nf×(nu+nm) as

xT =
[

uT
1 uT

2 . . .uT
nu

mT
1 mT

2 . . .mT
nm

]

(5)

with function f(x) = Lλ as in (1).
The NCG algorithm generates a sequence of iteratesxi,

i ≥ 1, from the initial guessx0 using the recurrence relation

xk+1 = xk + αkpk.

The parameterαk > 0 is the step length determined by a line
search along search directionpk, which is generated by the
following rule:

pk+1 = −gk+1 + βk+1pk, p0 = −g0, (6)

whereβk+1 is the update parameter andgk = ∇f(xk) is the
gradient off(x) evaluated atxk. The update parameterβk+1

can take on various different forms. In this paper, we use the
variant ofβk+1 developed by Polak and Ribière [27]:

βk+1 =
gT
k+1(gk+1 − gk)

gT
k gk

. (7)

Note that if a convex quadratic function is optimized using
the NCG algorithm with an exact line search, then (7) reduces
to the sameβk+1 as in the original CG algorithm for linear
systems [11].

The preconditioning of the NCG algorithm by the ALS
algorithm modifies the expressions forβk+1 and pk+1 as
follows, and is summarized in Algorithm 2. Letxk be the
iterate generated from one iteration of the ALS algorithm
applied toxk, xk = P (xk), whereP represents one iteration
of ALS. This iterate is incorporated into the NCG algorithm
by defining the preconditioned gradient direction generated by
ALS as

gk = xk − xk = xk − P (xk),

and replacinggk with gk in (6). Note that−gk is expected to
be a descent direction that is an improvement compared to the
steepest descent direction−gk. The update parameterβk+1 is
redefined asβk+1 with the form

βk+1 =
gT
k+1(gk+1 − gk)

gT
k gk

, (8)



Algorithm 2: Accelerated ALS (ALS-NCG)
Input : x0

Output : xk

g0 ← x0 − P (x0);
p0 ← −g0;
k ← 0;
while gk 6= 0 do

Computeαk;
xk+1 ← xk + αkpk;
gk+1 ← xk+1 − P (xk+1);
Computeβk+1;
pk+1 ← −gk+1 + βk+1pk;
k ← k + 1;

end

where (8) is similar to (7), however not every instance ofgk

has been replaced withgk. The specific form forβk+1 is
chosen because if Algorithm 2 were applied to the convex
quadratic problem with an exact line search andP were
represented by a preconditioning matrixP, then Algorithm 2
would be equivalent to preconditioned CG with preconditioner
P. In [12], an overview and an in-depth analysis are given of
the different possible forms forβk+1, however (8) performed
best in our numerical experiments. Note that the primary
computational cost in Algorithm 2 comes from computing both
the ALS iteration,P (xk), andαk, the step length parameter
using a line search.

IV. SERIAL PERFORMANCE OFALS-NCG

The ALS and ALS-NCG algorithms were implemented in
serial in MATLAB, and evaluated using the MovieLens 20M
dataset [25]. The entire MovieLens 20M dataset has 138,493
users, 27,278 movies, and just over 20 million ratings, where
each user has rated at least 20 movies. To investigate the
algorithmic performance as a function of problem size, both
the ALS and ALS-NCG algorithms were run on subsets of
the MovieLens 20M dataset. In creating subsets, we excluded
outlier users with either very many or very few movie ratings
relative to the median number of ratings per user. To construct
a subset withnu users, the users from the full dataset were
sorted in descending order by the values ofnui

for each
user. Denoting the index of the user with the median number
of ratings by c, the set of users from indexc −

⌊

nu

2

⌋

to
c+(

⌈

nu

2

⌉

−1) were included. Once the users were determined,
the same process was used to select the movies, where the
ratings per movie were computed only for the chosen users.

All serial experiments were performed on a linux worksta-
tion with a quad-core 3.16 GHz processor (Xeon X5460) and 8
GB of RAM. For the ALS-NCG algorithm, the Moré-Thuente
line search algorithm from the Poblano toolbox [28] was used
to computeαk. The line search parameters were as follows:
10−4 for the sufficient decrease condition tolerance,10−2 for
the curvature condition tolerance, and an initial step length
of 1 and a maximum of 20 iterations. The stopping criteria
for both ALS and ALS-NCG were the maximum number of

iterations as well as a desired tolerance value in the gradient
norm normalized by the number of variables,1

N
‖gk‖ for

N = nf × (nu + nm). For both algorithms, a normalized
gradient norm of less than10−6 was required within at most
104 iterations. In addition, ALS-NCG had a maximum number
of allowed function evaluations in the line search equal to107.

The serial tests were performed on ratings matrices of 4
different sizes:nu × nm = 400× 80, 800× 160, 1600× 320
and3200× 640, wherenu is the number of users andnm is
the number of movies. For each ratings matrix, ALS and ALS-
NCG were used to solve the optimization problem in (2) with
λ = 0.1 andnf = 10. The algorithms were each run using
20 different random starting iterates (which were the same for
both algorithms) until one of the stopping criteria was reached.
Table I summarizes the timing results for different problem
sizes, where the given times are written in the forma ± b

wherea is the mean time in seconds andb is the standard
deviation about the mean. Since computing the gradient is not
explicitly required in the ALS algorithm, the computation time
for the gradient norm was excluded from the timing results
for the ALS algorithm. Runs that did not converge based on
the gradient norm tolerance were not included in the mean
and standard deviation calculations, however the only run that
did not converge to 1

N
‖gk‖ < 10−6 before reaching the

maximum number of iterations was a single1600× 320 ALS
run. The large standard deviations in the timing measurements
stem from the variation in the number of iterations required
to reduce the gradient norm. The fourth column of Table I
shows the acceleration factor of ALS-NCG, computed as the
mean time for convergence of ALS divided by the mean time
for convergence of ALS-NCG. We see from this table that
ALS-NCG significantly accelerates the ALS algorithm for all
problem sizes. Similarly, Table II summarizes the number of
iterations required to reach convergence for each algorithm.
Again, the results were calculated based on converged runs
only.

From Tables I and II it is clear that ALS-NCG accelerates
the convergence of the ALS algorithm, using the gradient norm
as the measure of convergence. However, since the factor

TABLE I
T IMING RESULTS OFALS AND ALS-NCG.

Problem Size Time (s) Acceleration
nu × nm ALS ALS-NCG Factor

400 × 80 56.50± 38.06 12.22± 4.25 4.62
800× 160 162.0± 89.94 47.57± 20.02 3.41
1600 × 320 30.61± 120.3 116.2± 31.56 2.84
3200 × 640 960.8± 364.0 303.7± 111.3 3.16

TABLE II
ITERATION RESULTS OFALS AND ALS-NCG.

Problem Size Number of Iterations Acceleration
nu × nm ALS ALS-NCG Factor

400× 80 2181± 1466 158.8± 54.3 12.74
800 × 160 3048± 1689 290.4± 128.1 10.50
1600 × 320 3014± 1098 302.9± 86.3 9.95
3200 × 640 4231± 1602 329.6± 127.5 12.84



matricesU and M are used to make recommendations, we
would also like to examine the convergence of the algorithms
in terms of the accuracy of the resultant recommendations. In
particular, we are interested in the rankings of the topt movies
(e.g. top 20 movies) for each user, and want to explore how
these rankings change with increasing number of iterationsfor
both ALS and ALS-NCG. If the rankings of the topt movies
for each user no longer change, then the algorithm has likely
computed an accurate solution.

To measure the relative difference in rankings we use a
metric that is based on the number of pairwise swaps required
to convert a vector of movie rankingsp2 into another vector
p1, but only for the topt movies. We use a modified Kendall-
Tau [29] distance to compute the difference between ranking
vectors based only on the rankings of the topt items, normal-
ize the distance to range in[0, 1], and subsequently average
the distances over all users. To illustrate the ranking metric,
consider the following example, wherep1 = [6, 3, 1, 2, 4, 5],
andp2 = [3, 4, 2, 5, 6, 1] are two different rankings of movies
for useri, and lett = 2. We begin by finding the topt movies
in p1. Here, useri ranks movie 6 highest. Inp2, movie 6
is ranked 5th, and there are 4 pairwise inversions required to
place movie 6 in the first component ofp2, producing a new
ranking vector for the second iteration,p̃2 = [6, 3, 4, 2, 5, 1].
The 2nd highest ranked movie inp1 is movie 3. Inp̃2, movie
3 is already ranked 2nd; as such, no further inversions are
required. In this case, the total number of pairwise swaps
required to matchp2 to p1 for the top 2 rankings issi = 4.
The distancesi is normalized to 1 if no inversions were needed
(i.e. p1 = p2 in the top t spots) and 0 if the maximum
number of inversions are needed. The maximum number of
inversions occurs ifp2 andp1 are in opposite order, requiring
nm − 1 inversions in the first step,nm − 2 inversions in the
second step, and so on untilnm − t inversions are needed
in the t-th step. Thus, the maximum number of inversions is
smax = (nm−1)+(nm−2)+ . . .+(nm−t) =

t
2 (2nm−t−1),

yielding the ranking accuracy metric for useri as

qi = 1−
si

smax
.

The total ranking accuracy for an algorithm is taken as the
average value ofqi across all users relative to ranking of the
top t movies for each user produced from the solution obtained
after the algorithm converged.

The normalized Kendall-Tau ranking metric for the topt
rankings described above was used to evaluate the accuracy
of ALS and ALS-NCG as a function of running time fort =
20. Tables III and IV summarize the time needed for each

TABLE III
RANKING ACCURACY TIMING RESULTS FOR PROBLEM SIZE400× 80

Ranking Time (s) Acceleration
Accuracy ALS ALS-NCG Factor

70% 0.37± 0.17 0.65± 0.16 0.58
80% 7.88± 7.03 2.87± 1.72 2.74
90% 37.08± 37.62 6.92± 4.47 5.36
100% 101.29± 68.04 14.07± 5.25 7.20
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Fig. 1. Average ranking accuracy versus time for problem size 400 × 80.

algorithm to reach a specified percentage ranking accuracy for
ratings matrices with different sizes. Both algorithms were run
with 20 different random starting iterates, and the time to reach
a given ranking accuracy is written in the forma±b wherea is
the mean time across all converged runs andb is the standard
deviation about the mean. In the fourth column of Tables III
and IV, we have computed the acceleration factor of ALS-
NCG as the ratio of the mean time for ALS to the mean time
for ALS-NCG. To reach70% accuracy, ALS is faster for both
problem sizes, however for accuracies greater than 70%, ALS-
NCG converges in significantly less time than ALS. Thus, if
an accurate solution is desired, ALS-NCG is much faster in
general than ALS. This is further illustrated in Fig. 1, which
shows the average time needed for both algorithms to reach a
given ranking accuracy for the400× 80 ratings matrix. Here,
both ALS and ALS-NCG reach a ranking accuracy of75% in
less than a second, however it then takes ALS approximately
100 s to increase the ranking accuracy from75% to 100%,
while ALS-NCG reaches the final ranking in only 14 s.

V. PARALLEL IMPLEMENTATION OF ALS-NCG IN SPARK

A. Apache Spark

Apache Spark is a fault-tolerant, in-memory cluster comput-
ing framework designed to supersede MapReduce by maintain-
ing program data in memory as much as possible between dis-
tributed operations. The Spark environment is built upon two
components: a data abstraction, termed a resilient distributed
dataset (RDD) [22], and the task scheduler, which uses a
delay schedulingalgorithm [30]. We describe the fundamental
aspects of RDDs and the scheduler below.

Resilient Distributed Datasets. RDDs are immutable, dis-
tributed datasets that are evaluated lazily via their provenance
information—that is, their functional relation to other RDDs
or datasets in stable storage. To describe an RDD, consider

TABLE IV
RANKING ACCURACY TIMING RESULTS FOR PROBLEM SIZE800 × 160.

Ranking Time (s) Acceleration
Accuracy ALS ALS-NCG Factor

70% 0.76± 0.34 1.43± 0.35 0.53
80% 19.83± 13.67 12.61± 10.13 1.57
90% 103.91± 70.97 33.25± 22.34 3.12
100% 310.98± 168.67 59.88± 28.20 5.19



an immutable distributed datasetD of k records with homo-
geneous type:D =

⋃k
i di with di ∈ D. The distribution of

D across a computer network of nodes{vα}, such thatdi
is stored in memory or on disk on nodevα, is termed its
partitioningaccording to a partition functionP (di) = vα. If D
is expressible as a finite sequence of deterministic operations
on other datasetsD1, . . . , Dl that are either RDDs or persistent
records, then its lineage may be written as a directed acyclic
graphL formed with the parent datasets{Di} as the vertices,
and the operations along the edges. Thus, an RDD of typeD
(written RDD [D]) is the tuple(D,P,L).

Physically computing the records{di} of an RDD is
termed its materialization, and is managed by the Spark
scheduler program. To allocate computational tasks to the
compute nodes, the scheduler traverses an RDD’s lineage
graphL and divides the required operations into stages of
local computations on parent RDD partitions. Suppose that
R0 = (

⋃

i xi, P0,L0) were an RDD of numeric typeRDD [R],
and letR1 = (

⋃

i yi, P1,L1) be the RDD resulting from the
application of functionf : R → R to each record ofR0. To
compute{yi}, R1 has only a single parent in the graphL1,
and hence the set of tasks to perform is{f(xi)}. This type
of operation is termed amap operation. IfP1 = P0, L1 is
said to have anarrow dependency onR0: eachyi may be
computed locally fromxi, and the scheduler would allocate
the taskf(xi) to a node that storesxi.

Stages consist only of local map operations, and are
bounded byshuffle operations that require communication
and data transfer between the compute nodes. For example,
shuffling is necessary to performreduceoperations on RDDs,
wherein a scalar value is produced from an associative binary
operator applied to each element of the dataset. In implemen-
tation, a shuffle is performed by writing the results of the tasks
in the preceding stage,{f(xi)}, to a local file buffer. These
shuffle files may or may not be written to disk, depending on
the operating system’s page table, and are fetched by remote
nodes as needed in the subsequent stage.

Delay Scheduling and Fault Tolerance. The simple de-
lay scheduling algorithm [30] prioritizes data locality when
submitting tasks to the available compute nodes. Ifvα stores
the needed parent partitionxi to compute taskf(xi), but
is temporarily unavailable due to faults or stochastic delays,
rather than submitting the task on another node, the scheduler
will wait until vα is free. However, ifvα does not become
available within a specified maximum delay time (several
seconds in practice), the scheduler will resubmit the tasksto
a different compute node. However, asxi is not available in
memory on the different node, the lineageL0 of the RDDR0

must be traversed further, and the tasks required to computexi

from the parent RDDs ofR0 will be submitted for computation
in addition tof(xi). Thus, fault tolerance is achieved in the
system through recomputation.

B. ALS Implementation in Spark

The Apache Spark codebase contains a parallel implemen-
tation of ALS for the collaborative filtering model of [23],
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M

Fig. 2. Hash partitioning of the columns ofM, depicted as rectangles, into
nb blocksM1, . . . ,Mnb

. Each blockMjb and its indexjb forms a partition
of the M RDD of typeRDD

[

(jb,Mjb )
]

.

[8]; see [24]. We briefly outline the main execution and
relevant optimizations of the existing ALS implementation.
The implementation stores the factor matricesU and M as
single precision column block matrices, with each block as an
RDD partition. AU column block stores factor vectors for a
subset of users, and anM column block stores factor vectors
for a subset of movies. The ratings matrix is stored twice:
both R andRT are stored in separate RDDs, partitioned in
row blocks (i.e.,R is partitioned by users andRT by movies).
Row blocks ofR andRT are stored in a compressed sparse
matrix format. TheU andR RDDs have the same partitioning,
such that a node that stores a partition ofU also stores
the partition ofR such that the ratings for each user in its
partitions ofU are locally available. When updating aU block
according to (3), the required ratings are available in a local R
block, but the movie factor vectors inM corresponding to the
movies rated by the users in a localU block must be shuffled
across the network. These movie factors are fetched from
different nodes, and, as explained below, an optimized routing
table strategy is used from [24] that avoids sending duplicate
information. Similarly, updating a block ofM according to
(4) uses ratings data stored in a localRT block, but requires
shuffling ofU factor vectors using a second routing table.

Block Partitioning . All RDDs are partitioned intonb

partitions, wherenb is an integer multiple of the number
of available compute cores in practice. For example,M is
divided into column blocksMjb with block (movie) index
jb ∈ {0, . . . , nb − 1} by hash partitioning the movie factor
vectors such thatmj ∈ Rjb if j ≡ jb (mod nb) as in
Fig. 2. Similarly,U is hash partitioned into column blocks
Uib with block (user) indexib ∈ {0, . . . , nb − 1}. The RDDs
for M and U can be taken as typeRDD [(jb,Mjb)] and
RDD

[

(ib,U
T
ib
)
]

, where the blocks are tracked by the indices
jb and ib. R is partitioned by rows (users) into blocks with
type RDD [(ib,Rib)] with the same partitioning as the RDD
representingU (and similarly for theRT andM RDDs). By
sharing the same user-based partitioning scheme, the blocks
Rib andUib are normally located on the same compute node,
except when faults occur. The same applies toRT

jb
andMjb

due to the movie-based partitioning scheme.
Routing Table. Fig. 3 shows how a routing table optimizes
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Fig. 3. Schematic of the use of the routing tableTm(mj) in the Spark
ALS shuffle. In (a) the blocks

{

Mjb

}

are filtered usingTm(mj) for each
destinationRib and shuffled to the respective blocks in (b), where arrows
between the shaded backgrounds represent network data transfer between
different compute nodes. In (c), when updating blockUib , the ratings
information is locally available inRib .

data shuffling in ALS. Suppose we want to update the user
factor blockUib according to (3). The required ratings data,
Rib , is stored locally, but a global shuffle is required to obtain
all movie factor vectors inM that correspond to the movies
rated by the users inUib . To optimize the data transfer, a
routing tableTm(mj) is constructed by determining, for each
of the movie factor blocksMjb , which factor vectors have
to be sent to each partition ofRib (that may reside on other
nodes). In Fig. 3 (a), the blocksMjb arefilteredusingTm(mj)
such that a givenmj ∈Mjb is written to the buffer destined
for Rib , M[ib]

jb
, only onceregardless of how manyui in Uib

have ratings for moviej, andonly if there is at least oneui

in Uib that has rated moviej. This is shown by the hatching
of eachmj vector in Fig. 3 (a); for instance, the first column
in M1 is written only toM

[1]
1 and has one set of hatching

lines, but the last column is written to bothM[2]
1 andM

[nb]
1

and correspondingly has two sets of hatching lines. Once the
buffers are constructed, they are shuffled to the partitionsof R,
as in Fig. 3 (b) such that both the movie factors and ratings
are locally available to compute the newUib block, as in
Fig. 3 (c). The routing table formulation for shufflingU, with
mappingTu(ui), is analogous. Note that the routing tables are
constructed before the while loop in Algorithm 1, and hence
do not need recomputation in each iteration.

Evaluation of ui and mj via (3) and (4). As in Fig. 3
(c), a compute node that storesRib , will obtain nb buffered
arrays of filtered movie factors. Once the factors have been
shuffled,Aj is computed for eachui as

∑

j∈Ii
mjm

T
j +nui

I,
and vj as

∑

j∈Ii
rijmj using the Basic Linear Algebra

Subprograms (BLAS) library [31]. The resulting linear system
for ui is then solved via the Cholesky decomposition using
LAPACK routines [32], giving the computation to updateU
an asymptotic complexity ofO(nun

3
f ) sincenu linear systems

must be solved. Solving formj is an identical operation with
the appropriate routing table and hasO(nmn3

f ) complexity.

C. ALS-NCG Implementation in Spark

We now discuss our contributions in parallelizing ALS-
NCG for Spark. Since the calculation ofαk in Algorithm
2 requires a line search, the main technical challenges we
address are how to compute the loss function in (1) and its
gradient in an efficient way in Spark, obtaining good parallel
performance. To this end, we formulate a backtracking line
search procedure that dramatically reduces the cost of multiple
function evaluations, and we take advantage of the routing
table mechanism to obtain fast communication. We also extend
the ALS implementation in Spark to support the additional
NCG vector operations required in Algorithm 2 using BLAS
routines.

Vector Storage. The additional vectors̄x,g, ḡ, and p

were each split into two separate RDDs, such that blocks
corresponding to the components ofui (see (5)) were stored
in one RDD and partitioned in the same way asU with block
index ib. Analogously, blocks corresponding to components
of mj were stored in another RDD, partitioned in the same
way asM with block indexjb. This ensured that all vector
blocks were aligned component-wise for vector operations;
furthermore, thep blocks could also be shuffled efficiently
using the routing tables in the line search (see below).

Vector Operations. RDDs have a standard operation termed
a join, in which two RDDsR1 andR2 representing the datasets
of tuples

⋃

i (ki, ai) and
⋃

i(ki, bi) with type (K,A) and
(K,B), respectively, are combined to produce an RDDR3 of
type RDD [(K, (A,B))], whereR3 = R1.join(R2) represents
the dataset

⋃

l(kl, (al, bl)) of combined tuples andkl is a
key common to bothR1 and R2. Parallel vector operations
between RDD representations of blocked vectorsx and y

were implemented by joining the RDDs by their block index
ib and calling BLAS level 1 interfaces on the vectors within
the resultant tuples of aligned vector blocks,{(xib ,yib)}.
Since the RDD implementations of vectors had the same
partitioning schemes, this operation was local to a compute
node, and hence very inexpensive. One caveat, however, is that
BLAS subprograms generally perform modifications to vectors
in place, overwriting their previous components. For fault
tolerance, RDDs must be immutable; as such, whenever BLAS
operations were required on the records of an RDD, an entirely
new vector was allocated in memory and the RDD’s contents
copied to it. Algorithm 3 shows the operations required for the
vector additionax+by using theBLAS.axpby routine (note
that the result overwritesy in place). The inner product of two
block vector RDDs and norm of a single block vector RDD
were implemented in a similar manner to vector addition, with
an additional reduce operation to sum the scalar component-
wise dot products. These vector operations were used to
computeβ̄k+1 in (8).

Line Search & Loss Function Evaluation. We present
a computationally cheap way to implement a backtracking
line search in Spark for minimizing (1). A backtracking line
search minimizes a functionf(x) along a descent direction
p by decreasing the step size in each iteration by a factor of



Algorithm 3: RDD Block VectorBLAS.axpby
Input : x = RDD [(ib,xib)]; y = RDD [(ib,yib)]; a, b ∈ R

Output : z = ax+ by

z← x.join(y).map{
Allocate zib ;
zib ← yib ;
Call BLAS.axpby(a,xib , b, zib );
Yield (ib, zib);

}

τ ∈ (0, 1), and terminates once a sufficient decrease inf(x) is
achieved. This simple procedure is summarized in Algorithm
4, where it is important to note that a line search requires
computingg once, as well asf(x) in each iteration of the line
search. To avoid multiple shuffles in each line search iteration,
instead of performing multiple evaluations of (1) directly, we
constructed a polynomial with degree 4 in the step sizeα by
expanding (1) withui = xui

+αpui
andmj = xmj

+αpmj
,

wherexui
refers to the components ofx related to useri and

mutatis mutandis for the vectorspui
, xmj

, andpmj
. From

the bilinearity of the inner product, this polynomial has the
form Q(α) =

∑4
n=0

(

∑

(i,j)∈I
C

[n]
ij

)

αn, where the terms

C
[n]
ij in the summation for each coefficient only require level

1 BLAS operations between the block vectorsxui
,pui

,xmj
,

and pmj
for known (i, j) ∈ I. Thus, coefficients ofQ(α)

were computed at the beginning of the line search with
a single shuffle operation using the routing tableTm(mj)
to match vector pairs with dot products contributing to the
coefficients. Here,Tm(mj) was chosen since there is far less
communication required to shuffle{mj}, asnu ≫ nm. Since
each iteration of the line search was very fast after computing
the coefficients ofQ(α), we used relatively large values of
τ = 0.9, c = 0.5, andα0 = 10 in Algorithm 4 that searched
intensively along directionp.

Gradient Evaluation. We computedgk with respect to a
block forui using only BLAS level 1 operations as2λnui

ui+
2
∑

j∈Ii
mj(u

T
i mj − rij), with an analogous operation with

respect to eachmj. As this computation requires matching
theui andmj factors, the routing tablesTu(ui) andTm(mj)
were used to shuffleui and mj consecutively. Evaluating
gk can be performed withO(nf (nu

∑

i nui
+ nm

∑

j nmj
))

operations, but requires two shuffles. As such, the gradient
computation required as much communication as a single
iteration of ALS in which bothU andM are updated.

Algorithm 4: Backtracking Line Search

Input : x, p, g, α0, c ∈ (0, 1), τ ∈ (0, 1)
Output : αk

k ← 0;
while f(x+ αkp)− f(x) > αk cg

Tp do
αk+1 ← τ αk;
k ← k + 1;

end

VI. PARALLEL PERFORMANCE OFALS-NCG

Our comparison tests of the ALS and ALS-NCG algorithms
in Spark were performed on a computing cluster composed
of 16 homogeneous compute nodes, 1 storage node hosting
a network filesystem, and 1 head node. The nodes were
interconnected by a 10 Gb ethernet managed switch (Pow-
erConnect 8164). Each compute node was a 64 bit rack server
(PowerEdge R620) running Ubuntu 14.04, with linux kernel
3.13. The compute nodes all had two 8-core 2.60 GHz chips
(Xeon E5-2670) and 256 GB of SDRAM. The head node had
the same processors as the compute nodes, but had 512 GB of
RAM. The single storage node (PowerEdge R720) contained
two 2 GHz processors, each with 6 cores (Xeon E5-2620),
64 GB of memory, and 12 hard disk drives of 4 TB capacity
and 7200 RPM nominal speed. Finally, compute nodes were
equipped with 6 ext4-formatted local SCSI 10k RPM hard disk
drives, each with a 600 GB capacity.

Our Apache Spark assembly was built from a snapshot of
the 1.3 release using Oracle’s Java 7 distribution, Scala 2.10,
and Hadoop 1.0.4. Input files to Spark programs were stored
on the storage node in plain text. The SCSI hard drives on the
compute nodes’ local filesystems were used as Spark spilling
and scratch directories, and the Spark checkpoint directory
for persisting RDDs was specified in the network filesystem
hosted by the storage node, and accessible to all nodes in
the cluster. Shuffle files were consolidated into larger files, as
recommended for ext4 filesystems [33]. In our experiments,
the Spark master was executed on the head node, and a single
instance of a Spark executor was created on each compute
node. It was empirically found that the ideal number of cores
to make available to the Spark driver was 16 per node, or the
number ofphysicalcores for a total of 256 available cores. The
value ofnb was set to the number of cores in all experiments.

To compare the performance of ALS and ALS-NCG in
Spark, the two implementations were tested on the Movie-
Lens 20M dataset withλ = 0.01 and nf = 100. In both
algorithms, the RDDs were checkpointed to persistent storage
every 10 iterations, since it is a widely known issue in the
Spark community that RDDs with very long lineage graphs
cause stack overflow errors when the scheduler recursively
traverses their lineage [34]. Since RDDs are materialized via
lazy evaluation, to obtain timing measurements, actions were
triggered to physically compute the partitions of each block
vector RDD at the end of each iteration in Algorithm 1 and
2. For each experimental run of ALS and ALS-NCG, two
experiments with the same initial user and movie factors were
performed: in one, the gradient norm in each iteration was
computed and printed (incurring additional operations); in the
other experiment, no additional computations were performed
such that the elapsed times for each iteration were correctly
measured.

Fig. 4 shows the convergence in gradient norm, normalized
by the degrees of freedomN = nf × (nu + nm), for six
separate runs of ALS and ALS-NCG on 8 compute nodes for
the MovieLens 20M dataset. The subplots (a) and (b) show
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Fig. 4. Convergence in normalized gradient norm1
N
‖gk‖ for 6 instances of

ALS and ALS-NCG with different starting values in both (a) iteration and (b)
clock time, for the MovieLens 20M dataset. The two solid lines in each panel
show actual convergence traces for one of the instances, while the shaded
regions show the standard deviation about the mean value over all instances,
computed for non-overlapping windows of 3 iterations for (a), and 30 s for
(b). The experiments were conducted on 8 nodes (128 cores).

1
N
‖gk‖ over 100 iterations and 25 minutes, respectively. This

time frame was chosen since it took just over 20 minutes for
ALS-NCG to complete 100 iterations; note that in Fig. 4 (b),
200 iterations of ALS are shown, since with this problem
size it took approximately twice as long to run a single
iteration of ALS-NCG. The shaded regions in Fig. 4 show the
standard deviation about the mean value for1

N
‖gk‖ across all

runs, computed for non-overlapping windows of 3 iterations
for subplot (a) and 30 s for subplot (b). Even within the
uncertainty bounds, ALS-NCG requires much less time and
many fewer iterations than ALS to reach accurate values of
1
N
‖gk‖ (e.g. below10−3).

The operations that we have implemented in ALS-NCG that
are additional to standard ALS in Spark have computational
complexity that is linear in problem size. To verify the
expected linear scaling, experiments with a constant number
of nodes and increasing problem size up to 800 million
ratings were performed on 16 compute nodes. Synthetic ratings
matrices were constructed by sampling the MovieLens 20M
dataset such that the synthetic dataset had the same statistical
sparsity, realistically simulating the data transfer patterns in
each iteration. To do this, first the dimensionnu of the
sampled dataset was fixed, and for each usernui

was sampled
from the empirical probability distributionp(nui

|R) of how
many movies each user ranked, computed empirically from the
MovieLens 20M dataset. Thenui

movies were then sampled
from the empirical likelihood of sampling thejth movie,
p(mj |R), and the resultant rating value was sampled from
the distribution of numerical values for all ratings. The choice
of scaling up the users (for a fixed set of movies) was made
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Fig. 5. Linear scaling of computation time per iteration with increasing
nu on a synthetic dataset for ALS and ALS-NCG on 16 compute nodes(256
cores) for up to 6M users, corresponding to 800M ratings.

to model the situation in which an industry’s user base grows
far more rapidly than its items.

Fig. 5 shows the linear scaling in computation time for both
ALS and ALS-NCG. The values shown are average times
per iteration over 50 iterations, fornu from 1 to 6 million,
corresponding to the range from 133 to 800 million ratings.
The error bars show the uncertainty in this measurement,
where the standard deviation takes into account that iterations
with and without checkpointing come from two different
populations with different average times. The uncertaintyin
the time per iteration for ALS-NCG is larger due to the greater
overhead of memory management and garbage collection by
the Java Virtual Machine required with more RDDs. While
each iteration of ALS-NCG takes longer due to the additional
line search and gradient computations, we note that many
fewer iterations are required to converge.

Finally, we compute the relative speedup that was attainable
on the large synthetic datasets. For the value of1

N
‖gk‖ in each

iteration of ALS-NCG, we determined how many iterations of
regular ALS were required to achieve an equal or lesser value
gradient norm. Due to the local variation in1

N
‖gk‖ (as in

Fig. 4), a moving average filter over every two iterations was
applied to the ALS-NCG gradient norm values. The total time
required for ALS and ALS-NCG to reach a given gradient
norm was then estimated from the average times per iteration
in Fig. 5. The ratios of these total times for ALS and ALS-
NCG are shown in Fig. 6 as the relative speedup factor
for the 1M, 3M, and 6M users ratings matrices. When an
accurate solution is desired, ALS-NCG often achieves faster
convergence by a factor of 3 to 5, with the acceleration factor
increasing with greater desired accuracy in the solution.

VII. C ONCLUSION

In this paper, we have demonstrated how the addition of
a nonlinear conjugate gradient wrapper can accelerate the
convergence of ALS-based collaborative filtering algorithms
when accurate solutions are desired. Furthermore, our parallel
ALS-NCG implementation can significantly speed up big data
recommendation in the Apache Spark distributed computing
environment, and the proposed NCG acceleration can be nat-
urally extended to Hadoop or MPI environments. It may also
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be applicable to other optimization methods for collaborative
filtering. Though we have focused on a simple latent factor
model, our acceleration can be used with any collaborative
filtering model that uses ALS. We expect that our acceleration
approach will be especially useful for advanced collaborative
filtering models that achieve low root mean square error
(RMSE), since these models require solving the optimization
problem accurately, and that is precisely where accelerated
ALS-NCG shows the most benefit over standalone ALS.
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