
Efficient Distributed Data Structures for Future Many-core

Architectures

Panagiota Fatourou
FORTH-ICS & Univ. of Crete

faturu@ics.forth.gr

Nikolaos D. Kallimanis
ISI / Athena RC & University of Ioannina

nkallima@isi.gr

Eleni Kanellou∗

FORTH-ICS
kanellou@ics.forth.gr

Odysseas Makridakis
Univ. of Crete

odmakryd@csd.uoc.gr

Christi Symeonidou
Univ. of Crete

chsymeon@ics.forth.gr

Abstract

We study general techniques for implementing distributed data structures on top of fu-
ture many-core architectures with non cache-coherent or partially cache-coherent
memory. With the goal of contributing towards what might become, in the future, the
concurrency utilities package in Java collections for such architectures, we end up with a com-
prehensive collection of data structures by considering different variants of these techniques.
To achieve scalability, we study a generic scheme which makes all our implementations hi-
erarchical. We consider a collection of known techniques for improving the scalability of
concurrent data structures and we adjust them to work in our setting. We have performed
experiments which illustrate that some of these techniques have indeed high impact on
achieving scalability. Our experiments also reveal the performance and scalability power
of the hierarchical approach. We finally present experiments to study energy consumption
aspects of the proposed techniques by using an energy model recently proposed for such
architectures.

1 Introduction

The dominant parallelism paradigm used by most high-level, high productivity languages such
as Java, is that of threads and cache-coherent shared memory among all cores. However, cache-
coherence does not scale well with the number of cores [1]. So, future many-core architectures
are not expected to support cache-coherence across all cores. They would rather feature multiple
coherence islands, each comprised of a number of cores that share a coherent view of a part
of the memory, but no hardware cache-coherence will be provided among cores of different
islands. Instead, the islands will be interconnected using fast communication channels. In
recent literature, we meet even more aggressive approaches with Intel having proposed two
fully non cache-coherent architectures, Runnemede [2] and SSC [3]. Additionally, [4] presents
the Formic board, a 512-core non cache-coherent prototype.

∗Contact author. Address: FORTH-ICS. N. Plastira 100, Vassilika Vouton. GR-70013 Heraklion (Crete),
Greece. Tel.: +302810391709

1

ar
X

iv
:2

40
4.

05
51

5v
1

 [
cs

.D
C

]
 8

 A
pr

 2
02

4

Such architectures impose additional effort in programming them, since they require to
explicitly code all communication and synchronization using messages between processors. Pre-
vious works [5, 6, 7] indicate the community’s interest in bridging the gap between non cache-
coherent or distributed architectures, and high-productivity programming languages by imple-
menting runtime environments, like the Java Virtual Machine (JVM), for such architectures,
which maintain the shared-memory abstraction.

The difficulty in parallelizing many applications comes from those parts of the compu-
tation that require communication and synchronization via data structures. Thus, the de-
sign of effective concurrent data structures is crucial for many applications. On this avenue,
java.util.concurrent, which is Java’s concurrency utilities package (JSR 166) [8, 9] provides
a wide collection of concurrent data structures [8, 10, 11, 12]. To run Java-written programs on
a non cache-coherent architecture, Java’s VM must be ported to that architecture, and some
fundamental communication and synchronization primitives (such as CAS, locks, and others)
must be implemented. Normally, once this is done, it will be possible to execute applications
that employ the concurrency utilities package without any code modification. However, the
algorithms provided in the package have been chosen to perform well on shared memory archi-
tectures. So, they take no advantage of the communication and synchronization features of non
cache-coherent architectures and do not cope with load balancing issues or with the distribution
of data among processors. Thus, they are expected to be inefficient when executing through
JVMs ported for such an architecture, even if optimized implementations of locks, CAS, and
other primitives are provided on top of the architecture. Therefore, there is an urgent need to
develop novel data structures and algorithms, optimized for non cache-coherent architectures.

We study general techniques for implementing distributed data structures, such as stacks,
queues, dequeues, lists, and sets, on many-core architectures with non or partially cache-coherent
memory. With the goal of contributing to what might become, in the future, the concurrency
utilities package in Java collections for such architectures, we end up, by considering different
variants of these techniques, ending up with a comprehensive collection of data structures, richer
than those provided in java.util.concurrent. Our collection, which is based on message-
passing to achieve the best of performance, facilitates the execution of Java-written code on
non-cache coherent architectures, without any modification, in a highly efficient way.

To achieve scalability, that is, maintaining good performance as the number of cores in-
creases [13], we study a generic scheme, which can be used to make all our implementations
hierarchical [14, 15]. The hierarchical version of an implementation exploits the memory struc-
ture and the communication characteristics of the architecture to achieve better performance.
Specifically, just one core from each island, the island master, participates in the execution of
the implemented distributed algorithm, whereas the rest submit their requests to this core. To
execute the implemented distributed algorithm, the island masters must exploit the communi-
cation primitives provided for fast communication among different islands. In architectures with
thousands of cores, we could employ a more advanced hierarchical structure, e.g. a tree-like
hierarchy, of intermediate masters for better scalability. Depending on the implemented data
structure, the island master employs elimination [16], batching and other techniques to enhance
scalability and performance. In the partially cache-coherent case, the cores of the same island
may synchronize by employing combining [15, 17].

For efficiency, in some of our implementations, we employ a highly scalable distributed
hash table (DHT) which uses a simple standard technique [18, 19, 20] to distribute the data
on different nodes. Based on it and by employing counting networks [21, 22], we can come
up with fully decentralized, scalable implementations of queues and stacks. We also present
implementations of (sorted and unsorted) lists, some of which support complex operations like
range queries. To design our algorithms, we derive a theoretical framework which captures the

2

java.util.concurrent
java.util.concurrent

communication characteristics of non cache-coherent architectures. This framework may be of
independent interest. In this spirit, we further provide full theoretical proofs of correctness for
some of the algorithms we present.

We have performed experiments on top of a non cache-coherent 512-core architecture, built
using the Formic [4] hardware prototyping board. We distill the experimental observations into a
metric expressing the scalability potential of such implementations. The experiments illustrate
nice scalability characteristics for some of the proposed techniques and reveal the performance
and scalability power of the hierarchical approach.

2 Related Work

Distributed transactional memory (DTM) [23, 24, 25, 26, 27, 28, 29, 30] is a generic approach
for achieving synchronization, so data structures can be implemented on top of it. Transactional
memory (TM) [31, 32] is a programming paradigm which provides the transaction’s abstraction;
a transaction executes a piece of code containing accesses to data items. TM ensures that each
transaction seems to execute sequentially and in isolation. However, it introduces significant
performance overheads whenever reads from or writes to data items take place, and requires the
programmer to write code in a transactional-compatible way. (When the transactions dynam-
ically allocate data, as well as when they synchronize operations on dynamic data structures,
compilers cannot detect all possible data races without trading performance, by introducing
many false positives.) Our work is on a different avenue: towards providing a customized
library of highly-scalable data structures, specifically tailored for non cache-coherent machines.

TM2C [26] is a DTM proposed for non cache-coherent machines. The paper presents a sim-
ple distributed readers/writers lock service where nodes are responsible for controlling access
to memory regions. It also proposes two contention management (CM) schemes (Wholly and
FairCM) that could be used to achieve starvation-freedom. However, in Wholly, the number
of times a transaction T may abort could be as large as the number of transactions the pro-
cess executing T has committed in past, whereas in FairCM, progress is ensured under the
assumption that there is no drift [33, 34] between the clocks of the different processors of the
non cache-coherent machine. Read-only transactions in TM2C can be slow since they have to
synchronize with the lock service each time they read a data item, and in case of conflict, they
must additionally synchronize with the appropriate CM module and may have to restart sev-
eral times from scratch. Other existing DTMs [23, 24, 35, 30, 36], also impose common DTM
overheads.

The data structure implementations we propose do not cause any space overhead, read-
only requests are fast, since all nodes that store data of the implemented structure search for
the requested key in parallel, and the number of steps executed to perform each request is
bounded. We remark that, in our algorithms, information about active requests is submitted to
the nodes where the data reside, and data are not statically assigned to nodes, so our algorithms
follow neither the data-flow approach [37, 36] nor the control-flow approach [23, 35] from DTM
research.

Distributed directory protocols [38, 39, 40, 41, 42] have been suggested for locating and
moving objects on a distributed system. Most of the directory protocols follow the simple idea
that each object is initially stored in one of the nodes, and as the object moves around, nodes
store pointers to its new location. They are usually based either on a spanning tree [43, 42]
or a hierarchical overlay structure [38, 40, 41]. Remarkably, among them, COMBINE [38] at-
tempts to cope with systems in which communication is not uniform. Directory protocols could
potentially serve for managing objects in DTM. However, to implement a DTM system using a
directory protocol, a contention manager must be integrated with the distributed directory im-

3

plementation. As pointed out in [39], this is not the case with the current contention managers
and distributed directory protocols. It is unclear how to use these protocols to get efficient
versions of the distributed data structures we present in this paper.

Previous research results [44, 45, 46, 47] propose how to support dynamic data structures on
distributed memory machines. Some are restricted on tree-like data structures [46, 47], other
focus on data-parallel programs [44], some favor code migration, whereas other focus on data
replication. We optimize beyond simple distributed memory architectures by exploiting the
communication characteristics of non cache-coherent multicore architectures. Some techniques
from [44, 45, 46] could be of interest though to further enhance performance, fault-tolerance
and scalability in our implementations.

Distributed data structures have also been proposed [48, 49, 50, 51, 52] in the context
of peer-to-peer systems or cluster computing, where dynamicity and fault-tolerance are main
issues. They tend to provide weak consistency guarantees. Our work is on a different avenue.

Hazelcast [19] is an in-memory data grid middleware which offers implementations for maps,
queues, sets and lists from the Java concurrency utilities interface. These implementations are
optimized for fault tolerance, so some form of replication is supported. Lists and sets are stored
on a single node, so they do not scale beyond the capacity of this node. The queue stores all
elements to the memory sequentially before flushing them to the datastore. Like Hazelcast,
GridGain [53], an in-memory data fabric which connects applications with datastores, provides
a distributed implementation of queue from the Java concurrency utilities interface. The queue
can be either stored on a single grid node, or be distributed on different grid nodes using the
datastore that exists below GridGain. In a similar vein, Grappa [54] is a software system that
can provide distributed shared memory over a cluster of machines. So-called delegate operations
are used in order to access shared memory, relieving the programmer of having to reason about
remote or local memory. However, Grappa does not provide the programmer with a data
structure library.

We extend some of the ideas from hierarchical lock implementations and other synchroniza-
tion protocols for NUMA cache-coherent machines [14, 15, 55] to get hierarchical implemen-
tations for a non cache-coherent architecture. Tudor et al. [56] attempt to identify patterns
on search data structures, which favor implementations that are portably scalable in cache-
coherent machines. The patterns they came up with cannot be used to automatically generate
a concurrent implementation from its sequential counterpart; they rather provide hints on how
to apply optimizations when designing such implementations.

3 Abstract Description of Hardware

Inspired by the characteristics of non cache-coherent architectures [2] and prototypes [4], we
consider an architecture which featuresm islands (or clusters), each comprised of c cores (located
in one or more processors). The main memory is split into modules, with each module associated
to a distinct island (or core). A fast cache memory is located close to each core. No hardware
cache-coherence is provided among cores of different islands: this means that different copies of
the same variable residing on caches of different islands may be inconsistent. The islands are
interconnected with fast communication channels.

The architecture may provide cache-coherence for the memory modules of an island to
processes executing on the cores of the island, i.e. the cores of the same island may see the
memory modules of the island as cache-coherent shared memory. If this is so, we say that the
architecture is partially cache-coherent; otherwise, it is non cache-coherent. A process can send
messages to other processes by invoking send and it can receive messages from other processes
by invoking receive. The following means of communication between cores (of the same or

4

different islands) are provided:

Send/Receive mechanism: Each core has its own mailbox which is a FIFO queue (implemented
in hardware). (If more than one processes are executed on the same core, they share the same
hardware mailbox; in this case, the functionality of send and receive can be provided to each
process through the use of software mailboxes.) A process executing on the core can send
messages to other processes by invoking send, and it can receive messages from other processes
by invoking receive. Messages are not lost and are delivered in FIFO order. An invocation
of receive blocks until the requested message arrives. The first parameter of an invocation to
send determines the core identifier to which the message is sent.

Reads and Writes through DMA: A Direct Memory Access (DMA) engine allows certain hard-
ware subsystems to access the system’s memory without any interference with the CPU. We
assume that each core can performDma(A,B, d) to copy a memory chunk of size d from memory
address A to memory address B using a DMA (where A and B may be addresses in a local or a
remote memory module). We remark that DMA is not executed atomically. It rather consists
of a sequence of atomic reads of smaller parts, e.g. one or a few words, (known as bursts) of the
memory chunk to be transferred, and atomic writes of these small parts to the other memory
module. DMA can be used for performance optimization. Once the size of the memory chunk
to be transferred becomes larger (by a small multiplicative factor) than the maximum message
size supported by the architecture, it is more efficient to realize the transfer using DMA (in
comparison to sending messages). Specifically, we denote by MMS the maximum size of a
message supported by the architecture. (Usually, this size is equal to either a few words or a
cache line). Consider that the chunk of data that a core wants to send has size equal to B.
To send these data using messages, the core must send B

MMS messages. Each message has a
cost CM to set it up. So, in total, to transfer the data using messages, the overhead paid is

B
MMS ∗CM . Setting up a DMA has a cost CD, which in most architectures is by a small constant
factor larger than CM . However, CD is paid only once for the entire transfer of the chunk of
data since it is done with a single DMA. Additionally, sending and receiving B

MMS messages
requires that a core’s CPU will be involved B

MMS times to send each message and another core’s
CPU will be involved B

MMS times to receive these messages. This cost will be greatly avoided
when using a single DMA to transfer the entire chunk of data. Thus, it is beneficial in terms of
performance, to use DMA for transferring data whenever the size of the data to be transferred
is not too small.

4 Theoretical Framework

An implementation of a data structure (DS) stores its state in the memory modules and provides
an algorithm, for each process, to implement each operation supported by the data structure.
We model the submission and delivery of messages sent by processes by including incoming and
outgoing message buffers in the state of each process (as described in standard books [33, 57]
on distributed computing).

We model each process as a state machine. We model a DMA request as a code block which
contains a sequence of interleaved burst reads from a memory module and burst writes to a
memory module. A DMA engine executes sequences of DMA requests, so it can also be modeled
as a simple state machine whose state includes a buffer storing DMA requests that are to be
executed. A configuration is a vector describing the state of each process (including its message
buffers), the state of each DMA engine, the state of the caches (or the shared variables in case
shared memory is supported among the cores of each island), and the states of the memory
modules. In an initial configuration, each process and DMA engine is in an initial state, the

5

shared variables and the memory modules are in initial states and all message and DMA buffers
are empty. An event can be either a step by some process, a step by a DMA engine, or the
delivery of a message; in one step, a process may either transmit exactly one message to some
process and at least one message to every other process, or access (read or write) exactly one
shared variable, or initiate a DMA transfer, or invoke an operation of the implemented data
structure. In a DMA step a burst is read from or written to a memory module. All steps of a
process should follow the process’s algorithm. Similarly, all steps of a DMA engine should be
steps of the code block that performs a DMA request submitted to this DMA engine.

An execution is an alternating sequence of configurations and events starting with an initial
configuration. The execution interval of an instance of an operation op that completes in an
execution α is the subsequence of α starting with the configuration preceding the invocation of
this instance of op and ending with the configurations that follows its response. If an instance
of an operation op does not complete in α, then the execution interval of op is the suffix of α
starting with the configuration preceding the invocation of this instance of op. An execution α
imposes a partial order ≺α on the instances of its operations, such that for two instances op1
and op2 of some operations in α, op1 ≺α op2 if the response of op1 precedes the invocation of
op2 in α. If it neither holds that op1 ≺α op2 not that op2 ≺α op1, then we say that op1 and
op2 are concurrent. If no two operation instances in α are concurrent, then α is a sequential
execution.

A step is enabled at a configuration C, if the process or DMA engine will execute this step
next time it will be scheduled. A finite execution α is fair if, for each process p and each DMA
engine e, no step by p or e is enabled at the final configuration C of α and all messages sent in
α have been delivered by C. An infinite execution α is fair if the following hold:

• for each process p, either p takes infinitely many steps in α, or there are infinitely many
configurations in α such that in each of them (1) no step by p is enabled, (2) for every
prefix of α that ends at such a configuration, all messages sent by p have been delivered.

• for each DMA engine e, either e takes infinitely many steps in α, or there are infinitely
many configurations in α such that in each of them no step by e is enabled (we remark
that a DMA engine e always have an enabled step as long as its DMA buffer is not empty).

Correctness. For correctness, we consider linearizability [58]. This means that, for every
execution α, there is a sequential execution σ, which contains all the completed operations in α
(and some of the uncompleted ones) so that the response of each operation in σ is the same as
in α and σ respects the partial order of α. In such a linearizable execution α, one can assign a
linearization point to each completed operation instance (and to some of the uncompleted ones)
so that the linearization point of each operation occurs after the invocation event and before
the response event the operation, and so that the order of the linearization points is the same
as the order of the operations in σ.

Progress. We aim at designing algorithms that always terminate, i.e. reach a state where all
messages sent have been delivered and no step is enabled. We do not cope with message or
process failures.

Communication Complexity. Communication between the cores of the same island is usu-
ally faster than that across islands. Thus, the communication complexity of an algorithm for
a non cache-coherent architecture is measured in two different levels, namely the intra-island
communication and the inter-island communication. The inter-island communication complex-
ity of an instance inst of an operation op in an execution α is the total number of messages sent
by every core c to cores residing on different islands from that of c for executing inst in α. The
inter-island communication complexity of op in α is the maximum, over all instances inst of op
in α, of the inter-island communication complexity of inst in α. The inter-island communication

6

complexity of op for an implementation I is the maximum, over all executions α produced by I,
of the inter-island communication complexity of op in α. We remark that communication can
be measured in a more fine-grained way in terms of bytes transferred instead of messages sent,
as described in [57]. For simplicity, we focus on the higher abstraction of measuring just the
number of messages as described in [33].

If the architecture is non cache-coherent, then the intra-island communication complexity is
defined as follows. The intra-island communication complexity of an instance inst of op in α is
the maximum, over all islands, of the total number of messages sent by every core c of an island
to cores residing on the same island as c for executing inst in α.

If the architecture is partially cache-coherent, then we measure the inter-island communi-
cation complexity in terms of cache misses following the cache-coherence (CC) shared-memory
model (see e.g. [59, 60]). Specifically, in the (CC) shared memory model, accesses to shared
variables are performed via cached copies of them; an access to a shared variable is a cache
miss if the cached copy of this variable is invalid. In this case, a cache miss occurs and a valid
copy of the variable should be fetched in the local cache first before it can be accessed. Once
the cache miss is served and as long as the variable is not updated by processes that are being
executed on other cores, future accesses to the variable by processes that are being executed on
this core do not lead to further cache misses. In such a model, the inter-island communication
complexity of an instance inst of an operation op is the maximum, over all islands, of the total
number of cache-misses that the cores of the island experience to execute inst.

We remark that independently of whether the architecture is partially or fully non cache-
coherent, the intra-island communication complexity of op in α is the maximum, over all in-
stances inst of op in α, of the intra-island communication complexity of inst in α. Moreover,
the intra-island communication complexity of op for an implementation I is the maximum, over
all executions α produced by I, of the intra-island communication complexity of op in α.

The DMA communication complexity of an instance inst of an operation op, is the total
number of DMA requests initiated by every process to execute inst; in a more fine-grained
model, we could instead measure the total number of bursts performed by these DMA requests.
The DMA communication complexity of op in α and of op in I are defined as for the other types
of communication complexities.

Time complexity. Consider a fair execution α of an implementation I. A timed version of α
is an enhanced version of α where each event has been associated to a non-negative real number,
the time at which that event occurs. We define the delay of a message in a timed version of α to
be the time that elapses between the computation event that sends the message and the event
that delivers the message. We denote by Tα those timed versions of α for which the following
conditions hold: (1) the times must start at 0, (2) must be strictly increasing for each individual
process and the same must hold for each individual DMA engine, (3) must increase without
bound if the execution is infinite, (4) the timestamps of two subsequent events by the same
process (or the same DMA engine) must differ by at most 1, and (4) the delay of each message
sent must be no more than one time unit. Let T = ∪∀α produced by I{Tα}.

The time until some event ρ is executed in an execution α is the supremum of the times
that can be assigned to ρ in all timed versions of α in Tα. The time between two events in
α is the supremum of the differences between the times in all timed versions of α in Tα. The
time complexity of an instance inst of an operation op in α is the time between the events of its
invocation and its response. The time complexity of op in α is the maximum, over all instances
inst of op in α, of the time complexity of inst in α. The time complexity of an operation op for
I is the maximum, over all executions α produced by I, of the time complexity of op in α.

Space Complexity. The space complexity of I is determined by the memory overhead intro-
duced by I, and by the number and type of shared variables employed (in case of partial non

7

cache-coherence).

5 Directory-based Stacks, Queues, and Deques

The state of the data structure is stored in a highly-scalable distributed directory whose data are
spread over the local memory modules of the NS servers. The directory supports the operations
DirInsert, DirDelete, BlockDirDelete, and DirSearch. DirDelete and BlockDirDelete

both remove elements from the directory; however, DirDelete returns⊥ if the requested element
is not contained in the directory, while BlockDirDelete blocks until the element is found in
the directory. To implement it, we employ a simple highly-efficient distributed hash table
implementation (also met in [18, 19, 20]) where hash collisions are resolved by using hash
chains (buckets). Each server stores a number of buckets. For simplicity, we consider a simple
hash function which employs mod and works even if the key is a negative integer. It returns
an index which is used to find the server where a request must be sent, and the appropriate
bucket at this server, in which the element resides (or must be stored).

To perform an operation, each client must first access a fetch&add object to get a unique
sequence number which it uses as the key for the requested data. This object can be imple-
mented using a designated server, called the synchronizer and denoted by ss. The client then
communicates with the appropriate server to complete its operation. The server locally pro-
cesses the request and responds to the process that initiated it. This approach suites better to
workloads where the state of the data structure is large.

The hash table implementation we use as our directory is presented in Section 5.1, for
completeness. Similar hash table designs have been presented (or discussed) in [18, 20, 19].
Section 5.2 presents the details of the directory-based distributed stack. The directory-based
queue implementation is discussed in Section 5.3. Section 5.5 provides the directory-based
deque. We remark that our directory-based data structures would work even when using a
different directory implementation.

5.1 Distributed Hash Table

A hash table stores elements, each containing a key and a value (associated with the key). Each
server stores hash table elements to a local data structure. This structure can be a smaller hash
table or any other data structure (array, list, tree, etc.) and supports the operations INSERT,
SEARCH and DELETE. To perform an operation on the DHT, a client c finds the appropriate server
to submit its request by hashing the key value of interest. Then, it sends a message to this
server, which performs the operation locally and sends back the result to c. A server s processes
all incoming messages sequentially. After receiving a response message from the server, all
client functions return a boolean value depending on whether the operation was successful or
not.

8

Algorithm 2 Push operation for a
client of the directory-based stack.

8 void ClientPush(int cid, Data data) {
9 send(sid, ⟨PUSH, cid⟩);
10 key = receive(sid);
11 status = DirInsert(key, data);
12 return status;

}

Algorithm 3 Pop operation for a
client of the directory-based stack.

13 Data ClientPop(int cid) {
14 send(sid, ⟨POP, cid⟩);
15 key = receive(sid);
16 if (key == −1) status = ⊥
17 else {
18 do {
19 status = DirDelete(key);
20 } while (status == ⊥);

}
21 return status;

}

5.2 Directory-Based Stack

Algorithm 1 Events triggered in the synchro-
nizer of the directory-based stack.

1 int top key = −1;

1 a message ⟨op, cid⟩ is received:
2 if (op == PUSH)
3 top key ++;
4 send(cid, top key);
5 if (op == POP) {
6 if (top key ̸= −1)
7 top key −−;

}

To implement a stack, the synchronizer ss maintains a variable top which stores an integer
counting the number of elements that are currently in the stack.

To apply an operation op a client sends a message to the synchronizer ss. If op is a push
operation, ss uses top key variable to assign unique keys to the newly inserted data. Each time
it receives a push request, ss sends the value stored in top key to the client after incrementing
it by one. Once a client receives a key from ss for the push operation it has initiated, it inserts
the new element in the directory by invoking DirInsert. Similarly, if op is a pop operation,
ss sends the value stored in top key to the client and decrements it by one. The client then
invokes DirDelete repeatedly, until it successfully removes from the directory the element with
the received key. Notice that keys of elements are greater than or equal to 0 and therefore,
top key has initial value −1, which indicates that the stack is empty.

Event-driven pseudocode for the synchronizer is described in Algorithm 1 and the code for
the ClientPush() and ClientPop() operations, is presented in Algorithms 2 and 3.

The synchronizer receives, processes, and responds to clients’ messages. The messages have
an op field that represents the operation to be performed (PUSH or POP), and a cid field with
the client’s identification number, needed for identifying the appropriate client to communicate
with.

The ClientPop() function, presented in Algorithm 3 is analogous to the push operation: it
sends a POP message to ss and waits for its response (line 15). Using the key that was received

9

as argument, DirDelete() is repeatedly called (line 19). This is necessary since another client
responsible for inserting the key may not have finished yet its insertion. In this case DirDelete
returns ⊥ (line 20). However, since the key was generated previously by ss, it is certain that it
will be eventually inserted into the directory service.

5.2.1 Proof of Correctness

Let α be an execution of the directory-based stack implementation. We assign linearization
points to push and pop operations in α by placing the linearization point of an operation op in
the configuration resulting from the execution of line 4 by the synchronizer for op.

Let op be a push or a pop operation invoked by a client c in α and assume that the synchro-
nizer executes line 4 for it. By inspection of the pseudocode, we have that this line is executed
after the synchronizer receives a message by c (line 1) and before c receives the synchronizer’s
response (line 10 for a push operation, line 15 for a pop operation). By the way the linearization
points are assigned, we have the following lemma.

Lemma 1. The linearization point of a push (pop) operation op is placed within its execution
interval.

Denote by L the sequence of operations (which have been assigned linearization points) in
the order determined by their linearization points. Let Ci be the configuration in which the i-th
operation opi of L is linearized. Denote by αi, the prefix of α which ends with Ci and let Li

be the prefix of L up until the operation that is linearized at Ci. We denote by topi the value
of the local variable top key of ss at configuration Ci; Let C0 be the initial configuration an let
top0 = −1.

Notice that since only ss executes Algorithm 1, we have the following.

Observation 2. Instances of Algorithm 1 are executed sequentially, i.e. their execution does
not overlap.

By the way linearization points are assigned, further inspection of the pseudocode in con-
junction with Observation 2 leads to the following.

Observation 3. For each integer i ≥ 1, the following hold at Ci: Let opi and opi+1 be two
operations in L.

• If opi is a push operation and opi+1 is a push operation, then topi+1 = topi + 1.

• If opi is a push operation and opi+1 is a pop operation, then topi+1 = topi.

• If opi is a pop operation and opi+1 is a pop operation, then, if topi ̸= −1, topi+1 = topi−1.

• If opi is a pop operation and opi+1 is a push operation, then, if topi ̸= −1, topi+1 = topi.

Let σ be the sequential execution that results by executing the operations in L sequentially,
in the order of their linearization points, starting from an initial configuration in which the
queue is empty. Let σi be the prefix of σ that contains the operations in Li. Denote by Si

the state of the sequential stack that results if the operations of Li are applied sequentially to
an initially empty stack. Denote by di the number of elements in Si. We associate a sequence
number with each stack element such that the elements from the bottommost to the topmost
are assigned 0, . . . , di − 1, respectively. Denote by sldi the di-th element of Si.

Let L′
i be the projection of Li that contains all operations in Li except those pop operations

that return ⊥. Denote those operations by op′i. Denote by C ′
i the configuration in which the

10

i-th operation of L′
i is linearized. Let S

′
i be the state of the sequential stack after the operations

of L′
i have been applied to it, assuming an initially empty stack and denote by d′i the number

of elements in S′
i. Again we associate a sequence number with each stack element such that the

elements from the bottommost to the topmost are assigned 0, . . . , d′i − 1, respectively. Denote
by sld′i the d′i-th element of S′

i. We denote by top′i the value of the local variable top key of ss
at configuration C ′

i. Let ki be the number of pop operations in L′
i.

By inspection of the pseudocode, it follows that:

Observation 4. If opi is a push operation, it inserts a pair ⟨key, data⟩ in the directory, where
data is the argument of ClientPush executed for opi, and key = topi. If opi is a pop operation
then, if topi ̸= −1, it removes a pair ⟨key, data⟩ with key = topi−1 from the directory and
returns data; if topi = −1, it does not remove any pair from the directory and returns ⊥.

Lemma 5. For each integer i > 0, it holds that:

• If op′i is a push operation, then it inserts element d′i into the stack and top′i = d′i − 1.

• If op′i is a pop operation, then it removes element d′i−1 from the stack, top′i = d′i−1− 1 and
top′i is equal to the value of top key of ss for the i− 2 ∗ ki + 1-th push operation in L′

i .

Proof. We prove the claim by induction on i.
Base case. We prove the claim for i = 1. Recall that S′

0 = ϵ and top′0 = −1. By
definition of L′

i, op
′
1 is a push operation. By observation of the pseudocode (line 3) we have

that top′1 = −1 + 1 = 0 and op′1 inserts an element with sequence number d′1 − 1 = 0 into the
stack. Thus, the claim holds.

Hypothesis. Fix any i, i > 0, and assume that the claim holds for C ′
i.

Induction step. We prove that the claim also holds at C ′
i+1. First, consider the case where

op′i+1 is a push operation. We distinguish two cases. Case (i): op′i is a push operation, as well.
For op′i, the induction hypothesis holds. Therefore, op′i inserts the d′i-th element into the stack
and top′i = d′i − 1. By Observation 3, top′i+1 = top′i + 1. Since S′

i has d
′
i elements, op′i+1 inserts

element d′i+1 = d′i+1, with sequence number d′i+1−1 = (d′i+1)−1 = d′i = top′i+1 = top′i+1 and
the claim holds. Case (ii): op′i is a pop operation, which removes an element from the stack.
Since the induction hypothesis holds, top′i = d′i−1 − 1. Conversely, op′i+1 inserts an element into
the stack. By Observation 3, we have that top′i+1 = top′i and the claim holds.

From the above lemmas we have the following.

Theorem 6. The directory-based distributed stack implementation is linearizable.

11

5.3 Directory-Based Queue

Algorithm 4 Events triggered in the syn-
chronizer of the directory-based queue.

1 int head key = 0, tail key = 0;

2 a message ⟨op, cid⟩ is received:
3 if (op == ENQ) {
4 tail key++;
5 send(cid, tail key);
6 } else if (op == DEQ) {
7 if (head key < tail key) {
8 head key++;
9 send(cid, head key);
10 } else

11 send(cid, NACK);
}

}

The directory-based distributed queue is implemented in a way similar to the directory-
based stack implementation. To implement a queue, the synchronizer ss maintains two counters,
head key and tail key, which store the key associated with the first and the last, respectively,
element in the queue.

In order to perform an enqueue or dequeue operation, a client calls ClientEnqueue() or
ClientDequeue(), respectively (Algorithms 5 and 6, respectively). To apply an operation op, a
client sends a request to ss, in order to receive the key of the element to be inserted or deleted.
The client then calls DirInsert to insert the new element in the directory (line 5). Each time ss
receives an enqueue request, it increments tail key and then sends the value stored in tail key
to the client.

Each time ss receives a dequeue request, if head key ̸= tail key, then ss sends the value of
head key to the client and increments head key to store the key of the next element in the queue.
The client then uses this value as the key of the element to remove from the directory (line 23).
Otherwise, in case head key = tail key, ss sends NACK to c without changing head key.

A dequeue operation for which ss sends a key value to the client by executing line 9, is
referred to as a successful dequeue operation. On the other hand, a dequeue operation for
which ss sends NACK to the client by executing line 11, and for which in turn, the client returns
⊥, is referred to as an unsuccessul dequeue operation.

5.3.1 Proof of Correctness

Let α be an execution of the directory-based queue implementation. We assign linearization
points to enqueue and dequeue operations in α as follows: The linearization point of an enqueue
operation op is placed in the configuration resulting from the execution of line 5 for op by ss.
The linearization point of a dequeue operation op is placed in the configuration resulting from
the execution of either line 9 or line 11 for op (whichever is executed) by ss.

Lemma 7. The linearization point of an enqueue (dequeue) operation op is placed within its
execution interval.

Proof. Assume that op is an enqueue operation and let c be the client that invokes it. The
linearization point of op is placed at the configuration resulting from the execution of line 5

12

Algorithm 5 Enqueue operation for a
client of the directory-based queue.

12 void ClientEnqueue(int cid, Data data) {
13 sid = get the server id;
14 send(sid, ⟨ENQ, cid⟩);
15 tail key = receive(sid);
16 DirInsert(tail key, data);

}

Algorithm 6 Dequeue operation for a
client of the directory-based queue.

17 Data ClientDequeue(int cid) {
18 sid = get the server id;
19 send(sid, ⟨DEQ, cid⟩);
20 head key = receive(sid);
21 if(head key == NACK)
22 return ⊥;
23 data = BlockDirDelete(head key);
24 return data;

}

for op by ss. This line is executed after the request by c is received, i.e. after c invokes
ClientEnqueue. Furthermore, it is executed before c receives the response by the server and
thus, before ClientEnqueue returns. Therefore, the linearization point is included in the exe-
cution interval of enqueue.

The argument regarding dequeue operations is similar.

Denote by L the sequence of operations which have been assigned linearization points in α in
the order determined by their linearization points. Let Ci be the configuration in which the i-th
operation opi of L is linearized; denote by C0 the initial configuration. Denote by αi, the prefix
of α which ends with Ci and let Li be the prefix of L up until the operation that is linearized at
Ci. We denote by headi the value of the local variable head key of ss at configuration Ci, and
by taili the value of the local variable tail key of ss at Ci. By the pseudocode, we have that
the initial values of tail key and head key are 0; therefore, we consider that head0 = tail0 = 0.

Notice that since only ss executes Algorithm 4, we have the following.

Observation 8. Instances of Algorithm 4 are executed sequentially by ss, i.e. their execution
does not overlap.

By inspection of Algorithm 4, we have that for some instance of it, either lines 3 - 4, or
lines 7 - 9, or lines 10 - 11 are executed, where either tail key or head key is incremented. Then,
by the way linearization points are assigned, and by Observation 8, we have the following.

Observation 9. Given two configurations Ci, Ci+1, i ≥ 0, in α, there is at most one step in
the execution interval between Ci and Ci+1 that modifies either head key or tail key.

More specifically, regarding the values of headi and taili, we obtain the following lemma.

Lemma 10. For each integer i ≥ 1, the following hold at Ci:
1. If opi is an enqueue operation, then taili = taili−1 + 1 and headi = headi−1.
2. If opi is a dequeue operation and headi−1 ̸= taili−1, then headi = headi−1 +1 and taili =

taili−1; otherwise headi = headi−1 and taili = taili−1.
3. headi ≤ taili.

Proof. We prove the claims by induction.
Base case. We prove the claims for i = 1. Assume first that op1 is an enqueue operation.

Then, the linearization point of op1 is placed in the configuration resulting from the execution
of line 5. By inspection of the pseudocode, we have that tail key is incremented by ss between
C0 and C1, before the linearization point of op1. Notice also that because of Observation 8

13

no process other than ss modifies neither tail key nor head key between C0 and C1. Thus,
tail1 = tail0 + 1. The value of head key is not modified by enqueue operations (lines 3 - 4),
therefore head1 = head0. Thus, claim 1 holds.

Next, assume that op1 is a dequeue operation. Then, the linearization point of op1 may
be placed at the configuration resulting from the execution of line 11 or line 9, whichever is
executed by ss for it. By inspection of the pseudocode (line 7), line 11 is executed only in
case head0 < tail0. Since head0 = tail0 = 0, line 11 is not executed and op1 is linearized
at the configuration resulting from the execution of line 9. By the pseudocode, line 8 and by
Observation 8, head key is incremented by 1 in the execution step preceding the linearization
point of op1, i.e. between configurations C0 and C1. Thus, head1 = head0 + 1. The value of
tail key is not modified by dequeue operations (lines 7 - 8), therefore tail1 = tail0. By the
above, claim 2 also holds.

From the previous reasoning, we have that in case op1 is an enqueue operation, then tail1 = 1
and head1 = 0, while if op1 is a dequeue operation, tail1 = 0 and head1 = 0. In either case,
head1 ≤ tail1, thus claim 3 also holds.

Hypothesis. Fix any i, i ≥ 1, and assume that the claims hold for i− 1.
Induction Step. We prove that the claims also hold for i. First, assume that opi is an

enqueue operation. Then, the linearization point of opi is placed in the configuration result-
ing from the execution of line 5. By inspection of the pseudocode, we have that tail key is
incremented by ss between Ci−1 and Ci, before the linearization point of opi. Notice also that
because of Observation 8 no process other than ss modifies neither tail key nor head key be-
tween Ci−1 and Ci. Thus, taili = taili−1+1. The value of head key is not modified by enqueue
operations (lines 3 - 4), therefore headi = headi−1. Thus, claim 1 holds.

Next, assume that opi is a dequeue operation. Then, the linearization point of opi may
be placed at the configuration resulting from the execution of line 11 or line 9, whichever is
executed by ss for it. Let opi be linearized at the execution of line 11. By the induction
hypothesis, headi−1 ≤ taili−1. By inspection of the pseudocode (line 7), line 11 is executed
only in the case that headi−1 = taili−1. By inspection of the pseudocode (lines 7 - 11) and by
Observation 8, it follows that in this case head key is not modified in the execution interval
between Ci−1 and Ci. Therefore, headi = headi−1. Since a dequeue operation does not modify
tail key, it also holds that taili = taili−1. Finally, let opi be linearized at the execution of line 9.
In this case, by the induction hypothesis and reasoning as previously, headi−1 ̸= taili−1. By
the pseudocode, line 8 and by Observation 8, head key is incremented by 1 in the computation
step preceding the linearization point of opi, i.e. between configurations Ci−1 and Ci. Thus,
headi = headi−1 + 1. The value of tail key is not modified by dequeue operations (lines 7 - 8),
therefore taili = taili−1. By the above, claim 2 also holds.

By the induction hypothesis, we have that headi−1 ≤ taili−1. From the previous reasoning,
we have that in case opi is an enqueue operation, then taili = taili−1 + 1 and headi = headi−1.
It follows that headi ≤ taili. On the other hand, if opi is a dequeue operation, taili = taili−1

and headi = headi−1 in case headi−1 = taili−1. Otherwise, in case headi−1 < taili−1, then
taili = taili−1 and headi = headi−1 + 1. Since headi−1 < taili−1, and since both head key
and tail key are both incremented in steps of 1, it follows that headi ≤ taili. In either of the
previous cases, claim 3 also holds.

Let σ be the sequential execution that results by executing the operations in L sequentially,
in the order of their linearization points, starting from an initial configuration in which the
queue is empty. Let σi be the prefix of σ that contains the operations in Li. Let Qi be the
state of the queue after the operations of Li have been applied to an empty queue sequentially.
Let the size of Qi (i.e. the number of elements contained in Qi) be di. Denote by slji the j-th

14

element of Qi, 1 ≤ j ≤ di. Consider a sequence of elements S. If e is the first element of S, we
denote by S \ e the suffix of S that results by removing only element e from the first position
of S. We further denote by S′ = S · e the sequence that results by appending some element e
to the end of S.

By inspection of the pseudocode, it follows that:

Observation 11. If opi is an enqueue operation, it inserts a pair ⟨data, key⟩ in the directory,
where data is the argument of ClientEnqueue executed for opi, and key = taili. If opi is a
dequeue operation then, if headi ̸= taili, it removes a pair ⟨data, key⟩ with key = headi from
the directory and returns data; if headi = taili, it does not remove any pair from the directory
and returns ⊥.

Lemma 12. For each i, let mi be the number of enqueue operations in Li and ki be the number
of successful dequeue operations in Li. Then:

1. Qi contains the elements inserted by the mi − ki last enqueue operations in Li, in order,
2. taili = mi,
3. headi = ki,
4. if opi is a dequeue operation, then it returns the same response in α and σi. If opi is a

successful dequeue operation that removes the pair ⟨data,−⟩, from the directory, then its
response is the data inserted to the queue by the ki-th enqueue operation in Li, whereas if
opi is unsuccessful, then it returns ⊥.

Proof. We prove the claims by induction.
Base case. We prove the claim for i = 1. First, assume that op1 is an enqueue operation.

Then, m1 = 1 and k1 = 0, and Q1 contains a single element, namely the element inserted by
the (m1 − k1)-th enqueue operation in L1, which is op1, thus claim 1 holds. By Lemma 10, we
have that at C1, tail1 = tail0+1 = 1 = m1, and head1 = head0 = 0 = k1. Thus, claims 2 and 3
also hold. Claim 4 holds trivially.

Next, assume that op1 is a dequeue operation. Thus, m1 = 0. By inspection of the pseu-
docode, head0 = tail0 = 0. By the way linearization points are assigned and by Observation 9,
op1 is the operation for which the code of ss is executed for the first time. Thus, line 11 is
executed and op1 is unsuccessful. Therefore, k1 = 0. By Lemma 10, head1 = 0 and tail1 = 0.
It follows that head1 = m1 and tail1 = k1. Thus, claims 2 and 3 hold.

Since op1 is the first operation in σ and since it is a dequeue operation, it is an unsuccessful
dequeue operation in σ. Since Q0 is empty, it follows that Q1 = ∅, so claim 1 follows. By
inspection of the pseudocode, op1 returns ⊥ in α. Since op1 is an unsuccessful dequeue in σ, it
also returns ⊥ in σ. Thus, claim 4 also holds.

Hypothesis. Fix any i, i > 0 and assume that the claims hold for i− 1.
Induction step. We prove that the claims also hold for i. First, assume that opi is an

enqueue operation and let the data argument of ClientEnqueue for opi be e. By the induction
hypothesis, Qi−1 contains the elements inserted by the mi−1 − ki−1 last enqueue operations in
Li−1, in order. Since opi is an enqueue operation, it follows that Qi = Qi−1 · e, mi = mi−1 + 1,
and claim 1 holds. Moreover, ki = ki−1. By Lemma 10, we have that taili = taili−1 + 1 and
that headi = headi−1. By the induction hypothesis, taili−1 = mi−1 and headi = ki−1. It follows
that taili = mi−1 + 1 = mi and that headi = headi−1 = ki−1 = ki. Thus, claims 2 and 3 also
hold. Claim 4 holds trivially.

Now let opi be a dequeue operation. First, assume that opi is a successful dequeue operation,
i.e. ss executes line 9 for opi. By inspection of the pseudocode, by Observation 9 and the
way linearization points are assigned, it follows that when line 7 is executed, head key and
tail key have the values headi−1 and taili−1 respectively. Since line 9 is executed, it follows

15

that headi−1 < taili−1. By the induction hypothesis, headi−1 = ki−1 and taili−1 = mi−1.
Since opi is a dequeue operation, mi = mi−1 and ki = ki−1 + 1. By Lemma 10, we have
that taili = taili−1 and that headi = headi−1 + 1. So, taili = mi and headi = ki. Thus,
claims 2 and 3 hold.

By the induction hypothesis, Qi−1 contains the elements inserted by the mi−1 − ki−1 last
enqueue operations in Li−1. Since mi−1 − ki−1 = mi−1 − (ki − 1), Qi−1 contains mi−1 − ki + 1
elements. Since opi is a dequeue, it removes the first element of Qi−1, so Qi contains mi − ki
elements, and claim 1 follows.

Recall that headi−1 < taili−1. By the induction hypothesis (claims 2 and 3), it follows that
ki−1 < mi−1. Thus, Qi−1 is not empty and opi is a successful dequeue operation also in σ.

By the induction hypothesis, Qi−1 contains the elements inserted by the mi−1 − ki−1 =
mi− (ki−1) = mi−ki+1 last enqueue operations in Li−1, in ascending order from head to tail.
Since mi is the total number of successful enqueue operations in Li and ki the total number
of successful dequeue operations, this means that in σ, opi removes the element inserted to the
queue by the ki-th enqueue operation. By inspection of the pseudocode, the client removes the
key with value headi from the directory and returns the data that are associated with this key.
Since headi = ki, opi returns the data from a ⟨data, key⟩ pair it removes from the directory. By
inspection of the pseudocode, the key used to remove the data has the value headi. Therefore,
also in α, opi returns the data associated with the ki-th enqueue operation in Li, and claim 4
holds.

Assume now that opi is an unsuccessful dequeue operation, i.e. ss executes line 11 for opi. By
inspection of the pseudocode, by Observation 9 and the way linearization points are assigned, it
follows that when line 7 is executed, head key and tail key have the values headi−1 and taili−1

respectively. Since line 11 is executed, it follows that headi−1 = taili−1. By the induction
hypothesis, headi−1 = ki−1 and taili−1 = mi−1. Since opi is an unsuccessful dequeue operation,
mi = mi−1 and ki = ki−1. By Lemma 10, we have that in this case, taili = taili−1 and that
headi = headi−1. So, taili = mi and headi = ki. Thus, claims 2 and 3 hold. Furthermore, since
headi−1 = taili−1, it follows that mi−1 = ki−1, which means that Qi−1 is empty, and thus, opi
is unsuccessful in σ. As mi = mi−1 and ki = ki−1 and opi is unsuccessful, claim 1 holds. Since
opi is unsuccessful in α, it removes no ⟨data, key⟩ pair from the directory and returns ⊥. Thus,
claim 4 also holds.

From the above lemmas we have the following:

Theorem 13. The directory-based queue implementation is linearizable.

5.4 Queues with Special Functionality

Synchronous queue. A synchronous queue QS is an implementation of the queue data type.
Instead of storing elements, a synchronous queue matches instances of Dequeue() with instances
of Enqueue() operations. Thus, if ope is an instance of an Enqueue(x,QS) operation and opd
an instance of a Dequeue(QS) such that opd returns the element x enqueued by ope, then a
synchronous queue ensures that the execution intervals of ope and opd are overlapping.

In order to derive a distributed synchronous queue from the directory-based queue proposed
here, ss must respond to a dequeue request with the value of head and increment head, even
if head = tail. Moreover, ss must use a local queue to store active enqueue requests together
with the keys it has assigned to them (notice that there can be no more such requests that
the number of clients); ss must send the key k for each such enqueue request to the client that
initiated it, at the time that head becomes equal to k. In this way, the execution interval of

16

an enqueue operation for element e overlaps that of the dequeue operation which gets e as a
response, as specified by the semantics of a synchronous queue.

Delay queue. A delay queue QD implements the queue abstract data type. Each element e
of a delay queue is associated with a delay value te that represents the time that e must remain
in the queue before it can be removed from it. Thus, an Enqueue(e, te, QD) inserts an element
e with time-out value te to QS . Dequeue(QD) returns the element e residing at the head of
QD if te has expired and blocks (or performs spinning) if this is not the case. Notice that this
implementation can easily be provided by associating each element inserted in the directory
with a time-out value. We also have to change the way that the directory works so that it takes
into consideration the delay of each element before removing it.

5.5 Directory-Based Double-Ended Queue (Deque)

The implementation of the directory-based deque follows similar principles as the stack and
queue implementations. In order to implement a deque, ss also maintains two counters, head
and tail, which store the key associated with the first and the last, respectively, element in
the deque. However, in this case, counters head and tail may store negative integers and are
incremented or decremented based on the operation to be performed.

5.5.1 Algorithm Description

Event-driven pseudocode for the synchronizer ss is presented in Algorithm 7; ss now performs
a combination of actions presented for the synchronizers of the stack and the queue implemen-
tations (Algorithms 1 and 4).

The synchronizer ss has two counters, head key and tail key (line 1), that store the key
associated with the first and the last, respectively, element in the deque. The head key is
modified when operations targeting the front are received by ss and the tail key is modified
when operations targeting the back are received by ss. Because each endpoint of a deque
behaves as a stack, the actions for enqueuing and dequeuing are similar as in Algorithm 1.

17

Algorithm 7 Events triggered in the syn-
chronizer of the directory-based deque.

1 int head key = 0, tail key = 0;

2 a message ⟨op, cid⟩ is received:
3 switch (op) {
4 case ENQ T:
5 tail key ++;
6 send(cid, tail key);
7 break;
8 case DEQ T:
9 if (tail key == head key) {
10 send(cid, NACK);
11 } else {
12 do {
13 status = DirDelete(tail key);
14 } while (status == ⊥);
15 tail key −−;
16 send(cid, status);

}
17 break;
18 case ENQ H:
19 send(cid, head key);
20 head key −−;
21 break;
22 case DEQ H:
23 if (tail key == head key) {
24 send(cid, NACK);
25 } else {
26 head key ++;
27 do {
28 status = DirDelete(head key);
29 } while (status == ⊥);
30 send(cid, status);
31 }
32 break;

}

Upon a message receipt, if ss receives a request ENQ T (line 4) it increments tail key by one
(line 5), and then sends the current value of tail key to the client (line 6). The client uses
the value that ss sends to it, as the key for the data to insert in the directory. Likewise, if ss
receives a request ENQ H (line 18), it sends the current value of head key to the client (line 19),
and then decrements head key by one (line 20).

When a message of type DEQ T arrives (line 8), ss first checks whether the deque is empty
(line 9). If this is so, ss sends a NACK to the client (line 10). Otherwise, the synchronizer
repeatedly calls DirDelete(tail key) to remove the element corresponding to a key equal to
the value of tail key from the directory (line 13), and then decrements tail key (line 15). Finally,
ss sends the data to the client (line 16). The synchronizer performs similar actions for a DEQ H

message, but instead of decrementing the tail key, it increments the head key (line 26).
The code for the clients operations for enqueue, is presented in Algorithm 8. For enqueuing

to the back of the deque, the client sends an ENQ T message to ss and blocks waiting for its
response. When it receives the unique key from ss , the client is free to insert the element lazily.

18

Algorithm 8 Enqueue operations for a
client of the directory-based deque.

33 void EnqueueTail(int cid, Data data) {
34 sid = get the synchronizer id;
35 send(sid, ⟨ENQ T, cid⟩);
36 key = receive(sid);
37 DirInsert(key, data);

}
38

39 void EnqueueHead(int cid, Data data) {
40 sid = get the synchronizer id;
41 send(sid, ⟨ENQ H, cid⟩);
42 key = receive(sid);
43 DirInsert(key, data);
44 }

Algorithm 9 Dequeue operation for a
client of the directory-based deque.

45 Data DequeueTail(int cid) {
46 sid = get the synchronizer id;
47 send(sid, ⟨DEQ T, cid⟩);
48 status = receive(sid);
49 return status;

}

50 Data DequeueHead(int cid) {
51 sid = get the synchronizer id;
52 send(sid, ⟨DEQ H, cid⟩);
53 status = receive(sid);
54 return status;

}

For enqueuing to the front of the deque, the client sends an ENQ H message and performs the
same actions as for enqueuing to the back.

The client code for dequeue to the front and dequeue to the back, is presented in Algorithm
9. For dequeuing to the back of the deque, the client sends an DEQ T message to ss and blocks
waiting for its response. The synchronizer performs the dequeue itself and sends back the
response. For dequeuing to the front of the deque, the client sends an DEQ H message and
performs the same actions as for enqueue to the back.

5.5.2 Proof of Correctness

Let α be an execution of the directory-based deque implementation. We assign linearization
points to enqueue and dequeue operations in α as follows:

The linearization point of an enqueue back operation op is placed in the configuration
resulting from the execution of line 6 for op by ss. The linearization point of a dequeue back
operation op is placed in the configuration resulting from the execution of either line 10 or line 16
for op (whichever is executed) by ss. The linearization point of an enqueue front operation op is
placed in the configuration resulting from the execution of line 19 for op by ss. The linearization
point of a dequeue front operation op is placed in the configuration resulting from the execution
of either line 24 or line 30 for op (whichever is executed) by ss.

Lemma 14. The linearization point of an enqueue (dequeue) operation op executed by client c
is placed within its execution interval.

Proof. Assume that op is an enqueue front (back) operation and let c be the client that invokes
it. After the invocation of op, c sends a message to ss (line 41) and awaits a response from it.
Recall that routine receive() (line 42) blocks until a message is received. The linearization
point of op is placed at the configuration resulting from the execution of line 19 for op by
ss. This line is executed after the request by c is received, i.e. after c invokes EnqueueHead

(EnqueueTail). Furthermore, it is executed before c receives the response by the server and
thus, before EnqueueHead (EnqueueTail) returns. Therefore, the linearization point is included
in the execution interval of enqueue front (back).

The argumentation regarding dequeue front (back) operations is similar.

19

Denote by L the sequence of operations which have been assigned linearization points in α in
the order determined by their linearization points. Let Ci be the configuration in which the i-th
operation opi of L is linearized; denote by C0 the initial configuration. Denote by αi, the prefix
of α which ends with Ci and let Li be the prefix of L up until the operation that is linearized at
Ci. We denote by headi the value of the local variable head key of ss at configuration Ci, and
by taili the value of the local variable tail key of ss at Ci. By the pseudocode, we have that
the initial values of tail key and head key are 0; therefore, we consider that head0 = tail0 = 0.

By analogous reasoning as the one followed in the case of the directory-based queue, inspec-
tion of the pseudocode leads to the following observations.

Observation 15. Instances of Algorithm 7 are executed sequentially, i.e. their execution does
not overlap.

Observation 16. Given two configurations Ci, Ci+1, i ≥ 0, in α, there is at most one step in
the execution interval between Ci and Ci+1 that modifies tail key.

Denote byDi the sequential deque that results if the operations of Li are applied sequentially
to an initially empty queue. Let the size of Di (i.e. the number of elements contained in Di) at
Ci be di. Denote by slji the j-th element of Di, 1 ≤ j ≤ di. Each element of Di is a pair of type
⟨key, data⟩ where the elements from the bottommost to the topmost are assigned integer keys as
follows: Let fi be the key of element sl1i and li be the key of element sldii in some configuration

Ci. We denote the key field of the ⟨data, key⟩ pair that comprises some element slji , 1 ≤ j ≤ di,

of Di by slji .key. Then, if di > 1, slj+1
i .key = slji .key + 1, 1 ≤ j ≤ di. We consider that if op1

is an enqueue front operation, then f1 = l1 = 0, while if it is an enqueue back operation, then
f1 = l1 = 1. Notice that li − fi + 1 = di.

Consider a sequence of elements S. If e is the first element of S, we denote by S \f e the
suffix of S that results by removing only element e from the first position of S. If e is the last
element of S, we denote by S \b e the prefix of S that results by removing only element e from
the last position of S. If e is an element not included in S, we denote by S′ = S · e the sequence
that results by appending element e to the end of S, and by S′′ = e ·S the sequence that results
by prefixing S with element e.

Lemma 17. For each integer i ≥ 1, the following hold at Ci:
1. If opi is an enqueue back operation, then taili = taili−1 + 1.
2. If opi is a dequeue back operation, then it holds that taili = taili−1−1 if taili−1 ̸= headi−1;

otherwise, taili = taili−1.

Proof. Fix any i ≥ 1. If opi is an enqueue back operation, the linearization point of opi is placed
at the configuration resulting from the execution of line 6. By inspection of the pseudocode
(lines 5-6), we have that in the instance of Algorithm 7 executed for opi, tail key is incremented
before it is sent to the client c that invoked opi. By Observations 15 and 16, this is the only
increment that occurs on tail key between Ci−1 and Ci. Thus, Claim 1 holds.

If opi is a dequeue back operation, the linearization point of opi is placed either at the
configuration resulting from the execution of line 10 or at the configuration resulting from the
execution of line 16. Let opi−1 be a dequeue back operation that is linearized at the execution
of line 10. By inspection of the pseudocode (line 9), this occurs only in case headi−1 = taili−1.
Since the execution of this line does not modify tail key, taili = taili−1 and Claim 2 holds.

Now let opi be a dequeue back operation that is linearized at the configuration resulting
from the execution of line 16. By the pseudocode (lines 15-16) and by Observation 8, it follows
that the execution of line 15 is the only step in which tail key is modified in the execution
interval between Ci−1 and Ci. Since line 16 is executed, it holds that the condition of the if

20

clause of line 9 evaluates to false, i.e. it holds that headi−1 ̸= taili−1. Furthermore, because
of the execution of line 15, taili = taili−1 − 1. Thus, Claim 2 holds.

Lemma 18. For each integer i ≥ 1, the following hold at Ci:
1. In case opi is an enqueue front operation, then, if i > 1 and opi−1 is an enqueue front

operation, it holds that headi = headi−1 − 1; otherwise headi = headi−1.
2. In case opi is a dequeue front operation, then, if headi−1 ̸= taili−1, i > 1, and opi−1 is not

an enqueue front operation, it holds that headi = headi−1+1 ; otherwise headi = headi−1.

Proof. Fix any i ≥ 1. Let opi be an enqueue front operation. If i = 1, then by inspection of
the pseudocode, we have that head key is not modified before the execution of line 19. Since
head0 = 0 and the execution of line 19 does not modify head key, it follows that head1 = 0 =
head0 and Claim 1 holds. Now let i > 1. By inspection of the pseudocode and by Observation
15 we have that head key is not modified by enqueue back and dequeue back operations. By
the pseudocode, Observation 15 and the way linearization points are assigned, we have that
although head key is modified by dequeue front operations only before the configuration in
which the operation is linearized, it is modified by enqueue front operations in the step (line
20) right after the configuration in which an enqueue front operation is linearized. Therefore,
if opi−1 is an enqueue front operation, then head key is decremented once (line 20) in the
execution interval between Ci−1 and Ci. Thus, if opi−1 is an enqueue front operation, then
headi = headi−1 + 1, while if opi−1 is any other type of operation, headi = headi−1. Thus,
Claim 1 holds.

Now let opi be a dequeue operation. If i = 1, then by inspection of the pseudocode, we
have that head key is not modified before the execution of line 15. By the pseudocode and
by Observation 15, tail key is not modified as well before the execution of line 15. Thus,
head0 = 0 = tail0 and the if condition of line 9 evaluates to true. Then, op1 is linearized in
the configuration resulting from the execution of line 24. Notice that the execution of this line
does not modify head key. It follows that head1 = 0 = head0 and that Claim 2 holds.

Now let i > 1. The linearization point of opi may be placed at the configuration resulting
from the execution of line 24 or line 30, whichever is executed by ss for it. Let the lineariza-
tion point be placed in the configuration resulting from the execution of line 24. In that case,
headi−1 = taili−1. Notice that the execution of that line does not modify head key. Therefore,
headi = headi−1, and Claim 2 holds. Now let the linearization point be placed in the config-
uration resulting from the execution of line 30. In case opi−1 is an enqueue back or dequeue
tail operation, head key is not modified by it. Therefore, since line 26 is executed before line
30, headi = headi+1 + 1 and Claim 2 holds. The same also holds if opi−1 is a dequeue front
operation. If opi−1 is an enqueue front operation, then by inspection of the pseudocode (line
20), we have that head key is decremented in the step following the configuration in which
opi−1 is linearized. Therefore, in this case and by Observation 15, head key is decremented and
then incremented once in the execution interval between Ci−1 and Ci. This in turn implies that
headi = headi−1 − 1 + 1 = headi−1 and Claim 2 holds.

Recall that slji .key = fi+j−1 or slji .key = li−j+1 . By inspection of the pseudocode (lines
19/6), we see that, when opi is an enqueue front/back operation, headi/taili is sent by ss to the
client c that invoked opi. By further inspection of the pseudocode (lines 42-43/37-37), we see
that c uses headi/taili as the key field of the element it enqueues, i.e. uses it as argument for
auxiliary function DirInsert()/DirDelete(). When opi is a dequeue front/back operation, by
inspection of the pseudocode (lines 24/10), we have that when head key = tail key, ss sends
NACK to c, and that when c receives NACK, it does not enqueue any element and instead, returns
⊥ (lines 53-54/48-49). When head key ̸= tail key, ss uses headi/(taili + 1) as the key field in

21

order to determine which element to dequeue (lines 28/13). Then, the following observation
holds.

Observation 19. If opi is an enqueue back operation, it inserts a pair with key = taili into
the directory. If opi is a dequeue back operation, then, if headi ̸= taili, it removes a pair with
key = taili+1 from the directory; if headi = taili, it does not remove any pair from the directory.
If opi is an enqueue front operation, it inserts a pair with key = headi into the directory. If opi
is a dequeue front operation then, if headi ̸= taili, it removes a pair with key = headi from the
directory; if headi = taili, it does not remove any pair from the directory.

Lemma 20. At Ci, i ≥ 1, the following hold:
1. If opi is an enqueue back operation, then taili = sldii .key.

2. If opi is a dequeue back operation, then if Di−1 ̸= ϵ, taili = sl
di−1

i−1 .key. If Di−1 = ϵ, then
headi = taili.

3. If opi is an enqueue front operation, then headi = sl1i .key.
4. If opi is a dequeue front operation, then if Di−1 ̸= ϵ, headi = sl1i−1.key. If Di−1 = ϵ, then

headi = taili.

Proof. We prove the claims by induction.
Base case. We prove the claim for i = 1.
Consider the case where op1 is an enqueue back operation. Then, d1 = 1 and by definition,

D1 contains only the pair ⟨1, data⟩. By Observation 15, it is the first operation in α for which
an instance of Algorithm 7 is executed by ss. Therefore, by Lemma 17, tail1 = tail0 + 1 = 1.
Thus, tail1 = sld11 .key and Claim 1 holds.

Next, consider the case where op1 is a dequeue back operation. By Observation 15, op1 is
the first operation in α for which an instance of Algorithm 7 is executed by ss. Notice that
then, Q1 = ϵ. Therefore, by Lemma 17, tail1 = tail0 = 0. Since head key is not modified by
dequeue back operations, head1 = head0 = 0. Thus, head1 = tail1, so Claim 2 holds.

Next, consider the case where op1 is an enqueue front operation. Again, by definition, d1 = 1
andD1 contains only the pair ⟨0, data⟩. By Observation 15, it is the first operation in α for which
an instance of Algorithm 7 is executed by ss. Therefore, by Lemma 18, head1 = head0 = 0.
Thus, head1 = sl11.key and Claim 3 holds.

Finally, consider the case where op1 is a dequeue front operation. By Observation 15, op1
is the first operation in α for which an instance of Algorithm 7 is executed by ss. Notice that
then, Q1 = ϵ. Therefore, by Lemma 18, head1 = head0 = 0. Since tail key is not modified by
dequeue front operations, tail1 = tail0 = 0. Thus, head1 = tail1 and Claim 4 holds.

Hypothesis. Fix any i, i > 0 and assume that the lemma holds at Ci.
Induction step. We prove that the claims also hold at Ci+1. Assume that opi+1 is an

enqueue back operation. By the induction hypothesis, if opi is an enqueue back operation,
then sldii .key = taili = li. Similarly, if opi is a dequeue back operation, then by the induction

hypothesis, sl
di−1

i−1 .key = taili. Since the dequeue back operation removes the last element in

Di−1, it follows that the last element sldii of Di is sl
di−1

i−1 . Thus, here also, taili = sldii .key =
li. Notice that enqueue front and dequeue front operations do not modify tail key. Since
these types of operation do not affect the back of the sequential dequeue, it still holds that
taili = sldii .key = li. Since opi+1 is an enqueue back operation, by Lemma 17, we have that
taili+1 = taili + 1. By Observation 19, we have that the client c that initiated opi+1 inserts a

pair with key = taili+1 = taili + 1 into the directory. By definition, sl
di+1

i+1 .key = sldii .key + 1.

Thus, sl
di+1

i+1 .key = taili + 1, and Claim 1 holds.
Now assume that opi+1 is a dequeue back operation. We examine two cases. First, let

Di ̸= ϵ. By Lemma 17, it then holds that taili+1 = taili − 1. By Observation 19, we have that

22

a pair with key = taili+1 = taili − 1 is removed from the directory. By definition, we have
that Di+1 = Di \b sldii . Also by definition, we have that sldii .key = sldi−1

i .key + 1. Because of

opi+1, sl
di−1
i = sl

di+1

i+1 . Since taili+1 = taili − 1, Claim 2 holds. Now let Di = ϵ. In this case,
opi+1 cannot have any effect on the state of the deque. By inspection of the pseudocode, this
corresponds to the operation being linearized in the configuration resulting from the execution
of line 10. Notice that in order for this to be the case, the if condition of line 9 must evaluate
to true. This occurs if headi = taili, thus Claim 2 holds.

Next assume that opi+1 is an enqueue front operation. By the induction hypothesis, if opi
is an enqueue front operation, then sl1i .key = headi = fi. By Lemma 18, it holds then that
headi+1 = headi−1. Since opi+1 is an enqueue front operation, it prepends an element toDi and
therefore, sl1i = sl2i+1. By definition of Di+1, sl

1
i+1.key = sl2i+1.key−1. Since sl2i+1.key = headi,

sl1i+1.key = headi+1 and Claim 3 holds.
On the other hand, if opi is a dequeue front operation, then by the induction hypothesis,

sl1i−1.key = headi. By Lemma 18, it also follows that in this case, headi+1 = headi. Notice
that by definition, opi removes element sl1i−1 from Di−1. Then, for element sl1i of Di, by
definition, sl1i .key = sl1i−1.key + 1. This means that sl1i−1.key = headi = sl1i .key − 1. Since
headi+1 = headi, Claim 3 holds.

Notice that enqueue back and dequeue back operations do not modify head key.
Finally, assume that opi+1 is a dequeue front operation. We examine two cases. First, let

Di ̸= ϵ. By Lemma 18, it then holds that headi+1 = headi. By Observation 19, we have that
a pair with key = headi+1 = headi is removed from the directory. By definition, we have that
Di+1 = Di \b sl1i . Also by definition, we have that sl1i .key = sl2i .key − 1. Because of opi+1,
sl2i = sl1i+1. Since headi+1 = headi, Claim 4 holds. Now let Di = ϵ. In this case, opi+1 cannot
have any effect on the state of the deque. By inspection of the pseudocode, this corresponds
to the operation being linearized in the configuration resulting from the execution of line 24.
Notice that in order for this to be the case, the if condition of line 23 must evaluate to true.
This occurs if headi = taili, thus Claim 4 holds.

From the above lemma, we have the following corollary.

Corollary 21. Di = ϵ if and only if headi = taili.

Lemma 22. If opi is a dequeue back operation, then it returns the value of the field data of
sl

di−1

i−1 or ⊥ if Di−1 = ϵ.

Proof. Consider the case where Di−1 ̸= ϵ. By definition of Di, we have that Di = Di−1 \b sl
di−1

i−1 .
Let opj be the enqueue operation that is linearized before opi and inserts an element with key
taili+1 to the queue. Notice by the pseudocode (lines 12-16), that the parameter of DirDelete
is taili + 1. By the semantics of DirDelete, if at the point that the instance of DirDelete is
executed in the do - while loop of lines 12-13 for opi, the instance of DirInsert of opj has not
yet returned, then DirDelete returns ⟨⊥,−⟩.

By Lemma 17, taili+1 is the key of the last pair sl
di−1

i−1 in Di−1. Therefore, when DirDelete

returns a status ̸= ⊥, it holds that it returns the data field of sl
di−1

i−1 , the last element in Di−1.
Notice that this value is sent to the client c that invoked opi (line 16) and that c uses this value
as the return value of opi (lines 48-49). Thus, the claim holds.

Now consider the case where Di−1 = ϵ. Since, by Corollary 21, when this is the case,
headi = taili, NACK is sent c and, by inspection of the pseudocode, opi returns ⊥, i.e. the claim
holds.

In a similar fashion, we can prove the following.

23

Lemma 23. If opi is a dequeue front operation, then it returns the value of the field data of
sl1i−1 or ⊥ if Di−1 = ϵ.

From the above lemmas we have the following:

Theorem 24. The directory-based deque implementation is linearizable.

5.6 Hierarchical approach, Elimination, and Combining.

In this section, we outline how the hierarchical approach, described in Section ??, is applied to
the directory-based designs.

Each island master mi performs the necessary communication between the clients of its
island and ss. In the stack implementation, each island master applies elimination before
communicating with ss. To further reduce communication with ss, mi applies a technique
known as combining [61]. In the case of stack, once elimination has been applied, there is only
one type of requests that must be sent to the synchronizer; for all these requests, mi sends just
one message containing their number f and their type to the synchronizer. In case of push
operations, this method allows the synchronizer to directly increment top by f and respond
to mi with the value g that top had before the increment. Once mi receives g, it informs the
clients (which initiated these requests) that the keys for their requests are g, g+1, . . . , g+f −1.
In the case of queue, each message of mi to ss contains two counters counting the number of
active enqueue and dequeue requests from clients of island i. When ss receives such a message it
responds with a message containing the current values of tail and head. It then increments tail
and head by the value of the first and second counter, respectively. Server mi assigns unique
keys to active enqueue and dequeue operations, based on the value of tail and head it receives,
in a way similar as in stacks. Combining can be used for deques (in addition to elimination) in
ways similar to those described above.

6 Token-based Stacks, Queues, and Deques

We start with an informal description of the token-based technique that we present in this
section. We assume that the servers are numbered from 0 to NS − 1 and form a logical ring.
Each server has allocated a chunk of memory (e.g. one or a few pages) of a predetermined size,
where it stores elements of the implemented DS. A DS implementation employs (at least) one
token which identifies the server st, called the token server, at the memory chunk of which newly
inserted elements are stored. (A second token is needed in cases of queues and deques.) When
the chunk of memory allocated by the token server becomes full, the token server gives up its
role and appoints another (e.g. the next) server as the new token server. A client remembers
the server that served its last request and submits the next request it initiates to that server; so,
each response to a client contains the id of the server that served the client’s request. Servers
that do not have the token for handling a request, forward the request to subsequent servers;
this is done until the request reaches the appropriate token server. A server allocates a new
(additional) chunk of memory every time the token reaches it (after having completed one more
round of the ring) and gives up the token when this chunk becomes full.

Section 6.1 presents the details of the token-based distributed stack. The token-based queue
implementation appears in Section 6.2. Section 6.3 provides the token-based deque. We start
by presenting static versions of the implementations, i.e. versions in which the total memory
allocated for the data structure is predetermined during an execution and once it is exhausted
the data structure becomes full and no more insertions of elements can occur. We then describe
in Section 6.5, how to take dynamic versions of the data structures from their static analogs.

24

6.1 Token-Based Stack

To implement a distributed stack, each server uses its allocated memory chunk to maintain a
local stack, lstack. Initially, st is the server with id 0. To perform a push (or pop), a client
c sends a push (or pop) request to the server that has served c’s last request (or, initially, to
server 0) and awaits for a response. If this server is not the current token server at the time
that it receives the request, it forwards the request to its next or previous server, depending on
whether its local stack is full or empty, respectively. This is repeated until the request reaches
the server st that has the token which pushes the new element onto its local stack and sends an
ACK to c. If st’s local stack does not have free space to accommodate the new element, it sends
the push request of c, together with an indication that it gives up its token, to the next server.
POP is treated by st in a similar way.

25

6.1.1 Algorithm Description

Algorithm 10 Events triggered in a server
of the token-based stack.

1 LocalStack lstack = ∅;
2 int my sid; /* each server has a unique id */

3 int token = 0;

4 a message ⟨op, data, id, tk⟩ is received:
5 switch (op) {
6 case PUSH:
7 if (tk == TOKEN) token = my sid;
8 if (token ̸= my sid) {
9 send(token, ⟨op, data, id, tk⟩);
10 break;

}
11 if (!IsFull(lstack)) {
12 push(lstack, data);
13 send(id, ⟨ACK,my sid⟩);
14 } else if (my sid ̸= NS-1) {
15 token = find next server(my sid);
16 send(token, ⟨op, data, id,TOKEN⟩);
17 } else /* It’s the last server in the order, thus the stack is full */

18 send(id, ⟨NACK,my sid⟩);
19 break;
20 case POP:
21 if (tk == TOKEN) token = my sid;
22 if (token ̸= my sid) {
23 send(token, ⟨op, data, id, tk⟩);
24 break;

}
25 if (!IsEmpty(lstack)) {
26 data = pop(lstack);
27 send(id, ⟨data,my sid⟩);
28 } else if (my sid ̸= 0) {
29 token = find previous server(my sid);
30 send(token, ⟨op, data, id,TOKEN⟩);
31 } else /* It’s the first server in the order, thus the stack is empty */

32 send(id, ⟨NACK,my sid⟩);
33 break;

}

Initially the elements are stored in the memory space allocated by server s0, the first server
in the ring. At this point, s0 is the token server; the token server manages the top of the stack.
Once the memory chunk of the token server becomes full, the token server notifies the next
server (s1) in the ring to become the new token server.

The pseudocode for the server is presented in Algorithm 10. Each server s, apart from a
local stack (lstack), maintains also a local variable token which identifies whether s is the token
server. The messages that are transmitted during the execution are of type PUSH and POP,

26

Algorithm 11 Push operation for a client
of the token-based stack.

34 sid = 0;
35 Data ClientPush(int cid, Data data) {
36 send(sid, ⟨PUSH, data, cid,⊥⟩);
37 ⟨status, sid⟩ = receive();
38 return status;

}

Algorithm 12 Pop operation for a client
of the token-based stack.

39 sid = 0;
40 Data ClientPop(int cid) {
41 send(sid, ⟨POP,⊥, cid,⊥⟩);
42 ⟨status, sid⟩ = receive();
43 return status;

}

which are sent from clients that want to perform the mentioned operation to the servers, or are
forwarded from any server towards the token server. Each message has four fields: (1) op with
the operation to be performed, (2) data, containing data in case of ENQ and ⊥ otherwise, (3) id
that contains the id of the sender and (4) a one-bit flag tk which is set to TOKEN only when a
forwarded message denotes also a token transition.

If the message is of type PUSH (line 6), s first checks whether the message contains a token
transition. If tk is marked with TOKEN, s changes the token variable to contain its id (line 7).
If s is not a token server, it just forwards the message to the next server (line 9). Otherwise, it
checks if there is free space in lstack to store the new request (line 11). If there is such space, the
server pushes the data to the stack, and sends back an ACK to the client. In this implementation,
the push() function (line 12) does not need to return any value, since the check for memory
space has already been performed by the server on line 11, hence push() is always successful.

If s does not have any free space, it must notify the next server to become the new token
server. More specifically, if s is not the server with id NS− 1 (line 14), it forwards to the next
server the PUSH message it received from the client, after setting the tk field to TOKEN (line 16).
On the other hand, if s is the server with id NS− 1, all previous servers have no memory space
available to store a stack element. In this case, s sends back to the client a message NACK(line
18).

If the message is of type POP (line 20) similar actions take place: s checks whether the message
contains a token transition and if its true, it changes its local variable token appropriately. Then
s checks if it is the token server (line 22). If not, it just forwards the message towards the server
it considers as the token server (line 23). If s is the token server, it checks if its local stack is
empty (line 25). If it is not empty, the pop operation can be executed normally. At the end of
the operation, s sends to the client the data of the previous top element (line 27). In case of
an empty local stack, if s is not s0 (line 28), it forwards to the previous server the client’s POP
message, after setting the tk field to TOKEN (line 30). On the other hand, if the server that
received the POP request is s0 (id == 0), then all the servers have empty stacks and the server
sends back to the client a NACK message (line 32).

The clients execute the operations push and pop, by calling the functions ClientPush() and
ClientPop(), respectively. Each of these functions sends a message to the server. Initially, the
clients forward their requests to s0. Because the server that maintains the top element might
change though, the clients update the sid variable through a lazy mechanism. When a client c
wants to perform an operation, it sends a request to the server with id equal to the value of sid
(lines 34 and 39). If the message was sent to an incorrect server, it is forwarded by the servers
till it reaches the server that holds the token. That server is going to respond with the status
value of the operation and with the its id. This way, c updates the variable sid.

During the execution of the ClientPush() function, described in Algorithm 11, the client

27

sends a PUSH message to the server with id sid (line 36). It then, waits for its response (line
37). When the client receives the response, it updates the sid variable (line 37) and returns the
status. The status is either ACK for a successful push, or NACK for a full stack.

The ClientPop() function operates in a similar fashion. The client sends a POP message to
the server with id sid (line 41). It then, waits for its response (line 42). The server responds
with a NACK (for empty queue), or with the value of the top element (otherwise). The server
also forwards its id, which is stored in client’s variable sid. The client finally, returns the status
value and terminates.

6.1.2 Proof of Correctness

Let α be an execution of the token-based stack algorithm presented in Algorithms 10, 11, and
12. Let op be any operation in α. We assign a linearization point to op by considering the
following cases:

• op is a push operation. Let st be the token server that responds to the client that initiated
op (i.e. the receive of line 37 in the execution of op receives a message from st). If
op returns ACK, the linearization point is placed at the configuration resulting from the
execution of line 13 by st for op. Otherwise, the linearization point of op is placed at the
configuration resulting from the execution of line 18 by st for op.

• op is a pop operation. Let st be the token server that responds to the client that initiated
op (line 42). If the operation returns NACK, the linearization point of op is placed at
the configuration resulting from the execution of line 32 by st for op. Otherwise, the
linearization point of op is placed at the configuration resulting from the execution of line
27 by st for op.

Denote by L the sequence of operations (which have been assigned linearization points) in the
order determined by their linearization points.

Lemma 25. The linearization point of a push (pop) operation op is placed in its execution
interval.

Proof Sketch. Assume that op is a push operation and let c be the client that invokes it. After
the invocation of op, c sends a message to some server s and awaits a response. Recall that
routine receive() (line 37) blocks until a message is received. The linearization point of op is
placed either in the configuration resulting from the execution of line 13 by st for op, where st
is the token server in this configuration, or in the configuration resulting from the execution of
line 18 by st for op.

Either of these lines is executed after the request by c is received, i.e. after c invokes
ClientPush. Furthermore, they are executed before c receives the response by st and thus,
before ClientPush returns. Therefore, the linearization point is inside the execution interval of
push.

The argumentation regarding pop operations is analogous.

Each server maintains a local variable token with initial value 0 (initially, the server with
id equal to 0 is the token server). Whenever some server si receives a TOKEN message, i.e. a
message with its tk field equal to TOKEN (line 7), the value of token is set to i. By inspection
of the pseudocode, it follows that the value of token is set to the id of the next server if the
local stack of si is full (line 15); then, a TOKEN message is sent to the next server (line 16).
Moreover, the value of token is set to the id of the previous server if the local stack lstack of si
is empty (line 28); then, a TOKEN message is sent to the previous server (lines 29-30). (Unless
the server is s0 in which case a NACK is sent to the client (line 32 but no TOKEN message to
any server.) Thus, the following observation holds.

28

Observation 26. At each configuration in α, there is at most one server si for which the local
variable token has the value i.

At each configuration C, the server si whose token variable is equal to i is referred to as the
token server at C.

Observation 27. A TOKEN message is sent from a server with id i, 0 ≤ i < NS − 1, to a
server with id i+ 1 only if the local stack of server i is full. A TOKEN message is sent from a
server with id i, 0 < i ≤ NS − 1, to a server with id i − 1 only when the local stack of server i
is empty.

By the pseudocode, namely the if clause of line 8 and the if clause of line 22, the following
observation holds.

Observation 28. Whenever a server si performs push and pop operations on its local stack
(lines 12 and 26), it holds that its local variable token is equal to i.

Let Ci be the configuration at which the i-th operation opi of L is linearized. Denote by
αi, the prefix of α which ends with Ci and let Li be the prefix of L up until the operation that
is linearized at Ci. Denote by Si the sequence of values that a sequential stack contains after
applying the sequence of operations in Li, in order, starting from an empty stack; let S0 = ϵ,
i.e. S0 is the empty sequence.

Lemma 29. For each i, i ≥ 0, if ski is the token server at Ci and lsji are the contents of the

local stack of server j, 0 ≤ j ≤ ki, at Ci, then it holds that Si = ls0i · ls1i · . . . · ls
ki
i at Ci.

Proof. We prove the claim by induction on i. The claim holds trivially for i = 0. Fix any i ≥ 0
and assume that at Ci, it holds that Si = ls0i · ls1i · . . . · ls

ki
i . We show that the claim holds for

i+ 1.
We first assume that opi+1 is a push operation initiated by some client c. Assume first that

ski = ski+1
. Then, by induction hypothesis, Si = ls0i · . . . · ls

ki
i . In case the local stack of ski is not

full, ski pushes the value vi+1 of field data of the request onto its local stack and responds to c.
Since no other change occurs to the local stacks of s0, . . . , ski from Ci to Ci+1, at Ci+1, it holds
that Si+1 = ls0i · . . . · lski · {vi+1} = ls0i · . . . · ls

ki
i+1. In case that the local stack of ski is full, since

ski = ski+1
and it is the token server, it follows that ski = sNS−1. In this case, ski responds with

a NACK to c and the local stack remains unchanged. Thus, it holds that Si+1 = ls0i · . . . · lski = Si.
Assume now that ski ̸= ski+1

. This implies that the local stack of ski is full just after Ci.
Observation 27 implies that ski forwarded the token to ski+1 in some configuration between Ci

and Ci+1. Notice that then, ski+1 = ski+1
. Observation 28 implies that the local stack of ski+1

is empty. Thus, the if condition of line 11 evaluates to true for server ski+1 and therefore,
it pushes the value vi+1 of opi+1 onto its local stack. Thus, at Ci+1, lski+1

i+1 = {vi+1}. By

definition, Si+1 = Si · {vi+1}. Therefore, Si+1 = ls0i · . . . · ls
ki+1
i+1 . And since by Observations 26

and 28, the contents of the local stacks of servers other than ki +1 do not change, it holds that
Si+1 = ls0i+1 · . . . · ls

ki+1
i+1 = ls0i+1 · . . . · ls

ki+1

i+1 .
The reasoning for the case where opi+1 is an instance of a pop operation is symmetrical.

From the above lemmas and observations, we have the following.

Theorem 30. The token-based distributed stack implementation is linearizable. The time com-
plexity and the communication complexity of each operation op is O(NS).

29

6.2 Token-Based Queue

To implement a queue, two tokens are employed: at each point in time, there is a head token
server sh and a tail token server st. Initially, server 0 plays the role of both sh and st. Each
server sr, other than st (sh), that receives a request (directly) from a client c, it forwards the
request to the next server to ensure that it will either reach the appropriate token server or
return back to sr (after traversing all servers). Servers st and sh work in a way similar as server
st in stacks.

To prevent a request from being forwarded forever due to the completion of concurrent
requests which may cause the token(s) to keep advancing, each server keeps track of the request
that each client c (directly) sends to it, in a client table (there can be only one such request per
client). Server st (and/or sh) now reports the response to sr which forwards it to c. If sr receives
a response for a request recorded in its client table, it deletes the request from the client table.
If sr receives the token (stack, tail, or head), it serves each request (push and pop, enqueue,
or dequeue, respectively) in its client array and records its response. If a request, from those
included in sr’s client array, reaches sr again, sr sends the response it has calculated for it to
the client and removes it from its client array. Since the communication channels are FIFO, the
implementations ensures that all requests, their responses, and the appropriate tokens, move
from one server to the next, based on the servers’ ring order, until they reach their destination.
This is necessary to argue that the technique ensures termination for each request.

6.2.1 Algorithm Description

The queue implementation follows similar ideas to those of the token-based distributed stack,
presented in Section 6.1. However, the queue implementation employs two tokens, one for the
queue’s tail and one for the queue’s head, called head token and tail token, respectively. The
tokens for the global head and tail are initially held by s0. However, they can be reassigned
to other servers during the execution. If the local queue of the server that has the tail token
becomes full, the token is forwarded to the next server. Similarly, if the local queue of the server
that has the head token becomes empty, the head token is forwarded to the next server. If the
appropriate token server receives the request and serves it, it sends an ACK message back to the
server that initiated the forwarding. Then, the initial server responds to the client with an ACK

message, which also includes the id of the server that currently holds the token.
The clients in their initial state store the id of s0, which is the first server to hold the head

and tail tokens. The clients keep track of the servers that hold either token in a lazy way.
Specifically, a client updates its local variable (either enq sid or deq sid depending on whether
its current active operation is an enqueue or a dequeue, respectively) with the id of the token
server when it receives a server response.

In this scheme, a client request may be transmitted indefinitely from a server to the next
without ever reaching the appropriate token server. This occurs if both the head and the tail
tokens are forwarded indefinitely along the ring. Then, a continuous, never-ending race between
a forwarded message and the appropriate token server may occur. To avoid this scenario, we
do the following actions. When a server s receives a client’s request r, if it does not have the
appropriate token to serve it, it stores information about r in a local array before it forwards
it. Next time that the server receives the tail (head) token, it will serve all enqueue (dequeue)
requests. Notice that since channels preserve the FIFO order and servers process messages in
the order they arrive, the appropriate token will reach s earlier than the r. When s receives r,
it has already processed it; however, it is then that s sends the response for r to the client.

In Algorithm 13, we present the local variables of a server. Each server s holds its unique id
my sid and a local queue lqueue that stores its part of the queue. Also keeps two boolean flag

30

Algorithm 13 Token-based queue server’s local variables.

1 int my sid;
2 LocalQueue lqueue = ∅;
3 LocalArray clients = ∅; /* Array of three values: <op, data, isServed> */

4 boolean fullQueue = false; /* True when tail and head are in the same

server and tail is before head */

5 boolean hasHead; /* Initially hasHead and hasTail are true in server 0, and false in the rest */

6 boolean hasTail;

variables, (hasHead and hasTail), indicating whether s has the head token or the tail token,
and one more bit flag (fullQueue) indicating whether the queue is full. Finally, s has a local

Algorithm 14 Events triggered in a server of the token-based queue.

7 a message ⟨op, data, cid, sid, tk⟩ is received:
8 if (!clients[cid] AND clients[cid].isServed) { /* If message has been served earlier. */

9 send(cid, ⟨ACK, clients[cid].data, my sid⟩);
10 clients[cid] = ⊥;
11 } else {
12 switch (op) {
13 case ENQ:
14 if (tk == TAIL TOKEN) {
15 hasTail = true;
16 if (hasHead) fullQueue = true;
17 ServeOldEnqueues();

}
18 if (!hasTail) { /* Server does not have token */

19 nsid = find next server((my sid);
20 if (sid == −1) { /* From client. */

21 clients[cid] = ⟨ENQ, data, false⟩;
22 send(nsid, ⟨ENQ, data, cid,my sid,⊥⟩);
23 } else { /* From server. */

24 send(nsid, ⟨ENQ, data, cid, sid,⊥⟩);
}

25 } else if (!IsFull(lqueue)) { /* Server can enqueue. */

26 enqueue(lqueue, data);
27 if (sid == −1) /* From client. */

28 send(cid, ⟨ACK,⊥,my sid⟩);
29 else /* From server. */

30 send(sid, ⟨ACK,⊥, cid,my sid,⊥⟩);
31 } else if (fullQueue) { /* Global Queue full */

32 if (sid == -1) /* From client. */

33 send(cid, ⟨NACK,⊥,my sid⟩);
34 else /* From server */

35 send(sid, ⟨NACK,⊥, cid,my sid,⊥⟩);
36 } else { /* Server moves the tail token to the next server */

37 nsid = find next server(my sid);
38 fullQueue = false;
39 hasTail = false;
40 send(nsid, ⟨op, data, cid,my sid, TAIL TOKEN⟩);

}
41 break;

31

42 case DEQ:
43 if (tk == HEAD TOKEN) {
44 hasHead = true;
45 ServeOldDequeues();

}
46 if (!hasHead) {
47 nsid = find next server(my sid);
48 if (sid == −1) { /* From client */

49 clients[cid] = ⟨DEQ,⊥, false⟩;
50 send(nsid, ⟨DEQ,⊥, cid,my sid⟩);
51 } else { /* From server */

52 send(nsid, ⟨DEQ,⊥, cid, sid,⊥⟩);
}

53 } else if (!IsEmpty(lqueue)) { /* Server can dequeue. */

54 data = dequeue(lqueue);
55 if (sid == −1) /* From client */

56 send(cid, ⟨ACK, data,my sid⟩);
57 else /* From server */

58 send(sid, ⟨ACK, data, cid,my sid,⊥⟩);
59 } else if (hasTail AND !fullQueue) { /* Queue is empty */

60 if (sid == −1) /* From client */

61 send(cid, ⟨NACK,⊥,my sid⟩);
62 else /* From server */

63 send(sid, ⟨NACK,⊥, cid,my sid,⊥⟩);
64 } else { /* Server moves the head token to the next server */

65 nsid = find next server(my sid);
66 hasHead = false;
67 send(nsid, ⟨op,⊥, cid,my sid, HEAD TOKEN⟩);

}
68 break;
69 case ACK:
70 clients[cid] = ⊥;
71 send(cid, ⟨ACK, data, sid⟩);
72 break;
73 case NACK:
74 clients[cid] = ⊥;
75 send(cid, ⟨NACK,⊥, sid⟩);
76 break;

}
}

array of size n, where n is the maximum number of clients, used for storing all direct requests
from clients (called s’s clients array). In their initial state, all servers have fullQueue set to
false and their clients array and local queue empty. Also, all servers apart from server 0, have
both their flags hasHead and hasTail set to false, whereas in server 0, they are set to true,
as described above.

The messages sent to a server si are of type ENQ or DEQ, describing requests for enqueue or
dequeue operations, respectively, sent by either a server or a client, and ACK or NACK sent by
another server sj which executed a forwarded request, whose forwarding was initiated by si.
The token transition is encapsulated in a message of type ENQ or DEQ. The messages have five
fields: (1) op, which describes the type of the request (ENQ, DEQ, ACK or NACK) , (2) data, which
stores an element in case of ENQ, and ⊥ otherwise, (3) cid, which stores the id of the client

32

that issued the request, (4) sid which contains the id of the server if the message was sent by
a server, and -1 otherwise, and (5) tk, which contains TAIL TOKEN or HEAD TOKEN in forwarded
messages of type ENQ or DEQ, respectively, to indicate if an additional tail (or head, respectively)
token transition occurs, and it is equal to ⊥ otherwise.

Event-driven pseudocode for the server is presented in Algorithm 14. When a server s
receives a message of type ENQ (line 13), it first checks if it contains a token transfer from
another server (line 14). If it does, the server sets its token hasTail to true (line 15) and if it
also had the head token from a previous round, it changes fullQueue flag to true as well (line
16). Then, s serves all pending ENQ messages stored in its clients array (line 17).

Then, s continues to execute the ENQ request. It checks first whether it has the tail token.
If it does not (line 18), it finds the next server snext (line 19), to whom s is going to forward the
request. Afterwards, s sends the received request to snext (lines 22 and 24) and if that request
came directly from a client (line 20), s updates its clients array storing in it information about
this message (line 21).

If s has the token, then it attempts to serve the request. If s has remaining space in its
local queue (lqueue), it enqueues the given data and informs the appropriate server with an ACK

message (lines 25-30). If the implemented queue is full, s sends a NACK message to the client
(line 31-35). In any remaining case, the server s must give the tail token to the next server (line
36). So, s forwards the ENQ message to snext, after encapsulating in the message the tail token
(line 40). After releasing the tail token, s changes the values of its local variables (hasTail and
fullQueue) to false.

In case a DEQ message is received (line 42), the actions performed by s are similar to those
for ENQ. Server s checks whether the request message contains a token transition (line 43). If
it does, the server sets its token hasHead to true (line 44). Then, s serves all pending DEQ

messages stored in its clients array (line 45), and then attempts to serve the request. If s does
not hold the head token (line 46), it finds the next server snext in the ring (line 47), to whom
s is going to forward the request. Afterwards, s sends the received request to snext (lines 50,
52) and if that request came directly from a client, s updates its clients array storing in it
information about this message (line 49).

If s has the head token, it does the following actions. If its local queue (lqueue) is not empty
(line 53), s performs a dequeue on its local queue and sends an ACK along with the dequeued
data to the appropriate server. If s holds both head and tail tokens, but no other server has a
queue element stored, and s’s lqueue is empty, it means that the global queue is empty (line
59). Thus, s sends a NACK message to the appropriate server. In the remaining cases, s must
forward its head token (line 64). Server s finds the next server snext (line 65), which is going to
receive the forwarded message and the head token transition. Server s sets the message field tk
to HEAD TOKEN and sends the message (line 67). After releasing the head token, s sets the value
of its local variable hasHead to false (line 66).

33

Algorithm 15 Auxiliary functions for a server
of the token-based queue.

77 void ServeOldEnqueues(void) {
78 if (!fullQueue) {
79 for each cid such that clients[cid].op == ENQ {
80 if (!IsFull(lqueue)) {
81 enqueue(lqueue, clients[cid].data);
82 clients[cid].isServed = true;
83 } } } }

84 void ServeOldDequeues(void) {
85 for each cid such that clients[cid].op == DEQ {
86 if (!IsEmpty(lqueue)) {
87 clients[cid].data = dequeue(lqueue);
88 clients[cid].isServed = true;

} } }

If s received a message of type ACK (line 69) or NACK (line 73), then s sets the entry cid of
its clients array to ⊥ (lines 70, 74) and sends an ACK (line 71) or a NACK (line 75) to that client.
The ACK and NACK messages a server s receives, are only sent by other servers and signify the
result of the execution of a forwarded message sent by s.

On lines 21 and 49, s stores the client request in its clients array when it does not hold the
appropriate token. A request recorded in the clients array is removed from the array either
when an ACK or NACK message is received for it (lines 70 and 74) or when the server receives again
the request (after a round-trip on the ring) (lines 9-10). Thus, the server, upon any message
receipt, first checks whether the message exists in its clients array and has already been served.
In case of ENQ s answers with an ACK message, whereas in case of DEQ s answers with ACK and
the dequeued data. Then, server s proceeds with the deletion of the entry in its clients array
(lines 9, 10).

Functions ServeOldEnqueues() and ServeOldDequeues() are described in more detail in
Algorithm 15. ServeOldEnqueues() (line 77) processes all ENQ requests stored in the clients
array, if the local queue has space (line 80). Similarly, ServeOldDequeues() (line 84) processes
all DEQ requests stored in the clients array, if the local queue is not empty (line 86).

The clients call the functions ClientEnqueue() and ClientDequeue(), presented in Algo-
rithm 16, in order to perform one of these operations. In more detail, during enqueue, the client
sends an ENQ message to the enq sid server, and waits for a response. When the client receives
the response, it returns it. Likewise, in ClientDequeue() the client sends a DEQ message to
server deq sid and blocks waiting for a response. When it receives the response, it returns it.

34

Algorithm 16 Enqueue and Dequeue op-
erations for a client of the token-based
queue.

89 int enq sid = 0;
90 int deq sid = 0;

91 Data ClientEnqueue(int cid, Data data) {
92 send(enq sid, ⟨ENQ, data, cid,−1⟩);
93 ⟨status,⊥, enq sid⟩ = receive(enq sid);
94 return status;

}

95 Data ClientDequeue(int cid) {
96 send(deq sid, ⟨DEQ,⊥, cid⟩);
97 ⟨status, data, deq sid⟩ = receive(deq sid);
98 return data;

}

6.2.2 Proof of Correctness

Let α be an execution of the token-based queue algorithm presented in Algorithms 14, 15, and
16. Each server maintains local boolean variables hasHead and hasTail, with initial values
false. Whenever some server si receives a TAIL TOKEN message, i.e. a message with its tk
field equal to TAIL TOKEN (line 14), the value of hasTail is set to true (line 15). By inspection
of the pseudocode, it follows that the value of hasTail is set to false if the local queue of si
is full (line 25, 36- 39); then, a TAIL TOKEN message is sent to the next server (line 40). The
same holds for hasHead and HEAD TOKEN messages, i.e. messages with their tk field equal to
HEAD TOKEN. Thus, the following observations holds.

Observation 31. At each configuration in α, there is at most one server for which the local
variable hasHead (hasTail) has the value true.

Observation 32. In some configuration C of α, TAIL TOKEN message is sent from a server sj,
0 ≤ j < NS− 1, to a server sk, where k = (j +1) mod NS only if the local queue of sj is full in
C. Similary, a HEAD TOKEN message is sent from sj to sk only if the local queue of sj is empty
in C.

By inspection of the pseudocode, we see that a server performs an enqueue (dequeue) op-
eration on its local queue lqueue either when executing line 26 (line 45) or when executing
ServeOldEnqueues (ServeOldDequeues). Further inspection of the pseudocode (lines 14-17,
lines 25-31, as well as lines 46-52, lines 53-59), shows that these lines are executed when
hasTail = true. Then, the following observation holds.

Observation 33. Whenever a server sj performs an enqueue (dequeue) operation on its local
queue, it holds that its local variable hasTail (hasHead) is equal to true.

By a straight-forward induction, the following lemma can be shown.

Lemma 34. The mailbox of a client in any configuration of α contains at most one incoming
message.

35

If hasTail = true (hasHead = true) for some server s in some configuration C, then we
say that s has the tail (head) token. The server that has the tail token is referred to as tail
token server. The server that has the head token is referred to as head token server.

Let op be any operation in α. We assign a linearization point to op by considering the
following cases:

• If op is an enqueue operation for which a tail token server executes an instance of Algorithm
14, then it is linearized in the configuration resulting from the execution of either line 26,
or line 81, or line 33, whichever is executed for op in that instance of Algorithm 14 by the
tail token server.

• If op is a dequeue operation for which a head token server executes an instance of Algorithm
14, then it is linearized in the configuration resulting from the execution of either line 54,
or line 87, or line 56, whichever is executed for op in that instance of Algorithm 14 by the
head token server.

Lemma 35. The linearization point of an enqueue (dequeue) operation op is placed in its
execution interval.

Proof. Assume that op is an enqueue operation and let c be the client that invokes it. After the
invocation of op, c sends a message to some server s (line 92) and awaits a response. Recall that
routine receive() (line 93) blocks until a message is received. The linearization point of op
is placed either in the configuration resulting from the execution of line 26 by st for op, in the
configuration resulting from the execution of line 33 by st for op, or in the configuration resulting
from the execution of line 81 by st for op. Notice that either of these lines is executed after
the request by c is received, i.e. after c invokes ClientEnqueue, and thus, after the execution
interval of op starts.

By definition, the execution interval of op terminates in the configuration resulting from the
execution of line 94. By inspection of the pseudocode, this line is executed after line 93, i.e.
after c receives a response by some server. In the following, we show that the linearization point
of op occurs before this response is sent to c.

Let sj be the server that c initially sends the request for op to. By observation of the
pseudocode, we see that c may either receive a response from sj if sj executes lines 28 or 33, or if
sj executes lines 70-71 or lines 74-75, or if sj executes line 9. To arrive at a contradiction, assume
that either of these lines is executed in α before the configuration in which the linearization
point of op is placed. Thus, a tail token server st executes lines 26, 81, or 33 in a configuration
following the execution of lines 28, or 33, or 70-71 or 74-75, or line 9 by sj . Since the algorithm is
event-driven, inspection of the pseudocode shows that in order for a tail token server to execute
these lines, it must receive a message containing he request for op either from a client or from
another server.

Assume first that a tail token server executes the algorithm after receiving a message con-
taining a request for op from a client. This is a contradiction, since, on one hand, c blocks
until receiving a response, and thus, does not sent further messages requesting op or any other
operation, and since op terminates after c receives the response by sj , and on the other hand,
any other request from any other client concerns a different operation op′.

Assume next that a tail token server executes the algorithm after receiving a message con-
taining the request for op from some other server. This is also a contradiction since inspection
of the pseudocode shows that after sj executes either of the lines that sends a response to c,
it sends no further message to some other server and instead, terminates the execution of that
instance of the algorithm.

The argumentation regarding dequeue operations is analogous.

36

Denote by L the sequence of operations which have been assigned linearization points in α
in the order determined by their linearization points. Let Ci be the configuration at which the
i-th operation opi of L is linearized. Denote by αi, the prefix of α which ends with Ci and let Li

be the prefix of L up until the operation that is linearized at Ci. Denote by Qi the sequence of
values that a sequential queue contains after applying the sequence of operations in Li, in order,
starting from an empty queue; let Q0 = ϵ, i.e. Q0 is the empty sequence. In the following, we
denote by sti the tail token server at Ci and by shi

the head token server at Ci.

Lemma 36. For each i, i ≥ 0, if lqji are the contents of the local queue of server sj at Ci,

hi ≤ j ≤ ti, at Ci, then it holds that Qi = lqhi
i · lqhi+1

i · . . . · lqtii at Ci.

Proof. We prove the claim by induction on i. The claim holds trivially at i = 0.
Fix any i ≥ 0 and assume that at Ci, it holds that Qi = lqhi

i · lqhi+1
i · . . . · lqtii . We show that

the claim holds for i+ 1.
First, assume that opi+1 is an enqueue operation by client c. Furthermore, distinguish the

following two cases:

• Assume that ti = ti+1. Then, by the induction hypothesis, Qi = lqhi
i ·lqhi+1

i ·. . .·lqtii . In case
the local queue of sti is not full, sti enqueues the value vi+1 of the data field of the request
for opi+1 in the local queue (line 26 or line 81). Notice that, by Observation 33 changes
on the local queues of servers occur only on token servers. Notice also that those changes
occur only in a step that immediately precedes a configuration in which an operation is
linearized. Thus, no further change occurs on the local queues of shi

, shi+1, . . . , sti between
Ci and Ci+1, other than the enqueue on lqti . Then, it holds that Qi+1 = Qi · vi+1 =

lqhi
i · lqhi+1

i · . . . · lqtii · vi+1 = lqhi
i · lqhi+1

i · . . . · lqtii+1 = lqhi
i+1 · lqhi+1

i+1 · . . . · lqtii+1, and
if the head token server does not change between Ci and Ci+1, then hi+1 = hi and

Qi+1 = lq
hi+1

i+1 · lqhi+1+1
i+1 · . . . · lqti+1

i+1 and the claim holds. If the head token server changes,

i.e., if hi+1 ̸= hi, then by Observation 32, lqhi
i+1 = ∅ and the claim holds again.

In case the local queue of sti is full and since by assumption, sti = sti+1 , it follows by
inspection of the pseudocode (line 31) and the definition of linearization points, that
sti+1 = shi+1

. In this case, sti+1 responds with a NACK to c and the local queue remains

unchanged. Since no token server changes between Ci and Ci+1, Qi+1 = Qi = lqhi
i · lqhi+1

i ·
. . . · lqtii = lq

hi+1

i+1 · lqhi+1+1
i+1 · . . . · lqti+1

i+1 and the claim holds.

• Next, assume that ti ̸= ti+1. This implies that the local queue of sti is full just after
Ci. Observation 32 implies that sti forwarded the token to sti+1 in some configuration
between Ci and Ci+1. Notice that then, sti+1 = sti+1 . If the local queue of sti+1 is not
full, then the condition of line 25 evaluates to true and therefore, line 26 is executed,
enqueueing value vi+1 to it. Then at Ci+1, lq

ti+1

i+1 = vi+1. By definition, Qi+1 = Qi · vi+1,

and therefore, Qi+1 = lqhi
i · lqhi+1

i · . . . · lqtii · vi+1 = lq
hi+1

i+1 · lqhi+1+1
i+1 · . . . · lqtii+1 · vi+1 =

lq
hi+1

i+1 ·lqhi+1+1
i+1 ·. . .·lqtii+1·lq

ti+1

i+1 and the claim holds. If the local queue of sti+1 is full, then the
condition of line 25 evaluates to false and therefore, line 35 is executed. The operation is
linearized in the resulting configuration and NACK is sent to c. Notice that in that case, the
local queue of the server is not updated. Then, Qi+1 = Qi = lqhi

i · lqhi+1
i · . . . · lqtii · lqti+1

i+1 =

lq
hi+1

i+1 · lqhi+1+1
i+1 · . . . · lqtii+1 · lq

ti+1

i+1 , and the claim holds.

The reasoning for the case where opi+1 is an instance of a dequeue operation is symmetrical.

From the above lemmas and observations we have the following theorem.

Theorem 37. The token-based distributed queue implementation is linearizable. The time
complexity and the communication complexity of each operation op is O(NS).

37

6.3 Token-Based Double Ended Queue (Deque)

The dequeue implementation is a natural generalization of the stack and queue implementations
described previously. The deque implementation is analogous to the queue implementation
described in section 6.2. To provide a deque, we add actions to the queue’s design to support
the additional operations supported by a deque. We retain the static ordering of the servers
and the head and tail tokens. Again, each server uses a local data structure, this time a deque,
on which the server is allowed to execute enqueues or dequeues to the appropriate end, only if
it has either the tail token or the head token. The head and tail tokens are initially held by s0,
but can be reassigned to other servers during the execution.

6.3.1 Algorithm Description

Algorithm 17 presents the events triggered in a server s and s’s actions for each event. Each
server, in addition to its id (my sid), maintains a local deque (ldeque) to store elements of the
implemented deque. For the token management, each server has two boolean flags (hasHead
and hasTail), which are initialized true for the server s0, and false for the rest. Furthermore,
the servers maintain a fullDeque flag, similar to the fullQueue flag in Algorithm 13 of Section
6.2. Finally, the servers maintain a local array (called s’s clients array) for storing the requests
they receive directly from clients, which is used in a similar way as in Section 6.2.

The types of messages a server s can receive are ENQ T, DEQ T for enqueuing at and dequeuing
from the tail, ENQ H, DEQ H for enqueuing at and dequeuing from the head, and ACK or NACK sent
by other servers as responses to s’s forwarded messages. Every message m a server receives,
contains five fields: (1) the op field that represents the type of the request, (2) a data field,
that contains either the data to be enqueued or ⊥, (3) a cid field that contains the client id
that requested the operation op, (4) a sid field that contains the id of the server which started
forwarding the request, and -1 otherwise, and (5) a tk field, a flag used to pass tokens from
one server to another. The values that tk can take are either HEAD TOKEN for the head token
transition, TAIL TOKEN for the tail token transition, or ⊥ for no token transition.

When server s receives the head token, that means that s can serve all operations in its client
array regarding the head endpoint (EnqueueHead(), DequeueHead()). In analogous way, when
server s receives the token for the tail, that means that s can serve all operations in its client
array for the tail (EnqueueTail(), DequeueTail()). For this purpose, we use two functions,
ServeOldHeadOps() and ServeOldTailOps(). The clients whose requests are served, are not
informed until server s receives their requests completes a round-trip on the ring and returns
back to s.

When a message is received (line 7), server s checks if the message is stored in its client array
(line 8). If it is, s sends an ACK message to client with cid (line 9) and removes the entry in the
clients array (line 10). If it is not, s checks the message’s operation code and acts accordingly
(line 12). Messages with operation code ENQ T, DEQ T, ENQ H, DEQ H (lines 13, 16, 19 and 22,
respectively) are handled by functions ServerEnqueueTail() (line 14), ServerDequeueTail()
(line 17), ServerEnqueueHead() (line 20) and ServerDequeueHead() (line 23), respectively.
These functions are presented in Algorithms 18-21. If the message is of type ACK (line 25) or
NACK (line 29), s sets the cid entry of the clients array to ⊥ (lines 26, 30), and sends an ACK

(line 27) or NACK (line 31) to the client.
Algorithm 18 presents pseudocode for function ServerEnqueueTail(), which is called by a

server s when an ENQ T message is received. First, s checks whether the tk field of the message
contains TAIL TOKEN (line 34). In such a case, the message received by s denotes a tail token
transition. So, s sets its hasTail flag to true (line 35) and if it also had the head token from
a previous round, it sets its fullDeque flag to true (line 36). At this point, s has just received

38

Algorithm 17 Events triggered in a server

1 int my sid;
2 LocalDeque ldeque = ∅;
3 LocalArray clients = ∅; /* Array of three values ¡op, data, isServed¿ */

4 boolean fullDeque = false;
/* True when tail and head are in the same server and tail is before head */

5 boolean hasHead; /* Initially hasHead and hasTail are true in server 0, and false in the rest */

6 boolean hasTail;

7 a message ⟨op, data, cid, sid, tk⟩ is received:
8 if (clients[cid] ̸= ⊥ AND clients[cid].isServed) { /* If request was served earlier. */

9 send(cid, ⟨ACK, clients[cid].data,my sid⟩);
10 clients[cid] = ⊥;
11 } else {
12 switch (op) {
13 case ENQ T:
14 ServerEnqueueTail(op, data, cid, sid, tk);
15 break;
16 case DEQ T:
17 ServerDequeueTail(op, cid, sid, tk);
18 break;
19 case ENQ H:
20 ServerEnqueueHead(op, data, cid, sid, tk);
21 break;
22 case DEQ H:
23 ServerDequeueHead(op, cid, sid, tk);
24 break;
25 case ACK:
26 clients[cid] = ⊥;
27 send(cid, ⟨ACK, data, sid⟩);
28 break;
29 case NACK:
30 clients[cid] = ⊥;
31 send(cid, ⟨NACK,⊥, sid⟩);
32 break;

}
}

the global deque’s tail, so it must serve all old operations that clients have requested directly
from this server to be performed in the deque’s tail. For that purpose, the server calls the
ServeOldTailOps() function (line 37). Then, the server checks whether the global deque is
full and also the ldeque is full and if it is full, means that there is no free space left for the
operation, thus s responds to the request with with a NACK (lines 40, 42). Otherwise, if the
server can serve the request, it enqueues the received data to the tail of ldeque (line 44) and
responds with an ACK (lines 46, 48). In any other case, s cannot serve the request received,
but some other server might be capable to do so, so the message must be forwarded. Server s
finds the next server (line 50) and if s handles the global deque’s tail, turns its flags (hasTail
and fullDeque) to false (line 52) and marks the token as TAIL TOKEN for the token transition
(line 54). If the message was send by a client, s stores the request to the clients array (line 58).
Finally, s forwards the message to the next server (lines 59, 61).

Algorithm 19 presents pseudocode for function ServerDequeueTail(), which is called by a

39

Algorithm 18 Server helping function for handling an enqueue request to the global deque’s
tail
33 void ServerEnqueueTail(int op, Data data, int cid, int sid, enum tk) {
34 if (tk == TAIL TOKEN) {
35 hasTail = true;
36 if (hasHead) fullDeque = true;
37 ServeOldTailOps(clients, fullDeque);

}
38 if (fullDeque AND IsFull(ldeque)) { /* Deque is full, can’t enqueue */

39 if (sid == −1) /* From client */

40 send(id, ⟨NACK,⊥,my sid⟩);
41 else /* From server */

42 send(sid, ⟨NACK,⊥, cid,mysid,⊥⟩);
43 } else if (hasTail AND !IsFull(ldeque)) { /* Server can enqueue */

44 enqueue tail(deque, data);
45 if (sid == −1) /* From client */

46 send(cid, ⟨ACK,⊥,my sid⟩);
47 else /* From server */

48 send(sid, ⟨ACK,⊥, cid,my sid,⊥⟩);
49 } else { /* Server can’t enqueue and global deque is not full */

50 nsid = find next server(my sid);
51 if (hasTail) {
52 hasTail = false;
53 fullDeque = false;
54 tk = TAIL TOKEN;
55 } else {
56 tk = ⊥;

}
57 if (sid == −1) { /* From client */

58 clients[cid] = ⟨ENQ T, data, false⟩;
59 send(nsid, ⟨ENQ T, data, cid,my sid, tk⟩);
60 } else { /* From server */

61 send(nsid, ⟨ENQ T, data, cid, sid, tk⟩);
}

}
}

server s when a DEQ T message is received. First, s checks whether the tk field of the message
contains TAIL TOKEN (line 63). In such a case, the message received by s, denotes a tail token
transition. So, s sets its hasTail flag to true (line 64). then, s serves all old operations that
clients have requested directly from this server to be performed in the deque’s tail. For that
purpose, the server calls ServeOldTailOps() (line 65). Afterwards, s checks if the “global”
deque is empty and if it is empty, s responds with a NACK (lines 68, 70). Otherwise, if s can
serve the request, it dequeues the data from the tail of its local deque (line 71), and sends
them to the appropriate server or client with an ACK (lines 74, 76). In any other case, s cannot
serve the request received, but some other server might be capable to do so, thus the message
must be forwarded. Server s finds the previous server sprev (line 78) and if s handles the global
deque’s tail, turns its flag for the tail to false (line 80) and marks tk as TAIL TOKEN for the
token transition (line 81). If the message received was send by a client, s stores the request to
its clients array (line 85). Finally, s forwards the message to the previous server (lines 58, 59).

Algorithm 20 presents pseudocode for function ServerEnqueueHead(), which is called by a

40

Algorithm 19 Server helping function for handling an dequeue request to the global deque’s
tail
62 void ServerDequeueTail(int op, int cid, int sid, enum tk) {
63 if (tk == TAIL TOKEN) {
64 hasTail = true;
65 ServeOldTailOps(clients, fullDeque);

}
66 if (hasHead AND hasTail AND !fullDeque AND IsEmpty(ldeque)) {

/* Deque is empty, can’t dequeue */

67 if (sid == −1) /* From client */

68 send(cid, ⟨NACK,⊥,my sid⟩);
69 else /* from server */

70 send(sid, ⟨NACK,⊥, cid,my sid,⊥⟩);
71 } else if (hasTail AND !IsFull(ldeque)) { /* Server can dequeue */

72 data = dequeue tail(ldeque);
73 if (sid == −1) /* From client */

74 send(cid, ⟨ACK, data,my sid⟩);
75 else /* from server */

76 send(sid, ⟨ACK, data, cid,my sid,⊥⟩);
77 } else { /* Server can’t dequeue and global deque is not empty. */

78 psid = find previous server(my sid);
79 if (hasTail) {
80 hasTail = false;
81 tk = TAIL TOKEN;
82 } else {
83 tk = ⊥;

}
84 if (sid == −1) { /* From client */

85 clients[cid] = ⟨DEQ T,⊥, false⟩;
86 send(psid, ⟨DEQ T,⊥, cid,my sid, tk⟩);
87 } else { /* from server */

88 send(psid, ⟨DEQ T,⊥, cid, sid, tk⟩);
}

}
}

server s when an ENQ H message is received. First, s checks if it has the token for global deque’s
head (line 90) and if this is the case, the server sets its hasHead flag to true (line 91). If s
already has the token for the global deque’s tail, it sets its fullDeque flag to true (line 92).
At this point, s has just received the global deque’s head, so it must serve all old operations
that clients have requested directly from this server to be performed in the deque’s head. For
that purpose, server s calls ServeOldHeadOps() (line 93), which iterates s’s clients array and
serves all operations for the deque’s head. Then, the server checks whether the global deque
is full and also the ldeque is full and if it is full, means that there is no free space left for the
operation, thus s responds to the request with with a NACK (lines 96, 98). Otherwise, if the
server can serve the request, it enqueues the received data to the deque’s head (line 100) and
responds with an ACK (lines 102, 104). In any other case, s cannot serve the request received,
but some other server might be capable to do so, so the message must be forwarded. Server
s finds the previous server (line 106) and if s handles the global deque’s head, turns its flags
(hasHead and fullDeque) to false (line 108) and marks the tk as HEAD TOKEN for the token
transition (line 110). If the message received was send by a client, s stores the request to its

41

Algorithm 20 Server helping function for handling an enqueue request to the global deque’s
head
89 void ServerEnqueueHead(int op, Data data, int cid, int sid, enum tk) {
90 if (tk == HEAD TOKEN) {
91 hasHead = true;
92 if (hasTail) fullDeque = true;
93 ServeOldHeadOps(clients);

}
94 if (fullDeque AND IsFull(ldeque)){ /* Deque is full, can’t enqueue */

95 if (sid == −1) /* From client */

96 send(cid, ⟨NACK,⊥,my sid⟩);
97 else /* from server */

98 send(sid, ⟨NACK,⊥, cid,my sid,⊥⟩);
99 } else if (hasHead AND !IsFull(ldeque)) { /* Server can Server can enqueue. */

100 enqueue head(ldeque, data);
101 if (sid == −1) /* From client */

102 send(cid, ⟨ACK,⊥,my sid⟩);
103 else /* from server */

104 send(sid, ⟨ACK,⊥, cid,my sid,⊥⟩);
105 } else { /* Server can’t dequeue and global deque is not full. */

106 psid = find previous server(my sid);
107 if (hasHead) {
108 hasHead = false;
109 fullDeque = false;
110 tk = HEAD TOKEN;
111 } else {
112 tk = ⊥;

}
113 if (sid == −1) { /* From client */

114 clients[cid] = ⟨ENQ H, data, false⟩;
115 send(psid, ⟨ENQ H, data, cid,my sid, tk⟩);
116 } else { /* from server */

117 send(psid, ⟨ENQ H, data, cid, sid, tk⟩);
}

}
}

clients array (line 114). Finally, s forwards the message to the previous server (lines 115, 117).
Algorithm 21 presents pseudocode for function ServerDequeueHead(), which is called by a

server when a DEQ H message is received by some server s. First, s checks if it has the token
for global deque’s head (line 119) and if this is the case, the server sets its hasHead flag to
true (line 120). At this point, server s has just received the global deque’s head, so it must
serve all old operations that clients have requested directly from this server to be performed in
the deque’s head. For that purpose, the server calls the ServeOldHeadOps() routine (line 121),
which iterates s’s clients array and serves all operations for the deque’s head. Then, the server
checks if the global deque is empty and if it is, s responds to the request with a NACK (lines
124, 126). Otherwise, if the server can serve the request, it dequeues the data from the head
(line 128) and sends them to the sender or client together with an ACK (lines 130, 132). In any
other case, s cannot serve the request received, but some other server might be capable to do
so, so the message must be forwarded. Server s finds the next server (line 134) and if s has the
token for the global head, turns its flag for the head to false (line 135) and and marks the tk

42

Algorithm 21 Server helping function for handling an dequeue request to the global deque’s
head
118 void ServerDequeueHead(int op, int cid, int sid, enum tk) {
119 if (tk == HEAD TOKEN) {
120 hasHead = true;
121 ServeOldHeadOps(clients);

}
122 if (hasHead AND hasTail AND !fullDeque AND IsEmpty(ldeque)){

/* Deque is empty, can’t dequeue */

123 if (sid == −1) /* From client */

124 send(cid, ⟨NACK,⊥,my sid⟩);
125 else /* from server */

126 send(sid, ⟨NACK,⊥, cid,my sid,⊥⟩);
127 } else if (hasHead AND !IsFull(ldeque)) { /* Server can Server can enqueue. */

128 data = dequeue head(ldeque);
129 if (sid == −1) /* From client */

130 send(cid, ⟨ACK, data,my sid⟩);
131 else /* from server */

132 send(sid, ⟨ACK, data, cid,my sid,⊥⟩);
133 } else { /* Server can’t dequeue and global deque is not empty. */

134 nsid = find next server(my sid);
135 hasHead = false;
136 tk = HEAD TOKEN;
137 } else {
138 tk = ⊥;

}
139 if (sid == −1) { /* From client */

140 clients[cid] = ⟨DEQ H,⊥, false⟩;
141 send(nsid, ⟨DEQ H,⊥, cid,my sid, tk⟩);
142 } else { /* from server */

143 send(nsid, ⟨DEQ H,⊥, cid, sid, tk⟩);
}

}
}

as HEAD TOKEN for the token transition (line 136). If the message received was send by a client,
s stores the request to its clients array (line 140). Finally, s forwards the message to the next
server (lines 141, 143).

Algorithm 22 presents pseudocode for the client functions. These are EnqueueTail(),

DequeueTail(), EnqueueHead(), DequeueHead(). All clients have two local variables, head sid
and tail sid, to store the last known server to have the head token and the tail token, respec-
tively. These variables initially store the id of the server zero, but may change values during
runtime. The messages received by clients contain two fields: status which contains either the
data from a dequeue operation, or ⊥ in case of an enqueue, and tail sid or head sid, depending
on the function, which contains the id of the server that currently holds the token.

43

Algorithm 22 Enqueue and dequeue op-
erations for a client of the token-based
deque.

144 int tail sid = 0, head sid = 0;

145 Data EnqueueTail(int cid, Data data) {
146 send(tail sid, ⟨ENQ T, data, cid,−1,⊥⟩);
147 ⟨status, tail sid⟩ = receive();
148 return status;

}

149 Data DequeueTail(int cid) {
150 send(tail sid, ⟨DEQ T,⊥, cid,−1,⊥⟩);
151 ⟨status, tail sid⟩ = receive();
152 return status;

}

153 Data EnqueueHead(int cid, Data data) {
154 send(head sid, ⟨ENQ H, data, cid,−1,⊥⟩);
155 ⟨status, head sid⟩ = receive();
156 return status;

}

157 Data DequeueHead(int cid) {
158 send(head sid, ⟨DEQ H,⊥, cid,−1,⊥⟩);
159 ⟨status, head sid⟩ = receive();
160 return status;

}

For enqueuing at the deque’s tail, clients calls EnqueueTail() (line 145). This function
sends an ENQ T message to the last known server, which has the token for the global tail (line
146). The server with the tail token may have changed, but the client is still unaware of the
change. In that case, server s, which received the message, stores this message in its clients
array and then forwards the message to the next server in the order, as described in Algorithm
18. During this time, the client blocks waiting for a server’s response. Once the client receives
the response (line 147), it returns the contents of the status variable (line 148).

44

Algorithm 23 Auxiliary functions for a server
of the token-based deque.

161 void ServeOldTailOps(void) {
162 LocalSet eliminated = ∅

163 for each cid1 ̸∈ eliminated such that clients[cid1].op == ENQ T {
164 if there is cid2 ̸∈ eliminated such that clients[cid2].op == DEQ T {
165 clients[cid2].data = clients[cid1].data;
166 clients[cid1].isServed = true;
167 clients[cid2].isServed = true;
168 eliminated = eliminated ∪ {cid1, cid2};

}
}

169 if (!fullDeque) {
170 for each cid such that clients[cid].op == ENQ H {
171 if (!IsFull(ldeque)) {
172 enqueue tail(ldeque, clients[cid].data);
173 clients[cid].isServed = true;

}
}

}
174 for each cid such that clients[cid].op == DEQ T {
175 if (!IsEmpty(ldeque)) {
176 clients[cid].data = dequeue tail(ldeque);
177 clients[cid].isServed = true;

} } }

178 void ServeOldHeadOps(void) {
179 LocalSet eliminated = ∅

180 for each cid1 ̸∈ eliminated such that clients[cid1].op == ENQ H {
181 if there is cid2 ̸∈ eliminated such that clients[cid2].op == DEQ H {
182 clients[cid2].data = clients[cid1].data;
183 clients[cid1].isServed = true;
184 clients[cid2].isServed = true;
185 eliminated = eliminated ∪ {cid1, cid2};

}
}

186 if (!fullDeque) {
187 for each cid such that clients[cid].op == ENQ H {
188 if (!IsFull(ldeque)) {
189 enqueue head(ldeque, clients[cid].data);
190 clients[cid].isServed = true;

}
}

}
191 for each cid such that clients[cid].op == DEQ H {
192 if (!IsEmpty(ldeque)) {
193 clients[cid].data = dequeue head(ldeque);
194 clients[cid].isServed = true;

} } }

The enqueuing at the deque’s head is symmetrical to this approach and is achieved with
the function EnqueueHead() (line 153). The only difference is that the server which is send the
message to, is the server with id head sid (line 154) and the message’s operation code is ENQ H

45

instead of ENQ T.
For dequeuing at the deque’s tail, clients call DequeueTail() (line 149). This function

sends a DEQ T message to the last known server which has the token for the global tail (line
150). Then, the client waits for server to respond. Once the client receives the response (line
151), it returns the contents of the status variable (line 152).

The dequeuing at the deque’s head is symmetrical to this approach and is achieved with
the function DequeueHead() (line 157). The only difference is that the server, to whom the
message was sent, is the server with id head sid (line 158) and the message’s operation code is
DEQ H instead of DEQ T.

6.3.2 Proof of Correctness

Let α be an execution of the token-based deque algorithm presented in Algorithms 17, 18, 19,
20, 21, 22, and 23.

Each server maintains local boolean variables hasHead and hasTail, with initial values
false. Whenever some server si receives a TAIL TOKEN message, i.e. a message with its tk field
equal to TAIL TOKEN (line 34, line 63), the value of hasTail is set to true (line 35, line 64). By
inspection of the pseudocode, it follows that the value of hasTail is set to false if the local
deque of si is full (line 52, line 80); then, a TAIL TOKEN message is sent to the next or previous
server (line 61, line 88). The same holds for hasHead and HEAD TOKEN messages, i.e. messages
with their tk field equal to HEAD TOKEN. Thus, the following observations holds.

Observation 38. At each configuration in α, there is at most one server for which the local
variable hasHead (hasTail) has the value true.

Observation 39. In some configuration C of α, a TAIL TOKEN message is sent from a server
sj, 0 ≤ j < NS−1, to a server sk, where k = (j+1) mod NS, only if the local deque of sj is full
in C. A TAIL TOKEN message is sent from a server sj, 0 ≤ j < NS − 1, to a server sk, where
k = (j − 1) mod NS, only if the local deque of sj is empty in C.

Similary, a HEAD TOKEN message is sent from sj to sk, where k = (j + 1) mod NS, only if
the local deque of sj is empty in C. HEAD TOKEN message is sent from sj to sk, where k = (j−1)
mod NS, only if the local deque of sj is full in C.

By inspection of the pseudocode, we see that a server performs an enqueue (dequeue) back
operation on its local deque ldeque either when executing line 44 (line 72) or when it executes
ServeOldTailOps. Further inspection of the pseudocode (lines 34-36, line 43, as well as lines
63-65, line 71), shows that these lines are executed when hasTail = true. By inspection of the
pseudocode, the same can be shown for hasHead. Then, the following observation holds.

Observation 40. Whenever a server sj performs an enqueue or dequeue back (front) operation
on its local deque, it holds that its local variable hasTail (hasHead) is equal to true.

If hasTail = true (hasHead = true) for some server s in some configuration C, then we
say that s has the tail (head) token. The server that has the tail token is referred to as tail
token server. The server that has the head token is referred to as head token server.

By a straight-forward induction, the following lemma can be shown.

Lemma 41. The mailbox of a client in any configuration of α contains at most one incoming
message.

Let op be any operation in α. We assign a linearization point to op by considering the
following cases:

46

• If op is an enqueue back operation for which a tail token server executes an instance of
Algorithm 17, then it is linearized in the configuration resulting from the execution of
either line 40, or line 44, or line 165, or line 172, whichever is executed for op in that
instance of Algorithm 17 by the tail token server.

• If op is a dequeue back operation for which a head token server executes an instance of
Algorithm 17, then it is linearized in the configuration resulting from the execution of
either line 68, or line 72, or line 165, or line 176, whichever is executed for op in that
instance of Algorithm 17 by the tail token server.

• If op is an enqueue front operation for which a tail token server executes an instance of
Algorithm 17, then it is linearized in the configuration resulting from the execution of
either line 96, or line 100, or line 182, or line 189, whichever is executed for op in that
instance of Algorithm 17 by the head token server.

• If op is a dequeue front operation for which a head token server executes an instance of
Algorithm 17, then it is linearized in the configuration resulting from the execution of
either line 124, or line 128, or line 182, or line 193, whichever is executed for op in that
instance of Algorithm 17 by the head token server.

Lemma 42. The linearization point of an enqueue (dequeue) operation op is placed in its
execution interval.

Proof. Assume that op is an enqueue back operation and let c be the client that invokes it.
After the invocation of op, c sends a message to some server s (line 146) and awaits a response.
Recall that routine receive() (line 147) blocks until a message is received. The linearization
point of op is placed in the configuration resulting from the execution of either line 40, or line
44, or line 165, or line 172 by st for op. Notice that since the execution of Algorithm 17 by st
is triggered by a message that contains the request for op, either of these lines is executed after
the request by c is received, i.e. after c invokes EnqueueTail, and thus, after the execution
interval of op starts.

By definition, the execution interval of op terminates in the configuration resulting from the
execution of line 148. By inspection of the pseudocode, this line is executed after line 147, i.e.
after c receives a response by some server. In the following, we show that the linearization point
of op occurs before this response is sent to c.

Let sj be the server that c initially sends the request for op to. By observation of the
pseudocode, we see that c may either receive a response from sj if sj executes lines 9, or 40, or
46.

To arrive at a contradiction, assume that either of these lines is executed in α before the
configuration in which the linearization point of op is placed. Thus, a tail token server st executes
lines line 40, or line 44, or line 165, or line 172, in a configuration following the execution of lines
9, or 40, or 46 by sj . Since the algorithm is event-driven, inspection of the pseudocode shows
that in order for a tail token server to execute these lines, it must receive a message containing
the request for op either from a client or from another server.

Assume first that a tail token server executes the algorithm after receiving a message con-
taining a request for op from a client. This is a contradiction, since, on one hand, c blocks
until receiving a response, and thus, does not sent further messages requesting op or any other
operation, and since op terminates after c receives the response by sj , and on the other hand,
any other request from any other client concerns a different operation op′.

Assume next that a tail token server executes the algorithm after receiving a message con-
taining the request for op from some other server. This is also a contradiction since inspection
of the pseudocode shows that after sj executes either of the lines that sends a response to c,
it sends no further message to some other server and instead, terminates the execution of that

47

instance of the algorithm.
The argumentation regarding dequeue back, enqueue front, and dequeue front operations is

analogous.

Denote by L the sequence of operations which have been assigned linearization points in α
in the order determined by their linearization points. Let Ci be the configuration at which the
i-th operation opi of L is linearized. Denote by αi, the prefix of α which ends with Ci and let Li

be the prefix of L up until the operation that is linearized at Ci. Denote by Di the sequence of
values that a sequential deque contains after applying the sequence of operations in Li, in order,
starting from an empty deque; let D0 = ϵ, i.e. D0 is the empty sequence. In the following, we
denote by sti the tail token server at Ci and by shi

the head token server at Ci.

Lemma 43. For each i, i ≥ 0, if ldji are the contents of the local deque of server sj at Ci,

hi ≤ j ≤ ti, at Ci, then it holds that Di = ldhi
i · ldhi+1

i · . . . · ldtii at Ci.

Proof. We prove the claim by induction on i. The claim holds trivially at i = 0.
Fix any i ≥ 0 and assume that at Ci, it holds that Di = ldhi

i · ldhi+1
i · . . . · ldtii . We show that

the claim holds for i+ 1.
Assume that opi+1 is an enqueue back operation by client c. Furthermore, distinguish the

following two cases:

• Assume that ti = ti+1. Then, by the induction hypothesis, Di = ldhi
i · ldhi+1

i · . . . ·
ldtii . In case the local queue of sti is not full, sti enqueues the value vi+1 of the data
field of the request for opi+1 in the local deque (line 44 or line 172). Notice that, by
Observation 40 changes on the local deques of servers occur only on token servers. Notice
also that those changes occur only in a step that immediately precedes a configuration in
which an operation is linearized. Thus, no further change occurs on the local deques of
shi

, shi+1, . . . , sti between Ci and Ci+1, other than the enqueue on ldti. Then, it holds that

Di+1 = Di ·vi+1 = ldhi
i ·ldhi+1

i ·. . .·ldtii ·vi+1 = ldhi
i ·ldhi+1

i ·. . .·ldtii+1 = ldhi
i+1 ·ld

hi+1
i+1 ·. . .·ldtii+1,

and if the head token server does not change between Ci and Ci+1, then hi+1 = hi and

Di+1 = ld
hi+1

i+1 · ldhi+1+1
i+1 · . . . · ldti+1

i+1 and the claim holds. If the head token server changes,

i.e., if hi+1 ̸= hi, then by Observation 39, ldhi
i+1 = ∅ and the claim holds again.

In case the local deque of sti is full and since by assumption, sti = sti+1 , it follows by
inspection of the pseudocode (line 31) and the definition of linearization points, that
sti+1 = shi+1

. In this case, sti+1 responds with a NACK to c and the local deque remains

unchanged. Since no token server changes between Ci and Ci+1, Di+1 = Di = ldhi
i · ldhi+1

i ·
. . . · ldtii = ld

hi+1

i+1 · ldhi+1+1
i+1 · . . . · ldti+1

i+1 and the claim holds.

• Next, assume that ti ̸= ti+1. This implies that the local deque of sti is full just after
Ci. Observation 39 implies that sti forwarded the token to sti+1 in some configuration
between Ci and Ci+1. Notice that then, sti+1 = sti+1 . If the local deque of sti+1 is not
full, then the condition of line 43 evaluates to true and therefore, line 44 is executed,
enqueueing value vi+1 to it. Then at Ci+1, ld

ti+1

i+1 = vi+1. By definition, Di+1 = Di · vi+1,

and therefore, Di+1 = ldhi
i · ldhi+1

i · . . . · ldtii · vi+1 = ld
hi+1

i+1 · ldhi+1+1
i+1 · . . . · ldtii+1 · vi+1 =

ld
hi+1

i+1 · ldhi+1+1
i+1 · . . . · ldtii+1 · ldti+1

i+1 and the claim holds. If the local deque of sti+1 is
full, then the condition of line 43 evaluates to false and therefore, line 40 is executed.
The operation is linearized in the resulting configuration and NACK is sent to c. Notice
that in that case, the local deque of the server is not updated. Then, Di+1 = Di =

ldhi
i · ldhi+1

i · . . . · ldtii · ldti+1

i+1 = ld
hi+1

i+1 · ldhi+1+1
i+1 · . . . · ldtii+1 · ld

ti+1

i+1 , and the claim holds.

48

The reasoning for the case where opi+1 is an instance of a dequeue back, enqueue front, or
enqueue back operation is symmetrical.

From the above lemmas and observations we have the following theorem.

Theorem 44. The token-based distributed deque implementation is linearizable. The time
complexity and the communication complexity of each operation op is O(NS).

6.4 Hierarchical approach.

In this section, we outline how the hierarchical approach, described in Section ??, is applied to
the token-based designs.

Only the island masters play the role of clients to the algorithms described in this section. So,
it is each island mastermi that keeps track of the last server(s), which responded to its batches of
requests. In the stack and deque implementations, mi performs elimination before contacting a
server. In the queue implementation, batching is done by having each batch containing requests
of the same type. In the deque implementation, each batch contains requests of the same type
that are to be applied to the same endpoint. A batch can be sent to a server using DMA; the
same could be done for getting back the responses. A server that does not hold the appropriate
token to serve a batch of requests, forwards the entire batch to the next (or previous) server.
Since token-based algorithms exploit locality, a batch of requests will be processed by at most
two servers.

6.5 Dynamic Versions of the Implementations

The implementations presented above (in Section 6) are static. Their dynamic versions retain
the placement of servers in a logical ring, and the token that renders the server able to execute
operations in its local partition. In the static versions of the algorithms, when the servers con-
sume all their predefined space for the data structure, the global (implemented) data structure
is considered full, and the token server was sending NACK to clients to notify them of this event.

In the dynamic version, though, there is no upper bound to the number of elements that
can be stored in the data structure. In order to modify the static version of the structures of
this section, we remove the mechanism that sends NACK messages to clients. Instead, every time
a server s receives the token (regarding inserts), it allocates an additional chunk of memory
for its local partition. Because of this circular movement of the token, the elements are stored
along a spiral path, that spans over all servers. Each chunk is marked with a sequence number,
associated with the coil of the spiral, to distinguish the order of allocation.

An example of the transformation of a static algorithm to a dynamic is the dynamic version
of the queue algorithm, presented in Algorithm 24. In this design a server s uses two tokens, the
head and tail token. In analogy, s deploys two variables (tail round and head round) to count
the times the tokens have come to its possession. When a server s receives an ENQ message (line
7) but has no space left to store the element (line 24), it forwards the request along with the
token to the next server in the ring. Afterwards, s increases by one the variable tail round and
allocates a new memory chunk, by calling allocate new space(), to be used during the next
time the token comes to its possession.

For the DEQ operation, the server performs additional actions concerning the empty queue
state (line 48), where after responding with a NACK, it re-initializes tail round and head round
to be equal to zero (line 49). An empty queue implies that the allocated chunks for lqueue

are also empty, hence they can be recycled and be used again anew. During the head token
transition, s increases head round by one chunk (line 57), so that when the head token comes
to its possession to dequeue from the next memory.

49

The double ended queue (deque) algorithm is going to work verbatim after these modifica-
tions. For the stack implementation the modifications are analogous. In this design there is
one token, hence each server associates one counter with the token rounds. Each time a server
s moves the token to another server because the local stack is full, it increases the counter and
allocates a new chunk for future use, and s moves the token due to an empty stack, the counter
is decreased by one. However, the dynamic design for the stack would introduce the termination
problem described for queues. Nevertheless, the problem can be solved by applying the same
technique of using client arrays as we did to solve the problem in the queue implementation.

Algorithm 24 Events triggered in a server of a dynamic token-based deque.

1 a message ⟨op, data, cid, sid, tk⟩ is received:
2 if (!clients[cid] AND clients[cid].isServed) {

/* If message has been served earlier. */

3 send(cid, ⟨ACK, clients[cid].data, my sid⟩);
4 clients[cid] = ⊥;
5 } else {
6 switch (op) {
7 case ENQ:
8 if (tk == TAIL TOKEN) {
9 hasTail = true;
10 ServeOldEnqueues();

}
11 if (!hasTail) { /* Server does not have token */

12 nsid = find next server(my sid);
13 if (sid == −1) { /* From client. */

14 clients[cid] = ⟨ENQ, data, false⟩;
15 send(nsid, ⟨ENQ, data, cid,my sid,⊥⟩);
16 } else { /* From server. */

17 send(nsid, ⟨ENQ, data, cid, sid,⊥⟩);
}

18 } else if (!IsFull(lqueue)) {
19 enqueue(lqueue, data, tail round);
20 if (sid == −1) /* From client. */

21 send(cid, ⟨ACK,⊥,my sid⟩);
22 else /* From server. */

23 send(sid, ⟨ACK,⊥, cid,my sid,⊥⟩);
24 } else { /* Server moves the tail token */

25 nsid = find next server(my sid);
26 send(nsid, ⟨op, data, cid,my sid, TAIL TOKEN⟩);
27 tail round++;
28 allocate new space(lqueue, tail round);
29 hasTail = false;

}
30 break;

50

31 case DEQ:
32 if (tk == HEAD TOKEN) {
33 hasHead = true;
34 ServeOldDequeues();

}
35 if (!hasHead) {
36 nsid = find next server(my sid);
37 if (sid == −1) { /* From client */

38 clients[cid] = ⟨DEQ,⊥, false⟩;
39 send(nsid, ⟨DEQ,⊥, cid,my sid⟩);
40 } else { /* From server */

41 send(nsid, ⟨DEQ,⊥, cid, sid,⊥⟩);
}

42 } else if (!IsEmpty(lqueue)) { /* can dequeue. */

43 data = dequeue(lqueue, head round);
44 if (sid == −1) /* From client */

45 send(cid, ⟨ACK, data,my sid⟩);
46 else /* From server */

47 send(sid, ⟨ACK, data, cid,my sid,⊥⟩);
48 } else if (tail round == head round) {
49 tail round = head round = 0;
50 if (sid == −1) /* empty to client */

51 send(cid, ⟨NACK,⊥,my sid⟩);
52 else /* empty to server */

53 send(sid, ⟨NACK,⊥, cid,my sid,⊥⟩);
54 } else { /* Move the head token to next */

55 nsid = find next server(my sid);
56 send(nsid, ⟨op,⊥, cid,my sid, HEAD TOKEN⟩);
57 head round++;
58 hasHead = false;

}
59 break;
60 case ACK:
61 clients[cid] = ⊥;
62 send(cid, ⟨ACK, data, sid⟩);
63 break;
64 case NACK:
65 clients[cid] = ⊥;
66 send(cid, ⟨NACK,⊥, sid⟩);
67 break;

}
}

7 Distributed Lists

A list is an ordered collection of elements. It can either be sorted, in which case the elements
appear in the list in increasing (or decreasing) order of their keys, or unsorted, in which case

51

the elements appear in the list in some arbitrary order (e.g. in the order of their insertion). A
list L supports the operations Insert, Delete, and Search. Operation Insert(L, k, I) inserts an
element with key k and associated info I to L. Operation Delete(L, k) removes the element
with key k from L (if it exists), while operation Search(L, k) detects whether an element with
key k is present in L and returns the information I that is associated with k.

In this section, we first provide an implementation of an unsorted distributed list in which
we follow a token-based approach for implementing Insert. In this implementation, Search
and Delete are highly parallel. We then build on this approach in order to get a distributed
implementation of a sorted list.

7.1 Unsorted List

The list state is stored distributedly in the local memories of several of the available servers,
potentially spreading among all of them, if its size is large enough. The proposed implementation
follows a token-based approach for implementing insert. Thus, we assume that the servers are
arranged on a logical ring, based on their ids.

At each point in time, there is a server (not necessarily always the same), denoted by st,
which holds the insert token, and serves insert operations. Initially, server s0 has the token, thus
the first element to be inserted in the list is stored on server s0. Further element insertions are
also performed on it, as long as the space it has allocated for the list does not exceed a threshold.
In case server s0 has to service an insertion but its space is filled up, it forwards the token by
sending a message to the next server, i.e. server s1. Thus, if server si, 0 ≤ i < NS, has the token,
but cannot service an insertion request without exceeding the threshold, it forwards the token
to server s(i+1) mod NS. When the next server receives the token, it allocates a memory chunk of
size equal to threshold, to store list elements. When the token reaches sNS−1, if sNS−1 has filled
all the local space up to a threshold, it sends the token again to s0. Then, s0 allocates more
memory (in addition to the memory chunk it had initially allocated for storing list elements)
for storing more list elements. The token might go through the server sequence again without
having any upper-bound restrictions concerning the number of round-trips. In order for a server
to know whether the token has performed a round-trip on the ring, and hence all servers have
stored list elements, it deploys a variable to count the number of ring round-trips it knows that
the token has performed.

52

Algorithm 25 Events triggered in a server of the distributed
unsorted list.
1 List llist = ∅;
2 int my id, next id, token = 0, round = 0;

3 a message ⟨op, cid, key, data,mloop, tk⟩ is received:
4 switch (op) {
5 case INSERT:
6 if (tk == TOKEN) {
7 token = my id;
8 allocate new memory chunk(llist, round);

}
9 status1 = search(llist, key);
10 if (status1) send(cid, NACK);
11 else {
12 if (token ̸= my id) {
13 next id = get next(my id);
14 if (my id ̸= NS− 1) {
15 send(next id, ⟨op, cid, key, data,mloop, tk⟩);
16 } else send(next id, ⟨op, cid, key, data, true, tk⟩);
17 } else {
18 if ((my id ̸= NS− 1) AND (round > 0) AND !(mloop)) {
19 next id = get next(my id);
20 send(next id, ⟨op, cid, key, data,mloop, tk⟩);
21 } else {
22 status2 = insert(llist, round, key, data);
23 if (status2 == false) {
24 round++;
25 token = get next(my id);
26 send(token, ⟨op, cid, key, data,mloop,TOKEN⟩);
27 } else send(cid, ACK);

}
}

}
28 break;
29 case SEARCH:
30 status1 = search(llist, key);
31 if (status1) send(cid, ⟨ACK,my id⟩);
32 else send(cid, ⟨NACK,my id⟩);
33 break;
34 case DELETE:
35 status1 = delete(llist, key);
36 if (status1) send(cid, ACK);
37 else send(cid, NACK);
38 break;

}

Event-driven code for the server is presented in Algorithm 25. Each server s maintains a
local list (llist variable) allocated for storing list elements, a token variable which indicates
whether s currently holds the token, and a variable round to mark the ring round-trips the
token has performed; round is initially 0, and is incremented after every transmission of the
token to the next server.

Each message a server receives has five fields: (1) op that denotes the operation to be

53

executed, (2) cid that holds the id of the client that initiated a request, (3) key that holds
the value to be inserted, (4) mloop stands for “message loop”, a boolean value that denotes if
the message has traversed the whole server sequence and (5) tk that is set when a forwarded
message also denotes a token transition from one server to the other.

Algorithm 26 Insert, Search and Delete operation for a
client of the distributed list.
39 boolean ClientInsert(int cid, int key, data data) {
40 boolean status;

41 send(0, ⟨INSERT, cid, key, data, false,−1⟩);
42 status = receive();
43 return status;

}

44 boolean ClientSearch(int cid, int key) {
45 int sid;
46 int c = 0;
47 boolean status;
48 boolean found = false;

49 send to all servers(⟨SEARCH, cid, key,⊥, false,−1⟩);
50 do {
51 ⟨status, sid⟩ = receive();
52 if (status == ACK) found = true;
53 c++;
54 } while (c < NS);
55 return found;

}

56 boolean ClientDelete(int cid, int key) {
57 int sid;
58 int c = 0;
59 boolean status;
60 boolean deleted = false;

61 send to all servers(⟨DELETE, cid, key,⊥, false,−1⟩);
62 do {
63 ⟨status, sid⟩ = receive();
64 if (status == ACK) deleted = true;
65 c++;
66 } while (c < NS);
67 return deleted;

}

When a message is received,
the server s first checks its type.
If the message is of type INSERT
(line 5), s first checks whether
the message has the tk field
marked. If it is marked (line
6), s sets a local variable token
equal to its own id (line 7) and
allocates additional space for
its local part of the list (line 8).

Afterwards, s searches the
part of the list that it stores
locally, for an element with
the same key (key variable in
the algorithm) as the one to
be inserted (line 9). Search-
ing llist for the element has
to be performed independently
of whether the server holds the
token or not. Since this de-
sign does not permit duplicate
entries, if such an element is
found, the server responds with
NACK to the client (line 10).
Otherwise (line 11), s checks
whether the new element can
be stored in llist.

In case s does not hold the
token (line 12), it is not allowed
to perform an insertion, there-
fore it must forward the mes-
sage to the next server in the
ring. If s is not sNS−1 (line 14),
it forwards to the next server
the request (15). In case s is
sNS−1, it means that all servers
have been searched for the ele-

ment and the element was not found. Server s sends the message to the next server (in order
to eventually reach the token server), after marking the mloop field of the message as true, to
indicate that the message has completed a full round-trip on the ring (line 16).

On the other hand, if s holds the token (line 17), it must first check whether there is room
in llist to insert the element in it. If there is room in llist and the local variable round of
s equals to false (which means that the list does not expand to the next servers) or the
message has already performed a round-trip on the ring, then s inserts the element and returns
ACK. If however, round > 0 and the message has not performed a round trip on the ring

54

(mloop == false), s continues forwarding the message.
If the token server’s local memory is out of sufficient space (line 23) (i.e. the insert()

function was unsuccessful), s forwards the message to the next server the tk field with TOKEN
(line 26) to indicate that this server will become the new token server after s. Also, s increments
round by one to count the number of times the token has passed from it. The round variable
is also used by function allocate new memory chunk() that allocates additional space for the
list (line 8).

Notice that, contrary to other token-based implementations presented in previous sections,
the token server of the unsorted list does not need to rely on client tables in order to stop
a message from being incessantly forwarded from one server to another, without ever being
served. By virtue of having clients always sending their insert requests to s0, an insert request
rj that arrives at s0 before some other insert request rk, is necessarily served before rk. The
scenario where insert requests constantly arrive at the token server before rj , making the token
travel to the next server before rj can be served, is thus avoided.

Upon receiving a SEARCH request from a client (line 29), a server searches for the requested
element in its local list (line 30) and sends ACK to the server if the element is found (line 31)
and NACK otherwise (line 32).

Upon receiving a DELETE request from a client (line 34), a server attempts to delete the
requested element from its local list (line 35) and sends ACK to the server if the deletion was
successful (line 36). Otherwise it sends NACK (line 37).

The pseudocode of the client is presented in Algorithm 26. Notice that insert operations
in the proposed implementation are executed in sequence and must necessarily pass through
server 0 and be forwarded through the server ring, if necessary due to space constraints. Search
and Delete operations, on the contrary, are executed in parallel.

In order to execute an insertion, a client calls ClientInsert() (line 39) which sends an
INSERT message (line 41) to server 0, regardless of which server holds the token in any given
configuration, and then blocks waiting for a response (line 42). If the client receives ACK from
a server, then the element was inserted correctly. If the client receives NACK, then the insertion
failed, due to either limited space, or the existence of another element with the same key value.

For a search operation the client calls ClientSearch() (line 44). The client sends a SEARCH

request to all servers (line 49) and waits to receive a response message (line 51) from each server
(do while loop of lines 50-54). The requested element is in the list if the client receives ACK

from some server (line 52). A delete operation proceeds similarly to ClientSearch(). It is
initiated by a client by sending a DELETE request to all servers (line 61). The client then waits
to receive a response message (line 63) from each server (do while loop of lines 62-66). The
requested element has been found in the list of some client and deleted from there, if the client
receives ACK from some server s.

7.1.1 Proof of Correctness

We sketch the correctness argument for the proposed implementation by providing linearization
points. Let α be an execution of the distributed unsorted list algorithm presented in Algorithms
25 and 26. We assign linearization points to insert, delete and search operations in α as follows:

• Insert. Let op be any instance of ClienInsert for which an ACK or a NACK message is sent
by a token server. Then, if ACK is sent by a token server for op (line 27), the linearization
point is placed in the configuration resulting from the execution of line 22 that successfully
inserted the required element into the server’s local list. If NACK is sent for op (line 10),
then the linearization point is placed in the configuration resulting from the execution of
line 9, where the search operation on the local list of the server returned true.

55

• Let op be any instance of ClientDelete for which an ACK or a NACK message is sent by
a server. Then, if ACK is sent by a server s for op, the linearization point is placed in
the configuration resulting from the execution of line 35 by the server that sent the ACK.
Otherwise, if the key k that op had to delete was not present in any of the local lists of
the servers in the beginning of the execution interval of op, then the linearization point
of op is placed at the beginning of its execution interval. Otherwise, if k was present but
was deleted by a concurrent instance op′ of ClientDelete, then the linearization point is
placed right after the linearization point of op′.

• Let op be any instance of ClientSearch for which an ACK or a NACK message is sent by
a server. Then, if ACK is sent by a server s for op, the linearization point is placed in
the configuration resulting from the execution of line 30 by the server that sent the ACK.
Otherwise, if the key k that op had to find was not present in the list in the beginning of its
execution interval, then the linearization point is placed there. Otherwise, if k was present
but was deleted by a concurrent instance op′ of ClientDelete, then the linearization point
is placed right after the linearization point of op′.

Lemma 45. Let op be any instance of an insert, delete, or a search operation executed by some
client c in α. Then, the linearization point of op is placed in its execution interval.

Proof. Let op be an instance of an insert operation invoked by client c. A message with the
insert request is sent on line 41, after the invocation of the operation. Recall that routine
receive() blocks until a message is received. Notice that both line 22 as well as line 9 are
executed by a server before it sends a message to the client. Therefore, whether op is linearized
at the point some server sends it a message on line 27 or on line 10, it terminates only after
receiving it. Notice also that the operation terminates only after the client receives it. Thus,
the linearization point is included in its execution interval.

By similar reasoning, if op is an instance of a delete operation that is linearized in the
configuration resulting from the execution of line 35 or a search operation that is linearized in
the configuration resulting from the execution of line 30, then the linearization point is included
in the execution interval of op.

Let op be an instance of a delete operation that deletes key k and that terminates after
receiving only NACK messages on line 63. If k is not present in the list in the beginning of the
execution interval of op, then op is linearized at that point and the claim holds.

Consider the case where k is included in the list when op is invoked. By observation of the
pseudocode (lines 34-38), we have that when a server receives a delete request by a client, it
traverses its local part of the list and deletes the element with key equal to k (line 35), if it
is included in it. By further observation of the pseudocode (lines 61-67), we have that after
c invokes op, it sends a delete request to all servers (line 61) and then awaits for a response
from all of them (do while loop of lines 62-66). By assumption, all servers responds with NACK.
Notice that this implies that between the execution of line 63 and 65 the element with key k is
removed from the local list of s because of some other concurrent delete operation op′ invoked
by some client c′. By scrutiny of the pseudocode, we have that a server that deletes an element
from its local list, does so on line 35, which occurs before the server sends a response to the
delete request. By definition, then, op′ is linearized at the point s executes line 35, before it
sends an ACK message to c′. Since op′ causes the element with key k to be removed from the local
list of s between the execution of lines 63 and 65 by c, its linearization point is included in the
execution interval of op. Since we place the linearization point of op right after the linearization
point of op′, the claim holds.

The argument is similar for when op is an instance of a search operation for key k that
terminates after receiving a NACK message from all the servers on lines 50-54.

56

Each server maintains a local variable token with initial value 0. Let some server s receive
a message m in some configuration C. If the field tk of m is equal to TOKEN, we say that
receives a token message. Observe that when s receives a token message (line 7), the value of
token is set to s. Furthermore, when s executes line 25, where the value of token changes from
s to s + 1, s also sends a token message to s + 1 (line 26). Notice that s can only reach and
execute this line if the condition of the if clause of line 12 evaluates to false, i.e. if token =
s. Then, the following holds:

Observation 46. At each configuration in α, there is at most one server s for which the local
variable token has the value s.

This server is referred to as token server. By the pseudocode, namely the if else clause of
lines 12, 17, and by line 22, the following observations holds.

Observation 47. A server s performs insert operations on its local list in α only during those
subsequences of α in which it is the token server.

Each server maintains a local list collection, llist. By observation of the pseudocode, lines
9 and 10, we have that if an insert operation attempts to insert key k in either of the lists of a
server s, but an element with that key already exists, then no second element for k is inserted
and the operation terminates. Thus, the following holds:

Observation 48. The keys contained in the list collection of s in any configuration C of α
form a set.

We denote this set by lls. By scrutiny of the pseudocode, we see that a new list object is
allocated in llist each time a server receives a token message (lines 6-8). The new object is
identified by the value of local variable round. By observation of the pseudocode, we further
have that each time a server inserts a key into lls, it does so on the list object identified by
round (line 22). We refer to this object as current list object. Then, based on lines 23-26 we
have the following:

Observation 49. A token message is sent from a server s to a server ((s + 1) mod NS) in
some configuration C only if the current local list object of server s is full at C.

Further inspection of the pseudocode shows that the local list object of a server is only
accessed by the execution of line 9, 22, 30, or 35. From this, we have the following observation.

Observation 50. If an operation op modifies the local list object of some server, then this
occurs in the configuration in which op is linearized.

Let Ci be the configuration in which the i-th linearization point in α is placed. Denote by
αi, the prefix of α which ends just after Ci and let Li be the sequence of linearization points
that is defined by αi. Denote by Si the set of keys that a sequential list contains after applying
the sequence of operations that Li imposes. Denote by Si = ϵ the empty sequence (the list is
empty).

Lemma 51. Let k be the token server in some configuration C in which it receives a message
m for an insert operation op with key k invoked by client c. Then at C, no element with key k
is contained in the local list set of any other server s ̸= k.

Proof. By inspection of the pseudocode, when a client c sends a message m to some server
either on line 41, line 49, line 61, or line 65, the mloop field of m is equal to false. This field
is set to true when server sNS−1 executes line 16. Notice that in the configuration in which this

57

line is executed by sNS−1, it is not the token server (otherwise the condition of line 12 would
not evaluate to true and the line would not be executed).

Consider the case where m reaches a server s at some configuration C and let lls contain
an element with key k in C. By inspection of the pseudocode (lines 9-10) we have that in that
case, m is not forwarded to a subsequent server.

Furthermore, by lines 12-16, we have that if s is not the token server and not sNS−1, and
provided that lls does not contain an element with key k, then s forwards m without modifying
the mloop field. This implies that the mloop field of m is changed at most once in α from
false to true, and that by server NS− 1, in a configuration C ′ in which k is not contained in
llNS−1.

Lemma 52. Let Ci, i ≥ 0, be a configuration in α in which server sti is the token server. Let
llji be the local list set of server sj, 0 ≤ j < NS, in Ci. Then it holds that Si =

⋃NS−1
j=0 llji .

Proof. We prove the claim by induction on i.
Base case (i = 0). The claim holds trivially at C0.
Hypothesis. Fix any i > 0 and assume that at Ci, it holds that Si =

⋃NS−1
j=0 llji . We show

that the claim holds for i+ 1.
Induction step. Let opi+1 be the operation that corresponds to the linearization point

placed in Ci+1. We proceed by case study.
Let opi+1 be an insert operation for key k. Assume first that the linearization point of opi+1

is placed at the execution of line 9 by sti+1 for it. Notice that when this line is executed, k is
searched for in the local list of sti+1 . Recall that, by the way linearization points are assigned,
the client c that invoked opi+1 receives NACK as response. Notice also that sti+1 sends NACK

as a response to c if k is present in the local list of sti+1 , and thus status1 = true. In that
case, lines 12 to 27 are not executed, and therefore, no new element is inserted into the local
list of sti+1 (line 22). Thus ll

sti+1

i+1 = ll
sti+1

i . By the induction hypothesis, Si =
⋃NS−1

j=0 llji . By

Observation 50 it follows that for any other server sj , where j ̸= ti+1, ll
sj
i+1 = ll

sj
i as well.

Then,
⋃NS−1

j=0 llji+1 =
⋃NS−1

j=0 llji . Notice that since the server responds with NACK, Si+1 = Si by

definition. Thus, Si+1 =
⋃NS−1

j=0 llji+1 and the claim holds.
Now, assume that opi+1 is linearized at the execution of line 22 by the token server for

it. By the way linearization points are assigned, this implies that when this line is executed,
status2 = true, and the insertion of an element with key k into the local list of st was successful.
This in turn implies that at Ci+1, ll

st
i+1 = llsti ∪ {k}. By Observation 50 it follows that for any

other server sj , where j ̸= ti+1, ll
sj
i+1 = ll

sj
i as well. Notice that since the server responds with

ACK, by definition the insertion is successful and thus Si+1 = Si ∪ {k}. Since by the induction
hypothesis, Si =

⋃NS−1
j=0 llji , it holds that Si+1 =

⋃NS−1
j=0 llji ∪ {k} =

⋃NS−1
j=0 llji+1, thus, the claim

holds.
Now consider that opi+1 is a delete operation for key k. Assume first that some server

sd responds with ACK, by executing line 36, to the client c that invoked opi+1. Then opi+1 is
linearized at the execution of this line by sd. Notice that this line is executed by a server if
status1 = true, i.e. if the server was successful in locating and deleting an element with key
k from its local list. Thus, llsti+1 = llsti \ {k}. Furthermore, by definition, Si+1 = Si \ {k}. By

the induction hypothesis, Si =
⋃NS−1

j=0 llji and since by Observation 50 no other modification
occurred on the local list of some other server between Ci and Ci+1, it follows that Si+1 =
Si \ {k} =

⋃NS−1
j=0 llji \ {k} =

⋃NS−1
j=0 llji+1.

Assume now that opi+1 is a delete operation for which no server responds with ACK to
the invoking client. Recall that in this case, by definition, Si+1 = Si. By inspection of the
pseudocode, it follows that no server finds an element with key k in its local list when it is

58

executing line 35 for opi+1. We examine two cases: (i) either no element with key k is contained
in any local list of any server in the beginning of the execution interval of opi+1, or (ii) an element
with key k is contained in the local list of some server sd in the beginning of opi+1’s execution
interval, but sd deletes it while serving a different delete operation op′, before it executes line
35 for opi+1.

Assume that case (i) holds. Then, the linearization point is placed in the beginning of the
execution interval of opi+1. Notice that in this case, the invocation (nor in fact the further
execution) of opi+1 has no effect on the local list of any server. Thus, between Ci and Ci+1 no
server local list is modified and, by the induction hypothesis, the claim holds.

Assume now that case (ii) holds. By Lemma 45, we have that a concurrent delete operation
op′ removes the element with key k from the local list of sd during the execution interval of
opi+1. By the assignment of linearization points, Observation 50 and Lemma 45, it further
follows that op′ = opi. Notice that in this case (ii) also, opi+1 has no effect on the local list of
any server. Thus, since by the induction hypothesis it holds that Si =

⋃NS−1
j=0 llji , it also holds

that Si =
⋃NS−1

j=0 llji+1, and since Si = Si+1, the claim holds.
Since a search operation does not modify the local list of any server, the argument is anal-

ogous as for the case of the delete operation.

From the above lemmas and observations, we have the following.

Theorem 53. The distributed unsorted list is linearizable. The insert operation has time and
communication complexity O(NS). The search and delete operations have communication com-
plexity O(1).

7.1.2 Alternative Implementation

At each point in time, there is a server (not necessarily always the same), denoted by st, which
holds the insert token, and serves insert operations. Initially, server s0 has the token, thus the
first element to be inserted in the list is stored on server s0. Further element insertions are also
performed on it, as long as the space it has allocated for the list does not exceed a threshold.
In case server s0 has to service an insertion but its space is filled up, it forwards the token by
sending a message to the next server, i.e. server s1. Thus, if server si, 0 ≤ i < NS, has the token,
but cannot service an insertion request without exceeding the threshold, it forwards the token
to server s(i+1) mod NS. When the next server receives the token, it allocates a memory chunk of
size equal to threshold, to store list elements. When the token reaches sNS−1, if sNS−1 has filled
all the local space up to a threshold, it sends the token again to s0. Then, s0 allocates more
memory (in addition to the memory chunk it had initially allocated for storing list elements)
for storing more list elements. The token might go through the server sequence again without
having any upper-bound restrictions concerning the number of round-trips.

Event-driven code for the server is presented in Algorithm 27. Each server s maintains a
local list (llist variable) allocated for storing list elements, a token variable which indicates
whether s currently holds the token, and a variable round to mark the ring round-trips the
token has performed; round is initially 0, and is incremented after every transmission of the
token to the next server. The pseudocode of the client is presented in Algorithm 28.

A client c sends an insert request for an element with key k to all servers in parallel and
awaits a response. If any of the servers contains k in its local list, it sends ACK to c and the
insert operation terminates. If no server finds k, then all reply NACK to c. In addition, the token
server st encapsulates its id in the NACK reply. After that, c sends an insert request for k to st
only. If st can insert it, it replies ACK to c. If k has in the meanwhile been inserted, st replies
NACK to c. If st is no longer the token server, it forwards the request along the server ring until

59

it reaches the current token server. Servers along the ring should check whether they contain k
or not, and if some server does, then it replies NACK to c. Let s′t be a token server that receives
such a request. It also checks whether it contains k or not. If not, it attempts to insert k into
its local list. Otherwise it replies NACK. When attempting to insert the element in the local list,
it may occur that the allocated space does not suffice. In this case, the server forwards the
request as well as the token to the next server in the ring, and increments the value of round
variable. If the insertion at a token server is successful, the server then replies ACK to c.

To perform a search for an element e, a client c sends a search request to all servers and
awaits their responses. A server s that receives a search request, checks whether e is present in
its local part of the list and if so, it responds with ACK to c. Otherwise, the response is NACK. If
all responses that c receives are NACK, e is not present in the list. Notice that if e is contained
in the list, exactly one server responds with ACK. Delete works similarly; if a server s responds
with ACK, then s has found and deleted e from its local list. Given that communication is fast
and the number of servers is much less than the total number of cores, forwarding a request to
all servers does not flood the network.

60

Algorithm 27 Events triggered in a server of
the distributed unsorted list.
1 List llist = ∅;
2 int my id, next id, token = 0, round = 0;

3 a message ⟨op, cid, key, data, tk⟩ is received:
4 switch (op) {
5 case INSERT:
6 if (tk == TOKEN) {
7 token = my id;
8 allocate new memory chunk(llist, round);

}
9 status1 = search(llist, key);
10 if (tk == −2) {
11 if (status1) {
12 if (token == my id) send(cid, ⟨ACK, true⟩);
13 else send(cid, ⟨ACK, false⟩);
14 } else {
15 if (token == my id) send(cid, ⟨NACK, true⟩);
16 else send(cid, ⟨NACK, false⟩);

}
17 } else {
18 if (status1) send(cid, NACK);
19 else {
20 if (token ̸= my id) {
21 next id = get next(my id);
22 send(next id, ⟨op, cid, key, data, tk⟩);
23 } else {
24 status2 = insert(llist, round, key, data);
25 if (status2 == false) {
26 round++;
27 token = get next(my id);
28 send(token, ⟨op, cid, key, data,TOKEN⟩);
29 } else send(cid, ACK);

}
}

}
30 break;
31 case SEARCH:
32 status1 = search(llist, key);
33 if (status1) send(cid, ⟨ACK,my id⟩);
34 else send(cid, ⟨NACK,my id⟩);
35 break;
36 case DELETE:
37 status1 = delete(llist, key);
38 if (status1) send(cid, ACK);
39 else send(cid, NACK);
40 break;

}

61

7.2 Sorted List

Algorithm 28 Insert, Search and Delete oper-
ation for a client of the distributed list.
41 boolean ClientInsert(int cid, int key, data data) {
42 boolean status;
43 boolean found = false;
44 int tid;

45 send to all servers(⟨INSERT, cid, key,⊥,−2⟩);
46 do {
47 ⟨status, sid, is token⟩ = receive();
48 if (status == ACK) found = true;
49 if (is token) tid = sid;
50 c++;
51 } while (c < NS);
52 if (found == true) return false;
53 send(tid, ⟨INSERT, cid, key, data,−1⟩);
54 status = receive();
55 if (status == NACK) return false;
56 else return true;

}

57 boolean ClientSearch(int cid, int key) {
58 int sid;
59 int c = 0;
60 boolean status;
61 boolean found = false;

62 send to all servers(⟨SEARCH, cid, key,⊥,−1⟩);
63 do {
64 ⟨status, sid⟩ = receive();
65 if (status == ACK) found = true;
66 c++;
67 } while (c < NS);
68 return found;

}

69 boolean ClientDelete(int cid, int key) {
70 int sid;
71 int c = 0;
72 boolean status;
73 boolean deleted = false;

74 send to all servers(⟨DELETE, cid, key,⊥,−1⟩);
75 do {
76 ⟨status, sid⟩ = receive();
77 if (status == ACK) deleted = true;
78 c++;
79 } while (c < NS);
80 return deleted;

}

62

Algorithm 29 Events triggered in a server of the distributed
sorted list.
81 List llist = ∅;
82 int my id, next id, kmax, cv[MC], nbr cv[MC];
83 data[0 . . . CHUNKSIZE] chunk1, chunk2;
84 boolean status = false, served = false;

85 a message ⟨op, cid, key, data⟩ is received:
86 switch (op) {
87 case REQC:
88 send(cid, cv);
89 chunk2 = receive(cid);
90 if (not enough free space in local list to fit elements of chunk2) {
91 if (my sid == NS− 1) status = false;
92 else {
93 chunk1 = getChunkOfElementsFromLocalList(llist);
94 status = ServerMove(next id, chunk1);

}
95 } else status = true;
96 if (status == true) {
97 insertChunkOfElementsInLocalList(llist, chunk2);
98 send(cid, ACK);
99 } else send(cid, NACK);
100 break;
101 case INSERT :
102 while (served ̸= true) {
103 kmax = find max(llist);
104 if (kmax > key and isFull(llist) ̸= true) {
105 status = insert(llist, key, data);
106 send(cid, status);
107 served = true;
108 } else if (kmax > key) {
109 chunk1 = getChunkOfElementsFromLocalList(llist);
110 status = ServerMove(next id, chunk1);
111 if (status == true) {
112 removeChunkOfElementsFromLocalList(llist, chunk1);
113 } else {
114 send(cid, NACK);
115 served = true;

}
116 } else {
117 if (my id ̸= NS− 1) send(next id, ⟨INSERT, cid, key, data⟩);
118 else send(cid, NACK);
119 served = true;

}
}

120 break;
121 case SEARCH:
122 cv[cid] + +;
123 status = search(llist, key);
124 if (status == false) send(cid, NACK));
125 else send(cid, ACK);
126 break;
127 case DELETE:
128 cv[cid] + +;
129 status = search(llist, key);
130 if (status == true) {
131 delete(llist, key);
132 send(cid, ACK);
133 } else send(cid, NACK);
134 break;

}

The proposed implemen-
tation is based on the
distributed unsorted list,
presented in Section 7.1.
Each server s has a mem-
ory chunk of predeter-
mined size where it main-
tains a part of the im-
plemented list so that all
elements stored on server
si have smaller keys than
those stored on server
si+1, 0 ≤ i < NS − 1. Be-
cause of this sorting prop-
erty, an element with key
k is not appended to the
end of the list, so a to-
ken server is useless in
this case. This is an es-
sential difference with the
unsorted list implementa-
tion.

Similarly to the un-
sorted case, a client sends
an insert request for key k
to server s0. The server
searches its local part of
the list for a key that is
greater than or equal to
k. In case that it finds
such an element that is
not equal to k, it can try
to insert k to its local
list, llist. More specifi-
cally, if the server has suf-
ficient storage space for a
new element, it simply cre-
ates a new node with key
k and inserts it to the
list. However, in case that
the server does not have
enough storage space, it
tries to free it by forward-
ing a chunk of elements of
llist to the next server. If
this is possible, it serves
the request. In case s0

does not find a key that is greater than or equal to k in its llist, if forwards the message
with the insert request to the next server, which in turn tries to serve the request accordingly.

63

Notice that this way, a request may be forwarded from one server to the next, as in the case of
the unsorted list. However, for ease of presentation, in the following we present a static algo-
rithm where this forwarding stops at sNS−1. In case that an element with k is already present in
the llist of some server s of the resulting sequence, then s sends an NACK message to the client
that requested the insert.

As in the case of the unsorted list, a client performs a search or delete operation for key k by
sending the request to all servers. If not handled correctly, then the interleaving of the arrival
of requests to servers may cause a search operation to “miss” the key k that it is searching,
because the corresponding element may be in the process to be moved from one server to a
neighboring one. In order to avoid this, servers maintain a sequence number for each client that
is incremented at every search and delete operation. Neighboring servers that have to move a
chunk of elements among them, first verify that the latest (search or delete) requests that they
have served for each client have compatible sequence numbers and perform the move only in
this case.

Event-driven code for the server is presented in Algorithms 29 and 30. The clients access
the sorted list using the same routines as they do in the case of the unsorted list (see Algorithm
26).

When an insert request for key k reaches a server s, s compares the maximal key stored in
its local list to k. If k is greater than the maximal key and s is not sNS−1, the request must be
forwarded to the next server (line 117). Otherwise, if k is to be stored on s, s checks if llist has
enough space to serve the insert. If it does, s inserts the element and sends an ACK to the client
(line 105-106). If s does not have space for inserts, the operation cannot be executed, hence s
must check whether a chunk of its elements can be forwarded to the next server to make room
for further inserts. To move a chunk, s calls ServerMove() (presented in Algorithm 30) (line
110). If ServerMove() succeeds in making room in s’s llist, the insert can be accommodated
(line 111). In any other case, s responds to the client with NACK (line 114).

A server process a search request as described for the unsorted list, but it now pairs each
such request with a sequence number (line 122). Delete is processed by a server in a way
analogous to search.

In order to move a chunk of llist to the next server, a server si invokes the auxiliary routine
ServerMove() (line 110). ServerMove() sends a REQC message to server si+1 (line 138). When
si+1 receives this request, it sends its client vector to si (line 88). Upon reception (line 139), si
compares its own client vector to that of si+1 and as long as it lags behind si+1 for any client,
it services search and delete requests until it catches up to si+1 (lines 140-142). Notice that
during this time, si+1 does not serve further client request, in order allow si to catch up with
it. As soon as si and si+1 are compatible in the client delete and search requests that they
have served, si sends to si+1 a chunk of the elements in its local list (lines 143-144) and awaits
the response of si+1. We remark that in order to perform this kind of bulk transfer, as the
one carried out between a server executing line 145 and another server executing line 89, we
consider that remote DMA transfers are employed. This is omitted from the pseudocode for
ease of presentation.

If si+1 can store the chunk of elements, then it does so and sends ACK to si. Upon reception,
si may now remove this chunk from its local list (line 111) and attempt to serve the insert
request. Notice that if si+1 cannot store the chunk of elements of si, then it itself initiates the
same chunk moving procedure with its next neighbor (lines 92-94), and if it is successful in
moving a chunk of its own, then it can accommodate the chunk received by si. Notice that in
the static sorted list that is presented here, this protocol may potentially spread up to server
sNS−1 (line 91). If sNS−1 does not have available space, then the moving of the chunk fails (line
113). The client then receives a NACK response, corresponding to a full list.

64

We remark that this implementation can become dynamic by appropriately exploiting the
placement of the servers on the logical ring, in a way similar to what we do in the unsorted
version.

8 Details on Hierarchical Approach

Algorithm 30 Auxiliary routine ServerMove for the servers
of the distributed sorted list.
135 boolean ServerMove(int cid, data chunk1) {
136 boolean status;
137 data chunk2;

138 send(next id, ⟨REQC, cid, 0,⊥⟩);
139 nbr cv = receive(next id);
140 while (for any element i, cv[i] < nbr cv[i]) {
141 receiveMessageOfType(SEARCH or DELETE);
142 service request

}
143 chunk2 = getChunkOfElementsFromLocalList(llist);
144 send(next id, chunk2);
145 status = receive(next id);
146 if (status == true) {
147 removeChunkOfElementsFromLocalList(llist, chunk2);
148 insertChunkOfElementsInLocalList(llist, chunk1);
149 return true;

} else return false;
}

We interpolate one or
more communication lay-
ers by using intermedi-
ate servers between the
servers that maintain parts
of the data structure and
the clients. The num-
ber of intermediate servers
and the number of layers
of intermediate servers be-
tween clients and servers
can be tuned for achieving
better performance.

For simplicity of pre-
sentation, we focus on
the case where there is a
single layer of intermedi-
ate servers. We present
first the details for a fully
non cache-coherent archi-
tecture.

For each island i, we appoint one process executing on a core of this island, called the island
master (and denoted by mi), as the intermediate server. Process mi is responsible to gather
messages from all the other cores of the island, and batch them together before forwarding them
to the appropriate server. This way, we exploit the fast communication between the cores of the
same island and we minimize the number of messages sent to the servers by putting many small
messages to one batch.We remark that each batch can be sent to a server by performing Dma.
In this case, mi initiates the Dma to the server’s memory, and once the Dma is completed, it
sends a small message to the server to notify it about the new data that it has to process.

Algorithm 31 presents the events triggered in an island master mi and its actions in order
to handle them. mi receives messages from clients that have type OUT (outgoing messages)
and from servers that have type IN (incoming messages). The outbatch messages are stored in
the outbuf array. Each time a client from island i wants to execute an operation, it sends a
message to mi; mi checks the destination server id (sid), recorded in the message, and packs
this message together with other messages directed to sid (lines 4-6). Server mi has set a timer,
and it will submit this batch of messages to server sid (as well as other batches of messages to
other servers), when the timer expires. When mi receives an incoming message from a server,
it unpacks it, and sends each message to the appropriate client on its island. When the timer
is triggered, mi places each batch of messages in an outbuf array that mi maintains for the
appropriate server. The transfer of all these messages to the server may occur using Dma. For
simplicity, we use two auxiliary functions: add message to add a message to an outbuf buffer
of mi, and split to split a batch of messages msg that have arrived to the particular messages
of the batch which are then placed in the inbuf buffer of mi.

65

Algorithm 31 Events triggered in an island master - Case of fully non cache-coherent archi-
tectures.

1 LocalArray outbuf = ∅; /* stores outgoing messages */

2 LocalArray inbuf = ∅; /* stores incoming messages */

3 a message ⟨type,msg⟩ is received:
4 if(type == OUT) {
5 sid = read field sid from msg;
6 add message(outbuf , sid, msg);
7 } else if (op == IN) { /* mi received a batch of messages from a server */

8 inbuf = split(msg); /* unbundle the message to many small ones */

9 for each message m in inbuf { /* the batch is for all cores in the island */

10 cid = read field client from msg;
11 send(cid, msg);

}
}

12 timer is triggered: /* Every timeout, mi sends outgoing messages */

13 for each batch of messages in outbuf { /* send a bach to a server */

14 send(sid, batch); /* this send can be done using DMA */

15 delete(outbuf , sid, batch);
}

The code of the client does not change much. Instead of sending messages directly to the
server, it sends them to the board master.

We remark that in order to improve the scalability of a directory-based algorithm, a locality-
sensitive hash functions could be a preferable choice. For instance, the simple currently em-
ployed mod hash function, can be replaced by a hash function that divides by some integer
k. Then, elements of up to k subsequent insert (i.e. push or enqueue) operations may be sent
to the same directory server. This approach suites better to bulk transfers since it allows for
exploiting locality. Specifically, consider that mi sends a batch of elements to be inserted to the
synchronizer ss of a directory-based data structure. Server ss unpacks the batch and processes
each of the requests contained therein separately. Thus, if mod is used, each of these elements
will be stored in different buckets (of different directory servers). As a sample alternative, if
the div hash function is used, more than one elements may end up to be stored in the same
bucket. When later on a batch of remove (i.e. pops or dequeues) operations arrives to ss, it
can request from the directory server that stores the first of the elements to be removed, to
additionally remove and send back further elements with subsequent keys that are located in
the same bucket. Notice that in this case, the use of DMA can optimize these transfers.

We now turn attention to partially non cache-coherent architectures where the cores of
an island communicate via cache-coherent shared memory. Algorithm 32 presents code for
the hierarchical approach in this case. For each island, we use an instance of the CC-Synch
combining synchronization algorithm, presented in [15]. All clients of island i participate to
the instance of CC-Synch for island i, i.e. each such client calls CC-Synch (see Algorithm 32) to
execute an operation.

CC-Synch employs a list which contains one node for each client that has initiated an oper-
ation; the last node of the list is a dummy node. After announcing its request by by recording

66

Algorithm 32 Pseudocode of hierarchical approach - Case of partially non cache-coherent
architectures.

struct Node {
Request req;
RetVal ret;
int id;
boolean wait;
boolean completed;
int sid;
Node *next;

};

shared Node *Tail;
private Node *nodei;
LocalArray outbuf = ∅; /* stores outgoing messages */

RetVal CC-Synch(Request req) { /* Pseudocode for thread pi */

Node *nextNode, *tmpNode, *tmpNodeNext;
int counter = 0;

16 nodei → wait = true;
17 nodei → next = null;
18 nodei → completed = false;
19 nextNode = nodei;
20 nodei = Swap(Tail, nodei);
21 nodei → req = req; /* pi announces its request */

22 nodei → sid = destination server;
23 nodei → next = nextNode;
24 while (nodei → wait == true) /* pi spins until it is unlocked */

nop;
25 if (nodei → completed==true) /* if pi’s req is already applied */

26 return nodei → ret; /* pi returns its return value */

27 tmpNode = nodei; /* otherwise pi is the combiner */

28 while (tmpNode → next ̸= null AND counter < h){
29 counter = counter + 1;
30 tmpNodeNext=tmpNode→next;
31 add message(outbuf , tmpNode→sid, tmpNode→req);
32 tmpNode = tmpNodeNext; /* proceed to the next node */

}
33 for each batch of messages in outbuf { /* send a batch of messages to servers */

34 send(sid, batch of message); /* where sid is the destination server for this batch */

35 delete(outbuf , sid, fatm);
}

36 inbuf = split(receive());
37 tmpNode = nodei;
38 while (counter ≥ 0) {
39 counter = counter - 1;
40 tmpNodeNext=tmpNode→next;
41 tmpNode→ret = find in inbuf the response for tmpNode→id;
42 tmpNode→completed = true;
43 tmpNode→wait = false; /* unlock the spinning thread */

44 tmpNode = tmpNodeNext;
}

45 tmpNode→wait = false; /* unlock next node’s owner */

46 return nodei →ret;
}

it in the last node of the list (i.e., in the dummy node) and by inserting a new node as the last
node of the list (which will comprise the new dummy node), a client tries to acquire a global

67

lock (line 20) which is implemented as a queue lock. The client that manages to acquire the
lock, called the combiner, batches those active requests, recorded in the list, that target the
same server (lines 28-32) and forwards them to this server (line 33). Thus, at each point in time,
the combiner plays the role of the island master. When the island master receives (a batch of)
responses from a server, it records each of them in the appropriate element of the request list
to inform active clients of the island about the completion of their requests (lines38-44). In the
meantime, each such client performs spinning (on the element in which it recorded its request)
until either the response for its request has been fulled by the island master or the global lock
has been released (line 24).

We use the list of requests to implement the global lock as a queue lock [62, 63]. The process
that has recorded its request in the head node of the list plays the role of the combiner.

9 Experimental Evaluation

We run our experiments on the Formic-Cube [4], which is a hardware prototype of a 512 core,
non-cache-coherent machine. It consists of 64 boards with 8 cores each (for a total of 512
cores). Each core owns 8 KB of private L1 cache, and 256 KB of private L2 cache. None of
these caches is hardware coherent. The boards are connected with a fast, lossless packet-based
network forming a 3D-mesh with a diameter of 6 hops. Each core is equipped with its own local
hardware mailbox, an incoming hardware FIFO queue, whose size is 4 KB. It can be written
by any core and read by the core that owns it. One core per board plays the role of the island
master (and could be one of the algorithm’s servers), whereas the remaining 7 cores of the board
serve as clients.

Our experiments are similar to those presented in [64, 15, 10]. More specifically, 107 pairs of
requests (PUSH and POP or ENQUEUE and DEQUEUE) are executed in total, as the number of cores
increases. To make the experiment more realistic, a random local work (up to 512 dummy loop
iterations) is simulated between the execution of two consecutive requests by the same thread
as in [64, 15, 10]. To reduce the overheads for the memory allocation of the stack nodes, we
allocate a pool of nodes (instead of allocating one node each time).

In Figure 1.a, we experimentally compare the performance of the centralized queue (CQueue)
to the performance of its hierarchical version (HQueue), and to those of the hierarchical versions
of the directory-based queue (DQueue) and the token-based queue (TQueue). We measure the
average throughput achieved by each algorithm. As expected, CQueue does not scale well.
Specifically, the experiment shows that for more than 16 cores in the system, the throughput of
the algorithm remains almost the same. We remark that the clients running on these 16 cores
do not send enough messages to fill up the mailbox of the server. This allows us to conclude
that when the server receives about 16 messages or more, for reading these messages, processing
the requests they contain, and sending back the responses to clients, the server ends up to be
always busy. We remark that reading each message from the mailbox causes a cache miss to
the server. So, the dominant factor at the server side in this case is to perform the reading of
these messages from the mailbox.

These remarks are further supported by studying the experiment for the HQueue implemen-
tation. Specifically, the throughput of HQueue does not further increase when the number of
cores becomes 64 or more. Remarkably, the 64 active cores are located in 8 boards, so there
exist 8 island masters in the system. Each island master sends two messages to the server –
one for batched enqueue and one for batched dequeue requests. So, again, the server becomes
saturated when it receives about 16 messages. These messages are read from the mailbox in
about the same time as in the setting of CQueue with 16 running cores. However, in the case
of HQueue, each message contains more requests to be processed by the server. Therefore,

68

CQueue HQueue DQueue TQueue

 0

 20

 40

 60

 80

 100

 120

 140

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

)

cores

(a)

 0

 20

 40

 60

 80

 100

 120

 140

0

3
2

6
4

1
2

8

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

Random local work

(b)

Figure 1: Performance evaluation of (a) distributed queue implementations, (b) distributed
queue implementations while executing different amounts of local work (512 cores).

the average time needed to process a request is now smaller since the overhead of reading and
processing a message is divided over the number of requests it contains. Notice that now, the
server has more work to do in terms of processing requests. The experiment shows that the
time required for this is evened out by the time saved for processing each request.

Similarly to CQueue and HQueue, the DQueue implementation uses a centralized component,
namely the synchronizer. However, contrary to the HQueue case, in the DQueue, each island
master sends one message instead of two, which contains the number of both the enqueues and
dequeues requests. Since we do not see the throughput stop increasing at 128 cores, we conclude
that now the dominant factor is not the time that the server requires to read the messages from
its mailbox. The DQueue graph of Figure 1.a shows that DQueue scales well for up to 512 cores.
Therefore, in the DQueue approach, the synchronizer does not pose a scalability problem. The
reason for this is, not only that the synchronizer receives a smaller number of messages, but
also that it has to do a simple arithmetic addition or subtraction for each batch of requests
that it receives. This computational effort is significantly smaller than those carried out by the
centralized component in the CQueue and HQueue implementations. Therefore, it is important
that the local computation done by a server be small.

Notice that in the DQueue implementation, the actual request processing takes place on
the hash table servers. So, clients do not initiate requests as frequently as in the previous
algorithms, since they also have to communicate with the hash table servers. Moreover, the
processing in this case is shared among the hash-table servers and therefore, this processing
does not cause scalability problems. It follows that load balancing is also an important factor
affecting scalability. In the case of the DQueue the local work on the synchronizer is a linear
function of the amount of island masters. On the contrary, in the other two implementations,
it is a function of the amount of clients. It follows that this is another reason for the good
scalability observed on the DQueue implementation.

We remark that when the amount of clients, and therefore, of island masters, is so large
as to cause saturation on the synchronizer, a tree-like hierarchy of island masters would solve
the scalability problem. There, the DQueue algorithm can offer a trade-off between overloaded
activity of the centralized component and the latency that is caused by the height of the tree

69

CStack EStack HStack DStack TStack

 0

 50

 100

 150

 200

 250

 300

 350

 400

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

T
h
ro

u
g
h
p
u
t
(K

o
p
s
/s

)

cores

(a)

 0

 20

 40

 60

 80

 100

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

cores

(b)

Figure 2: Performance evaluation of (a) distributed stack implementations with elimination,
(b) distributed stack implementations without elimination.

hierarchy.
Figure 1.a further shows the observed throughput of TQueue. The behavior of TQueue in

terms of scalability follows that of HQueue. Notice that TQueue works in a similar way as
HQueue, with the difference that the identity of the centralized component may change, as the
token moves from server to server. This makes TQueue more complex than HQueue. As a
result, its throughput is lower than that of HQueue. However, TQueue is a nice generalization
of HQueue, which can be used in cases where the expected size of the required queue is not
known in advance and where a moderate number of cores are active.

In Figure 1.b, we fix the number of cores to 512 and perform the experiment for several
different random work values (0 - 32K). It is shown that, for a wide range of values (0-512),
we see no big difference on the performance of each algorithm. This is so because, for this
range of values, the cost to perform the requests dominates the cost introduced by the random
work. When the random work becomes too high (greater than 32K dummy loop iterations),
the throughput of all algorithms degrades and the performance differences among them become
minimal, since the amount of random work becomes then the dominant performance factor.

In Figure 2.a, we experimentally compare the performance of the centralized stack (CStack)
with its hierarchical version where the island master performs elimination (EStack), an improved
version of EStack where the island master performs batching (HStack), and the hierarchical
versions of the directory-based stack (DStack) and the token based-stack (TStack). As expected,
the centralized implementation does not scale for more than 16 cores. All other algorithms scale
well for up to 512 cores. This shows that the elimination technique is highly-scalable. It is so
efficient that it results in no significant performance differences between the algorithms that
apply it.

In order to get a better estimation of the effect that the elimination technique has on the
algorithms, we experimentally compared the performance that CStack, EStack, HStack, TStack,
and DStack can achieve, when they are not performing elimination. Figure 2.b shows the
obtained throughput. Notice that the scalability characteristics of CStack, HStack, and TStack
are similar to those of CQueue, HQueue, and TQueue. This is not the case for DStack. The
reason for this is the following. In our experiment, each client performs pairs of push and pops.

70

 0

 20

 40

 60

 80

 100

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

T
o
ta

l
#
 M

e
s
s
a
g
e
s
 (

M
ill

io
n
)

cores

(a)

CStack

HStack

DStack

TStack

 0

 20

 40

 60

 80

 100

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

cores

(b)

CQueue

HQueue

DQueue

TQueue

Figure 3: Total number of messages received in the proposed implementations by all servers in
the system for 107 operations.

 0

 0.5

 1

 1.5

 2

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

S
F

s

cores

(a)

CStack

HStack

DStack

TStack

 0

 0.5

 1

 1.5

 2

8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

cores

(b)

CQueue

HQueue

DQueue

TQueue

Figure 4: Scalability factors of presented algorithms.

By the way the synchronizer works, the push request and the pop request of each pair are often
assigned the same key. This results in contention at the hash table. In an experiment where
the number of pushes is not equal to the number of pops, the observed performance would be
much better than that of other algorithms for all numbers of cores.

Figure 3.b shows the total number of messages sent in each experiment presented in Fig-
ure 1.a. Remarkably, there is an inverse relationship between these results and those of Fig-
ure 1.a. For instance, DQueue circulates the largest number of messages in the system. However,
DQueue is the implementation that scales best. Thus, the total number of messages is not nec-
essarily an indicative factor of the actual performance. This is so because a server may easily
become saturated even by a moderate amount of messages, if the required processing is impor-
tant. This is for example the case in the CQueue implementation. Therefore, in order to be
scalable, an implementation should avoid overloading the servers in this manner. Backed up by
Figure 3.b, becomes aparent that good scalability is offered when the implementation ensures
good load balancing between the messages that the servers have to process.

We distill the empirical observations of this section into a metric. As observed, achieving
load balancing in terms of evenly distributing both messages and the processing of requests to
servers is important for ensuring scalability. If we fix an algorithm A, this is reflected in the

71

number of messages received by each server s for performing m requests when executing A. By
denoting this number as msgs, we can define the scalability factor sfs of a server s as follows:

sfs = lim
m→∞

msgs
m

(1)

where we assume that a maximum number of clients repeatedly initiate requests and these
clients are scheduled fairly. We define the scalability factor sf of A as the maximum of the
scalability factors of all servers.

sf = max
s

{sfs} (2)

We remark that a low scalability factor indicates good scalability behavior. The intuition
behind this metric is that the lower the sfs fraction is, the more requests are batched in a message
that reaches a server. Computational overhead for the reading, handling and decoding of a single
message is then spread over multiple requests. As a scalability indicator, the scalability factor
shows that it is of more interest to attempt not to minimize the total number of messages that
are trafficked in a system, but to design implementations that minimize the total number of
messages that a server has to process. Figure 4 shows graphs of the scalability factors of the
the proposed implementations. The results agree with this theoretical perception.

10 Implementation of Shared-Memory Primitives

In Java, synchronization primitives are provided as methods of the library sun.misc.unsafe. In
order to support most of the methods sun.misc.unsafe uses, we need to implement the atomic
updates, the compare-and-swap primitives, and the pair of park()/unpark() methods used for
thread synchronization. Once these primitives have been supported, the implementations of
several data structures that are provided in java.util.concurrent will come for free.

In addition to these primitives, we have implemented the primitives fetch-and-increment and
swap, to implement numeric operations used by the methods of package java.util.concurrent.atomic,
described in Section 10, e.g. getAndSet(). These primitives need to be implemented on a lower
level than the Java Virtual Machine, since sun.misc.unsafe mostly calls primitives that need
either to access the system or hardware resource.

We have to point out that Formic does support reads and stores to remote memory locations
but does not provide coherence. Thus, this remote store is different from the atomic write
primitive we want to implement, due to the atomicity that the second provides. By adding
this primitive, we aim to give safety when simple writes occur concurrently with other atomic
primitives, such as CAS, etc..

Hence, we implemented the following atomic primitives:

• Read, which taks as arguments a memory address and returns the value that is stored in
this address.

• Write, which takes as arguments a memory address and a value, and stores the new value
to this address.

• Fetch-And-Increment, which takes as arguments a memory address and a value, and adds
the new value to the existing one stored in the address. It then returns the new value.

• Swap, which takes as arguments a memory address, and a new value, and replaces the
stored value with the new one. It then returns the previous value.

• Compare-And-Swap, which takes as arguments a memory address, an old value and a
new value. If the value stored in the memory address equals to the old value, then it is
replaced by the new value. Then, the function returns the old value.

72

11 Atomic Accesses Support

The java.util.concurrent.atomic package provides a set of atomic types (as classes). In-
stances of these classes must be atomically accessed. In shared-memory architectures these
classes are implemented by delegating the complexity of synchronization handling to instruc-
tions provided by the underlying architecture, e.g., memory barriers, compare and swap etc. In
the case of Formic, however, such instructions are not available. As a result the atomic types
need to be implemented in software.

A naive implementation is to delegate the handling of such operations to a manager similar
to the monitor manager, presented in Section 2.3 of Deliverable 1.1. This manager would
be responsible for holding the values associated to instances of atomic types, as well as, for
performing atomic operations on them. Such a manager is capable of reducing the memory
traffic regarding synchronization in some cases.

Algorithm 33 Example of getAndSet implementation.

1 public final int getAndSet(int newValue) {
2 for (;;) {
3 int current = get(); /* Synchronization point */

4 if (compareAndSet(current, newValue)) /* Synchronization point */

5 return current;
6 }
7 }

For instance, in the implementation depicted in Algorithm 33, the JVM constantly tries to
set the value of the object to newValue before its value changes between the get() and the
compareAndSet invocations. This may result in many failures and unnecessary synchronizations
in case of high contention. When using a manager there is no need for such a loop. Since the
accesses are only possible by the manager, the manager can assume that the value will never
change between the get() and a consequent set() invocation. As a result we could implement
the logic of the above function in the manager and avoid the extra communication from the
loop iterations. The equivalent algorithm in the manager is shown in Algorithm 34.

Algorithm 34 Implementation of getAndSet through the monitor manager.

8 public final int getAndSet(int newValue) {
9 int current = get();
10 set(newValue);
11 return current;
12 }

A similar effect can be achieved by using the synchronized classifier. Since the code inside
a synchronized block or method can be seen as atomic we can implement getAndSet as above
but without the need of a centralized manager by just adding synchronized to the method
classifiers, as shown in Algorithm 35.

Note that, in shared-memory processors, this approach is probably less efficient than the
first one when there is no contention on the object. In the lack of contention the first imple-
mentation would just perform a read instruction and a compare and swap, while in the third
implementation it would also need to go through the monitor implementation of the virtual ma-
chine (at minimum an extra compare and swap, and a write). On the Formic, however, where

73

Algorithm 35 Implementation of getAndSet using synchronized.

13 public final synchronized int getAndSet(int newValue) {
14 int current = get();
15 set(newValue);
16 return current;
17 }

there is no compare and swap instruction, the first implementation would require at least two
request messages (get and compareAndSet) to the manager and the corresponding two replies
per iteration. The third implementation would also need two requests (a monitor acquire and a
monitor release) and the corresponding two replies but with the difference that it never needs
to repeat this process, resulting in reduced memory traffic.

To further improve this approach we avoid the use of regular monitors and replace them
with readers-writers monitors. This way in the case of contented reads we do not restrict access
to a single thread, allowing for increased parallelism. As a further optimization we slightly
change the semantics of compareAndSet and make it lazely return False in case that the object
is owned by another writer. This behavior is based on the heuristic that if an object is owned
by a writer it is going to be written and the value will probably be different than the one the
programmer provided as expected to the compareAndSet.

11.1 Readers-Writers Implementation

The readers-writers monitors are implemented using the same monitor manager, presented in
Section 2.3 of Deliverable 1.1, but with different operation codes. We introduce four new
operations code, READ LOCK, WRITE LOCK, READ UNLOCK, and WRITE UNLOCK. For each readers-
writers monitor we keep two different queues, the readers queue and the writers queue. The
readers queue holds the thread IDs of the threads waiting to acquire a read-lock on the monitor.
Correspondingly, the writers queue holds the thread IDs of the threads waiting to acquire a
write-lock on the monitor.

When a monitor is read-locked we hold the count of threads sharing that read monitor, while
for write-locked monitors we hold the thread ID of the thread owning that write monitor. As
long as the writers lock is empty the monitor manager services read-lock requests by increasing
the counter and sending an acknowledgement message to the requester. When a write-lock
request arrives, it gets queued to the writers queue and read-lock requests start being queued in
the readers-queue instead of being served, essentially giving priority to the writer-lock requests.
Eventually, when all the readers release the read-locks they hold the write-lock requests will
start being served, and read-lock requests will be served again only after the writers-queue gets
empty again.

We chose to give priority to the write locks since in most algorithms writing a variable is
less common than reading it (e.g., polling). In order to implement a more fair mechanism we
could set a threshold on the number of read-lock and write-lock requests being served at each
phase.

Finally, to support the lazy fail for compareAndSet we introduce another operation code,
the TRY LOCK. This is a special write-lock request that if the monitor is not free, it does not
get queued in the write-queue, but a negative acknowledgement is send back to the requester,
notifying him that the monitor is not free.

74

12 Conclusions

We have presented a comprehensive collection of data structures for future many-core architec-
tures. The collection could be utilized by runtimes of high-productivity languages ported to
such architectures. Our collection provides all types of concurrent data structures supported
in Java’s concurrency utilities. Other high-level productivity languages that provide shared
memory for thread communication could also benefit from our library. Specifically, we provide
several different kinds of queues, including static, dynamic and synchronous; our queue (or
deque) implementations can be trivially adjusted to provide the functionality of delay queues
(or delay deques) [8]. We do not provide a priority queue implementation, since it is easy to
adopt a simplified version of the priority queue presented in [65] in our setting. Our list imple-
mentations provide the functionality of sets, whereas the simple hash table that we utilize to
design some of our data structures can serve as a hash-based map.

We have outlined hierarchical versions of the data structures that we have implemented.
These implementations take into consideration challenges that are raised in realistic scalable
multicore architectures where communication is implicit only between the cores of an island
whereas explicit communication is employed among islands.

We have performed experimental evaluation of the implemented data structures in order
to examine both their throughput and energy efficiency. Our experiments show the perfor-
mance and scalability characteristics of some of the techniques on top of a non cache-coherent
hardware prototype. They also illustrate the scalability power of the hierarchical approach
in such machines. We believe that the proposed implementations will exhibit the same perfor-
mance characteristics, if programmed appropriately, in prototypes with similar characteristics as
FORMIC, like Tilera or SCC. We expect this also to be true for future, commercially available,
such machines.

References

[1] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and Boris Grot.
Scale-out numa. In ASPLOS, pages 3–18. ACM, 2014.

[2] Nicholas Carter, Aditya Agrawal, et al. Runnemede: An architecture for Ubiquitous High-
Performance Computing. In HPCA, pages 198–209, 2013.

[3] M. Gries, U. Hoffmann, M. Konow, and M. Riepen. Scc: A flexible architecture for many-
core platform research. Computing in Science Engineering, 13(6):79–83, Nov 2011.

[4] Spyros Lyberis, George Kalokerinos, Michalis Lygerakis, et al. Formic: Cost-efficient and
scalable prototyping of manycore architectures. In FCCM, 2012.

[5] Ross McIlroy and Joe Sventek. Hera-JVM: a runtime system for heterogeneous multi-core
architectures. In OOPSLA, pages 205–222, 2010.

[6] Weimin Yu and Alan Cox. Java/DSM: A platform for heterogeneous computing. Concur-
rency: Practice and Experience, 9(11):1213–1224, 1997.

[7] Wenzhang Zhu, Cho-Li Wang, and Francis CM Lau. Jessica2: A distributed java virtual
machine with transparent thread migration support. In IEEE Cluster, pages 381–388, 2002.

[8] Douglas Lea. Concurrent Programming in Java(TM): Design Principles and Patterns (3rd
Edition). Addison-Wesley Professional, 2006.

75

[9] Oracle. Java utilities library.

[10] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In PODC, pages 267–275, NY, USA, 1996.

[11] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM,
33(6):668–676, June 1990.

[12] William N. Scherer III, Doug Lea, and Michael L. Scott. Scalable synchronous queues. In
PPoPP, New York, US, Mar 2006.

[13] Daniel Nussbaum and Anant Agarwal. Scalability of parallel machines. Commun. ACM,
34(3):57–61, March 1991.

[14] David Dice, Virendra J. Marathe, and Nir Shavit. Lock cohorting: A general technique for
designing numa locks. In PPoPP, pages 247–256, 2012.

[15] Panagiota Fatourou and Nikolaos D. Kallimanis. Revisiting the combining synchronization
technique. In SPAA, pages 257–266, 2012.

[16] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algorithm. In
SPAA, pages 206–215. ACM, 2004.

[17] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In SPAA, pages 355–364, 2010.

[18] Robert Devine. Design and Implementation of DDH: A Distributed Dynamic Hashing
Algorithm. In FODO, pages 101–114, 1993.

[19] Hazelcast. The leading in-memory data grid. http://hazelcast.com/.

[20] Omid Shahmirzadi. High-Performance Communication Primitives and Data Structures on
Message-Passing Manycores. PhD thesis, EPFL, 2014. n. 6328.

[21] William Aiello, Costas Busch, Maurice Herlihy, Marios Mavronicolas, Nir Shavit, and Dan
Touitou. Supporting increment and decrement operations in balancing networks. In STACS
99, volume 1563 of Lecture Notes in Computer Science, pages 393–403. Springer, 1999.

[22] James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks. J. ACM, 41:5:1020–
5:1048, September 1994.

[23] Robert L. Bocchino, Vikram S. Adve, and Bradford L. Chamberlain. Software transactional
memory for large scale clusters. In PPoPP, pages 247–258, 2008.

[24] M. Couceiro et al. D2STM: Dependable Distributed Software Transactional Memory. In
PRDC, 2009.

[25] Aditya Dhoke, Roberto Palmieri, and Binoy Ravindran. On reducing false conflicts in
distributed transactional data structures. In ICDCN, pages 8:1–8:10, January 2015.

[26] Vincent Gramoli, Rachid Guerraoui, and Vasileios Trigonakis. TM2C: A Software Trans-
actional Memory for Many-cores. In EuroSys, pages 351–364, 2012.

[27] Christos Kotselidis, Mohammad Ansari, Kim Jarvis, Mikel Lujn, Chris C. Kirkham, and
Ian Watson. DiSTM: A Software Transactional Memory Framework for Clusters. In ICPP,
pages 51–58. IEEE Computer Society, 2008.

76

http://hazelcast.com/

[28] Kaloian Manassiev, Madalin Mihailescu, and Cristiana Amza. Exploiting distributed ver-
sion concurrency in a transactional memory cluster. In PPoPP, pages 198–208. ACM,
2006.

[29] Mohamed M. Saad and Binoy Ravindran. Supporting STM in Distributed Systems: Mech-
anisms and a Java Framework. In TRANSACT, 2011.

[30] Mohamed M. Saad and Binoy Ravindran. HyFlow: A High Performance Distributed Soft-
ware Transactional Memory Framework. In HPDC, pages 265–266, 2011.

[31] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for
lock-free data structures. In ISCA, 1993.

[32] Nir Shavit and Dan Touitou. Software transactional memory. In PODC, pages 204–213.
ACM, 1995.

[33] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations and
Advanced Topics (2nd edition). John Wiley Interscience, March 2004.

[34] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7), 1978.

[35] Mohamed M. Saad and Binoy Ravindran. Transactional forwarding algorithm. Technical
report, Virginia Tech, 2011.

[36] Mohamed M. Saad and Binoy Ravindran. Snake: Control Flow Distributed Software
Transactional Memory. In SSS, pages 238–252, 2011.

[37] Annette Bieniusa and Thomas Fuhrmann. Consistency in hindsight: A fully decentralized
STM algorithm. In IPDPS, pages 1–12, April 2010.

[38] Hagit Attiya, Vincent Gramoli, and Alessia Milani. A provably starvation-free distributed
directory protocol. In SSS, pages 405–419, September 2010.

[39] Hagit Attiya, Vincent Gramoli, and Alessia Milani. Directory protocols for distributed
transactional memory. In Transactional Memory. Foundations, Algorithms, Tools, and
Applications, volume 8913, pages 367–391. Springer, 2015.

[40] Maurice Herlihy and Ye Sun. Distributed transactional memory for metric-space networks.
In DISC, pages 324–338, 2005.

[41] Gokarna Sharma and Costas Busch. Distributed transactional memory for general net-
works. Distrib. Comput., 27(5):329–362, October 2014.

[42] Bo Zhang and Binoy Ravindran. Brief announcement: Relay: A cache-coherence protocol
for distributed transactional memory. In OPODIS, 2009.

[43] Michael J. Demmer and Maurice Herlihy. The arrow distributed directory protocol. In
DISC, volume 1499 of Lecture Notes in Computer Science, pages 119–133. Springer, 1998.

[44] Milind Kulkarni et al. How much parallelism is there in irregular applications? In PPoPP,
pages 3–14, 2009.

[45] Milind Kulkarni et al. Optimistic parallelism benefits from data partitioning. In ASPLOS,
2008.

77

[46] D.B. Larkins et al. Global trees: A framework for linked data structures on distributed
memory parallel systems. In SC, pages 1–13, Nov 2008.

[47] Brigitte Kröll and Peter Widmayer. Distributing a search tree among a growing number
of processors. In Proceedings of the 1994 ACM SIGMOD International Conference on
Management of Data, pages 265–276, New York, USA, 1994.

[48] James Aspnes and Gauri Shah. Skip Graphs. In SODA, pages 384–393, Philadelphia, USA,
2003. SIAM.

[49] Steven D. Gribble et al. Scalable, distributed data structures for internet service construc-
tion. In OSDI, pages 22–22, 2000.

[50] Victoria Hilford, Farokh B. Bastani, and Bojan Cukic. Eh* - extendible hashing in a
distributed environment. In COMPSAC, 1997.

[51] Richard P. Martin, Kiran Nagaraja, and Thu D. Nguyen. Using distributed data structures
for constructing cluster-based services. In EASY, 2001.

[52] Marcos Kawazoe Aguilera, Wojciech M. Golab, and Mehul A. Shah. A practical scalable
distributed B-tree. PVLDB, 1(1):598–609, 2008.

[53] GridGain. Gridgain - in-memory data fabric. http://www.gridgain.com/.

[54] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon Kahan,
and Mark Oskin. Latency-tolerant software distributed shared memory. In Proceedings of
the 2015 USENIX Conference on Usenix Annual Technical Conference, USENIX ATC ’15,
pages 291–305, Berkeley, CA, USA, 2015. USENIX Association.

[55] David Dice, Virendra J. Marathe, and Nir Shavit. Flat-combining NUMA locks. In SPAA,
pages 65–74, June 2011.

[56] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized concurrency:
The secret to scaling concurrent search data structures. In ASPLOS, pages 631–644, March
2015.

[57] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1996.

[58] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition for
concurrent objects. TOPLAS, 12(3):463–492, 1990.

[59] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2008.

[60] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization
on shared-memory multiprocessors. TOCS, 9(1):21–65, 1991.

[61] Allan Gottlieb et al. The NYU Ultracomputer designing a MIMD, shared-memory parallel
machine. In ACM SIGARCH Computer Architecture News, volume 10, pages 27–42. IEEE
Computer Society Press, 1982.

[62] Travis S. Craig. Building FIFO and priority-queueing spin locks from atomic swap. Tech-
nical Report TR 93-02-02, Department of Computer Science, University of Washington,
February 1993.

78

http://www.gridgain.com/

[63] Peter S. Magnusson, Anders Landin, and Erik Hagersten. Queue Locks on Cache Coherent
Multiprocessors. In Proceedings of the 8th International Symposium on Parallel Processing
(IPDPS), pages 165–171, 1994.

[64] Panagiota Fatourou and Nikolaos D. Kallimanis. A highly-efficient wait-free universal
construction. In Proceedings of the Twenty-third Annual ACM Symposium on Parallelism
in Algorithms and Architectures, pages 325–334, NY, USA, 2011.

[65] Bernard Mans. Portable distributed priority queues with MPI. Concurrency: Practice and
Experience, 10(3):175–198, 1998.

79

	Introduction
	Related Work
	Abstract Description of Hardware
	Theoretical Framework
	Directory-based Stacks, Queues, and Deques
	Distributed Hash Table
	Directory-Based Stack
	Proof of Correctness

	Directory-Based Queue
	Proof of Correctness

	Queues with Special Functionality
	Directory-Based Double-Ended Queue (Deque)
	Algorithm Description
	Proof of Correctness

	Hierarchical approach, Elimination, and Combining.

	Token-based Stacks, Queues, and Deques
	Token-Based Stack
	Algorithm Description
	Proof of Correctness

	Token-Based Queue
	Algorithm Description
	Proof of Correctness

	Token-Based Double Ended Queue (Deque)
	Algorithm Description
	Proof of Correctness

	Hierarchical approach.
	Dynamic Versions of the Implementations

	Distributed Lists
	Unsorted List
	Proof of Correctness
	Alternative Implementation

	Sorted List

	Details on Hierarchical Approach
	Experimental Evaluation
	Implementation of Shared-Memory Primitives
	Atomic Accesses Support
	Readers-Writers Implementation

	Conclusions

