
Coordinated Broadcast-based Request-Reply and
Group Management for Tightly-Coupled Wireless

Systems
Manos Koutsoubelias and Spyros Lalis

University of Thessaly & CERTH
Volos, Greece

Email: {emkouts,lalis}@uth.gr

Abstract—As the domain of cyber-physical systems continues
to grow, an increasing number of tightly-coupled distributed
applications will be implemented on top of wireless networking
technologies. Some of these applications, including collaborative
robotic teams, work in a coordinated fashion, whereby a dis-
tinguished node takes control decisions and sends commands to
other nodes, which in turn perform the requested action/opera-
tion and send back a reply/acknowledgment. The implementation
of such interactions via reliable point-to-point flows may lead to a
significant performance degradation due to collisions, especially
when the system operates close to the capacity of the com-
munication channel. We propose a coordinated protocol which
exploits the broadcast nature of the wireless medium in order to
support this application-level interaction with a minimal number
of message transmissions and predictable latency. The protocol
also comes with group management functionality, allowing new
processes to join and existing processes to leave the group in
a controlled way. We evaluate a prototype implementation over
WiFi, using a simulated setup as well as a physical testbed. Our
results show that the proposed protocol can achieve significantly
better performance compared to point-to- point approaches, and
remains fully predictable and dependable even when operating
close to the wireless channel capacity.

I. INTRODUCTION

Many applications from the domain of cyber-physical sys-
tems [1] implement a distributed control logic over a wireless
medium. A typical example include teams of unmanned vehi-
cles (UVs) that perform collaborative missions e.g., the aerial
scanning of an area of interest with a certain flight formation
[2]. Such applications, require tightly-coupled reliable interac-
tions between the UVs over the wireless medium. Moreover,
the aspect of control poses the requirement of predictable
system responsiveness, which translates to predictable network
interaction latencies.

A popular implementation approach for these interactions
is to adopt a coordinated design in the spirit of a group
RPC [3] whereby a distinguished node takes control decisions
and sends commands to other nodes, which in turn perform
or schedule the requested action/operation and send back a
reply/acknowledgment. Conventionally, such a communication
pattern can be supported on top of multiple reliable point-
to-point flows such as those provided from TCP. However
this may lead to increased network traffic and higher latency.
Furthermore, if performed in an un-coordinated way, it can
lead to increased contention for the shared medium, resulting

in unpredictable latencies. Both problems are particularly
undesirable in a wireless setting, since they can lead to a
significant performance degradation.

Taking a different approach, we propose a coordinated
1-N request-reply protocol, which achieves reliability, high
throughput and predictable low latency. This is achieved by
exploiting the broadcast nature of wireless communication in
conjunction with a simple but effective scheme for avoiding
contention during the transmission of replies back to the
coordinator. The protocol also comes with integrated group
management functions, allowing processes to join and leave
the group at any point in time. Notably, our protocol can serve
as a foundation for higher-level system support, such as the
tightly-coupled UAV team programming approach presented
in [4].

The main contributions of the paper are: (i) we present
a coordinated protocol that supports request-reply interaction
in dynamically changing wireless process groups; (ii) we
describe the protocol in detail, including a high-level algo-
rithmic description and an informal proof for the key group
management properties; (iii) we evaluate an implementation
of our protocol for a 802.11 WiFi network, using a simulated
setup and a wireless testbed; (iv) we compare our proto-
col with TCP-based and simpler unicast-based approaches,
showing that it achieves significantly better and predictable
performance, especially when operating close to the channel
capacity, for WiFi that favors unicast messaging. It is important
to note that the proposed protocol is completely agnostic
of the underlying network technology, and will work very
well also on top of much simpler wireless technologies that
do not feature an advanced medium-access-control (MAC)
mechanism.

The rest of the paper is structured as follows. Section II
introduces the application-level interface for a coordinated
request-reply interaction within a process group. The protocol
for supporting this API on top of a distributed system with
broadcasting capability is described in detail in Section III.
Section IV discusses the key performance properties and
semantics of the supported request-reply interaction, while
Section V gives informal proofs for the most important group
management properties of the protocol. Section VI presents a
performance evaluation and comparison with different point-

ar
X

iv
:1

60
6.

08
27

7v
1 

 [
cs

.D
C

] 
 2

7 
Ju

n 
20

16



TABLE I: Application-level primitives

Init(pid, pids): Initializes the protocol with identifier pid for the
local process. If pids is empty, the local process must explicitly
join the group via the Join primitive. Else, pids contains the
members of the group, including pid.
RequestReply(pids, data, procT ): Sends an application-level re-
quest to the set of processes pids with payload data and an
estimated processing delay procT , and returns the set of replies
produced.
ProcessRequest(data): Handle the next application-level request
with payload data, and return the reply for it.
Join(): Join the group.
Leave(): Leave the group.
CheckJoins(joinT ): Wait jointT for processes to join.
CheckLeaves(leaveT ): Wait leaveT for processes to leave.
BecameCoord(pids): The local process has coordinator status,
for the group view which includes processes pids.
GroupChanged(pids): The current group view changed (due to
a join/leave/failure), and includes processes pids.

to-point approaches. Section VII provides an overview of
related work. Finally, Section VIII concludes the paper and
points to directions for future work.

II. APPLICATION INTERFACE

We target distributed process groups, where a distinguished
process acts as a coordinator and issues requests to one
or more ordinary processes (nodes). In turn, the addressed
ordinary processes perform the requested action or operation,
and send back a reply. The reply serves as an application-level
acknowledgment but may also contain additional information.
Furthermore, new processes may join the group, and existing
group members can leave the group, anytime. Processes that
fail are also removed from the group. In case the coordinator
fails or leaves the group, one of the ordinary processes takes
over as the new coordinator.

This functionality can be exposed to the application via
the primitives of Table I. The RequestReply call and
ProcessRequest event embody the basic application-level
request-reply interaction. The Join and Leave primitives let
a process join and leave the group, respectively; it is up to
the coordinator to check for and handle such processes, via
CheckJoins and CheckLeaves. Finally, the BecameCoord
event informs the application that it took over as the new
coordinator, while GroupChanged notifies it about any sub-
sequent group changes.

The motivation for introducing the CheckJoins and
CheckLeaves primitives is to give the application more
flexibility but also more control on the network traffic. For
instance, the coordinator might let processes join or leave the
group under certain application-specific conditions to which
the underlying protocol is oblivious. Then, it is pointless (and
costly) to keep the respective group management protocol
functions active at all times. Also, some applications might be
able to work without such group management functionality, in
which case the corresponding protocol components could be
dropped rather than be carried along as dead code; of course,
the group could still change due to process failures.

Note that only the process that becomes the coordinator
is notified accordingly, in order perform any application-level
recovery actions, if needed, and resume the group’s operation.
Also, only the coordinator is notified about group changes so
that it can adjust its operation. Note that the coordinator can
easily forward such notifications to all other group members,
under the control of the application, via the RequestReply
primitive. In a similar vein, it is up to the application to use
this primitive in order to back-up critical coordinator state to
other members, as needed.

III. THE GCBRR PROTOCOL

To support the above API we propose a 1-N request-reply
and group management protocol, which exploits the broad-
cast nature of the wireless medium to eliminate superfluous
messages and avoid network contention. We refer to this
protocol as the Coordinated Broadcast-based Group Request-
Reply protocol (or GCBRR).

A. System model and assumptions

Let there be N processes (nodes), with monotonically
increasing identifiers, pi, 1 ≤ i ≤ N . The processes share
the same broadcast domain and communicate via broadcast
or unicast transmissions. Both types of transmissions are
unreliable. Broadcasts are non-atomic and might arrive at only
a subset of the processes. We assume bounded messaging
delay: a message will arrive at its destination(s) within MsgT
after it was sent, or not at all.

Processes may fail at any point in time. We assume syn-
chronous and reliable fault detection: if pi fails then all
correct processes will be notified about this failure within
FaultDetectT . In case of multiple failures, the respective
notifications may reach the correct processes in a different
order. But a failure notification for pi cannot overtake the last
message that was sent by pi. Also, we assume that once a
process leaves the group, it behaves like a failed process (in
practice, this can be achieved by having the process explicitly
reject messages coming from the group).

Finally, a process that has failed or left the group might wish
to join the group, again, at a later point in time. We assume that
processes do not attempt to re-join earlier than FaultDetect
after they failed or left the group. This ensures that the
messages sent by a process as part of the join procedure do not
overtake the notification about its previous departure/failure.
Alternatively, one can rely on process incarnation numbers.

B. Protocol structure

The GCBRR protocol is structured in a modular way. It
consists of the: (i) the basic application request-reply protocol;
(ii) the join protocol; (iii) the leave protocol; (iv) the view-push
protocol; (v) the fault handling and election procedure. This
makes it easier not only to describe but also to implement/test
the protocol. Of course, these components are not entirely
orthogonal to each other. But the interplay between them is
limited and clearly defined. Also, it is straightforward to drop
some of these components, if the corresponding functions are



TABLE II: Per-process protocol state

state Membership state
myid Identifier of the local process
coordid Identifier of the coordinator process
grp Group view including ticket information
seqno Sequence number of last request sent/received
rmask Reply bitmask for the current request
replies Replies received from (ordinary) processes
reply Reply of local (ordinary) process

TABLE III: Protocol messages

AREQ[pid, k, rmask, data]: Application request from pid (co-
ord) with sequence number k for processes in rmask
ARPL[pid, k, data]: Application reply from pid for the request
with sequence number k
JPOLL[pid]: Join poll from pid (coord)
JOIN[[pid]: Join request from pid, after a join poll
LPOLL[]: Leave poll (from coord)
LEFT[pid]: Leave notification from pid, after a leave poll
VPUSH[pid, grpc]: View-push request from pid (coord) for the
new/updated group view grpc
VACK[pid]: View-push acknowledgment from pid

not required by the application. In the following, we discuss
the individual components of GCBRR. Algorithms 1, 2, 3,
4, 5 and 6 provide corresponding descriptions in the form of
high-level code.

C. Protocol state and messages

The protocol state maintained locally by each process is
summarized in Table II. The messages types used in GCBRR
for each of its components are shown in Table III.

The membership status of the local process is kept in
variable state, and equals: NORMAL if the process is a
member of the group; JOIN if the process is attempting to
join the group (but is not yet a member of the group); LEAV E
if the process is attempting to leave the group (but is still a
member of the group); LEFT if the process has left the group.

The current local group view, which contains the identifiers
of the process that are considered to be members of the group,
is kept in the grp data structure. Importantly, grp includes
per-process ticket number information. The process with the
smallest ticket number is the coordinator; its identifier is stored
in coordid. The assignment of ticket numbers to newly joining
processes is done by the coordinator. The group view also
contains information in order to differentiate between old and
newly added members.

The sequence number of the last request sent/received
(depending on whether the process is the coordinator or an
ordinary process) is stored in seqno. The reply bitmask rmask
encodes the (ordinary) processes addressed in the current
request, which should send back a reply: if pi should handle
the request then the ith bit of rmask is 1 (else 0). The
reply bitmap also defines the order in which these processes
should reply: if the ith bit is the kth non-zero bit of rmask
then pi must send its reply in the kth “transmission slot”.

Ordinary processes store in reply their reply to the last request
received; this may have to be re-transmitted, if requested by the
coordinator. The replies structure is used by the coordinator
to keep the replies that arrive from the ordinary processes.

D. Basic request-reply protocol
When a new request-reply interaction starts, the sender/co-

ordinator increases seqno, initializes rmask to address the
target processes, broadcasts a request message, and waits for
the replies to arrive or a timer to expire. The timeout is set as a
function of MsgT , the number of processes that are expected
to reply, and the application request handling delay. Each reply
that is received is added to the replies structure, and rmask is
adjusted accordingly. When the timer fires and some processes
have not replied, the request is re-transmitted. This is repeated
until all target processes either reply or fail. The coordinator
proceeds with the next application request once the previous
one has been handled to completion.

When a process receives a request, it checks rmask to
determine whether it is among the addressed processes. If so,
it compares the sequence number k with that of the last locally
handled request seqno. If the request is new, it is handed
over to the application, and the produce reply is stored in
reply; else, the reply is already stored in reply. Replies are
broadcasted, and as a result are received by other processes.
The local process sends its reply following the order specified
via rmask: if it is first in order, it does so as soon as the
application produces the reply, else, right after it overhears
the reply of the preceding process. To deal with message
loss, a timer is set to expire in order to send the reply at
the corresponding transmission slot.

E. Join protocol
The coordinator invites non-member processes to to join

the group, by broadcasting a join poll message. It then waits
a certain amount of time for corresponding requests. Each
process that responds is added to the local group view, and
is assigned the next ticket number.

When the waiting time is over, the coordinator propagates
the updated view to the group, via the view-push protocol
(described in the sequel). In a first phase, the new view is
disseminated to the old members (without the ones that are
currently joining the group). In a second phase, the view is
sent to each of the newly joining processes, in increasing ticket
order.

A process wishing to join the group enters the JOIN state
and waits for the coordinator to start a join poll. It then sends a
join request with its identifier (this is a unicast message). The
process remains in this state until it receives a group view from
the coordinator. In the meantime, it might receive additional
join poll requests, to which it responds as above. Processes
that are already members of the group ignore join polls.

F. Leave protocol
Similarly to the join protocol, the coordinator invites group

members to declare their intention to leave, via a broadcast,
and waits some time for any responses.



If an ordinary process wishes to leave, it enters the LEAV E
state, and waits for the coordinator to issue a leave poll
(as long as the process remains in the LEAV E state, it is
expected to continue handling incoming requests as usual). It
then announces its departure via a broadcast, and enters the
LEFT state. This state transition is unilateral, without any
further communication. If the coordinator wishes to leave the
group, it does the same (without having to wait for a leave
poll).

When a process receives a departure announcement, it
follows the same procedure as for process failures (explained
in the sequel). Note that, since such announcements can be
lost, the leave protocol is a merely best-effort attempt to
accelerate the removal of a process from the group view. If
a departed process remains in the view of a member process,
eventually, that process will receive a notification from the
fault-detector.

G. View-push protocol

The goal of a view-push protocol is to commit a group view
to a specified set of processes. It works along the lines of
the request-reply protocol. In this particular case, the request
carries the (updated) group view, and the target processes
integrate it with their own local views, and send back an
acknowledgment.

H. Fault handling & coordinator election

When a process is notified about the failure (or departure)
of p, it removes p from its local group view. If p is an
ordinary process, the coordinator stops waiting for replies
from it. If p is the coordinator, the group member with the
next smallest ticket number is elected as the new coordinator
— without any further communication among the remaining
group members. Before resuming normal operation, the new
coordinator performs a view-push, if its view contains new
members.

Note that the new coordinator can already be in the
LEAV E state. In this case, instead of taking over, it leaves
the group following the leave protocol (see above), which in
turn will trigger another election.

IV. PERFORMANCE PROPERTIES AND SEMANTICS

The “critical path” of GCBRR in terms of performance is
the basic request-reply protocol, which is designed to achieve
several important properties: (i) It is contention-free, avoiding
concurrent transmissions from different processes. (ii) It incurs
the minimum number of transmissions needed for a 1-to-
N request-reply interaction: the request and each reply are
transmitted just once (assuming no loss). (iii) It achieves
minimal latency since ordinary processes send their replies
as fast as possible, according to the schedule specified by the
coordinator. (iv) It is offers very predictable performance, and
allows the system to operate close to the channel capacity.
(v) It enables robust message recovery in case of loss, by
addressing only the processes that have not responded. (vi) The

values for the message transmission delay and application-
level request processing delay can be chosen generously, and
affect performance only in case of message loss. (vii) Last
but not least, no assumptions are made about the under-

Algorithm 1 Protocol initialization

1: function INIT(id, pids)
2: myid← id
3: seqno← 0
4: grp← initGroupMembers(pids)
5: if pids = ∅ then
6: state← LEFT
7: coordid← 0
8: else
9: state← NORMAL

10: coordid← minTicket(grp)
11: if myid = coordid then
12: BECAMECOORD(procs(grp))
13: end if
14: end if
15: end function

Algorithm 2 Basic request-reply protocol

1: function REQUESTREPLY(dsts, data, procT )
2: replies← ∅
3: seqno← seqno+ 1
4: rmask ← setBits(dsts	myid)
5: while rmask 6= 0 do
6: broadcast(AREQ[myid, seqno, rmask, data])
7: wt←MsgT + procT+ bitsSet(rmask)∗MsgT
8: await(rmask = 0, wt)
9: end while

10: return (replies)
11: end function

12: function OnRecv(AREQ[pid, k, rmask, data])
13: if isBitSet(rmask,myid) then
14: if k 6= seqno then
15: seqno← k
16: reply ← PROCESSREQUEST(data)
17: end if
18: myturn← false
19: wt← posBit(rmask,myid)∗MsgT
20: await(myturn = true, wt)
21: broadcast(ARPL[myid, seqno, reply])
22: end if
23: end function

24: function OnRecv(ARPL[pid, k, data])
25: if k = seqno then
26: if myid = coordid then
27: replies← replies⊕ (pid, data)
28: rmask ← clearBit(rmask, pid)
29: else
30: myturn← nxtBit(rmask, pid,myid)
31: end if
32: end if
33: end function



Algorithm 3 Join protocol

1: function JOIN
2: state← JOIN
3: await(state = NORMAL)
4: end function

5: function CHECKJOINS(joinT )
6: broadcast(JPOLL[myid])
7: wt← 2 ∗MsgT + joinT
8: sleep(tw)
9: if new(grp) 6= ∅ then

10: ViewPush(old(grp))
11: for each p ∈ sort(new(grp)) do
12: ViewPush({p})
13: end for
14: end if
15: end function

16: function OnRecv(JPOLL[pid])
17: if state = JOIN then
18: unicast(pid, JOIN [myid])
19: end if
20: end function

21: function OnRecv(JOIN [pid])
22: t← nxtTicket(grp)
23: grp← grp⊕ (pid, t)
24: GROUPUPDATED(grp)
25: end function

Algorithm 4 Leave protocol

1: function LEAVE
2: if mypid = coordid then
3: state← LEFT
4: broadcast(LEFT [myid])
5: else
6: state← LEAV E
7: await(state = LEFT )
8: end if
9: end function

10: function CHECKLEAVES(leaveT )
11: broadcast(LPOLL[])
12: wt← 2 ∗MsgT + leaveT
13: sleep(wt)
14: end function

15: function OnRecv(LPOLL[pid])
16: if state = LEAV E then
17: state← LEFT
18: broadcast(LEFT [pid])
19: end if
20: end function

21: function OnRecv(LEFT [pid])
22: OnProcessFailure(pid)
23: end function

Algorithm 5 View-push protocol

1: function ViewPush(pids)
2: rmask ← setBits(pids	 ypid)
3: while rmask 6= 0 do
4: broadcast(V PUSH[mypid, rmask, grp])
5: wt←MsgT+ bitsSet(rmask)∗MsgT
6: await(rmask = 0, wt)
7: end while
8: end function

9: function OnRecv(V PUSH[pid, grpc])
10: if isBitSet(rmask,myid) then
11: if pid 6= coordid then
12: coordid← pid
13: seqno← 0
14: state← NORMAL
15: end if
16: for each (p, t) ∈ grpc do
17: grp← grp⊕ (p, t)
18: end for
19: myturn← false
20: wt← posBit(rmask,myid)∗MsgT
21: await(myturn = true, wt)
22: broadcast(V ACK[mypid])
23: end if
24: end function

25: function OnRecv(V ACK[pid])
26: if myid = coordid then
27: rmask ← clearBit(rmask, pid)
28: else
29: myturn← nxtBit(rmask, pid,myid)
30: end if
31: end function

Algorithm 6 Fault handling and coordinator election

1: function OnProcessFailure(pid)
2: grp← grp	 (pid, ∗)
3: if myid = coordid then
4: rmask ← clearBit(rmask, pid)
5: GROUPUPDATED(grp)
6: else if pid = coordid then
7: coordid← minTicket(grp)
8: if myid = coordid then
9: if state = LEAV E then

10: LEAVE
11: else
12: BECAMECOORD(grp)
13: if new(grp) 6= ∅ then
14: ViewPush(old(grp))
15: for each p ∈ sort(new(grp)) do
16: ViewPush({p})
17: end for
18: end if
19: end if
20: end if
21: end if
22: end function



lying medium-access-control (MAC) mechanism. Therefore
GCBRR can work very well even on top of simple radios
that do not have an intelligent MAC.

Admittedly, the join and leave protocols are subject to
contention, if several processes wish to join and respectively
leave the group at the same time. We consider this to be a rare
occasion for most applications, and even then a simple back-
off mechanism will greatly reduce the probability of collisions.
Note, however, that the join/leave protocols do not interfere
with the basic request-reply protocol; it is up to the coordinator
to activate them when desired, via the respective primitives.

In terms of application-level semantics, the request-reply
interaction is synchronous, allowing the coordinator to drive
the group in a tightly-coupled way, enforcing progress at all
(addressed) processes at the same pace while also keeping
track of their liveness. It is “exactly once” for processes
that do not fail, and “at most once” for processes that fail.
The application learns about such failures via the respective
notifications; it can also infer a process failure by inspecting
the returned replies. Notably, the interaction is “non-atomic”,
since a newly elected coordinator does not attempt to complete
the last request-reply interaction that was initiated by the old
coordinator. Atomicity does not seem to make sense here,
because it is unclear how the new coordinator could handle, in
a meaningful way, the replies for a request that was not issued
by it. Of course, when the application is notified that it takes
over as the new coordinator, it can perform any corrective
actions it deems necessary.

V. GROUP MANAGEMENT PROPERTIES

The GCBRR protocol is designed for a group that has at
least one correct process as a member at all times. If at some
point all group members fail or leave, the group disappears
and no longer exists. We also note that the (best-effort) leave
protocol does not affect the essence of the group management
functionality, and in the following consider process departures
only due to failures.

Assume that group views contain entries (p, t) where p
is a process identifier and t the ticket assigned to it. It
is easy to show that for any two correct group members
p1 and p2 with local views grp1 and grp2, it holds that
(p, t1) ∈ grp1 ∧ (p, t2) ∈ grp2 =⇒ t1 = t2. In other
words, all members adopt the same ticket assignment (STA).
Moreover, three additional important properties hold: (i) At
any point in time, only one correct process p can be elected
as the coordinator (GM1). (ii) There is no deadlock, where
the group is non-empty but it is not possible to elect a
correct member process as the coordinator (GM2). (iii) The
confirmation to a joining process that it became a member of
the group is binding (GM3). Below we provide an informal
proof sketch.

A. Uniqueness of the coordinator (GM1)

From STA it directly follows that grp1 = grp2 =⇒
minTicket(grp1) = minTicket(grp2). As a consequence GM1
holds for any two processes with the same view. However,

during the transition periods caused by group dynamics, some
group members might have different views. These cases are
discussed below.

Let (p, t) ∈ grp1 ∧ (p, t) /∈ grp2. If p has failed, this does
not affect GM1. It suffices to focus on views that differ only
due to new processed joining the group.

Starting from a state where all group members have the
same local view, assume that process pi, 1 ≤ i ≤ k join the
group, and that the coordinator starts to push the new view
that includes the respective entries (pi, ti). Let the view push
occur partially, reaching p1 but not p2, so that (pi, ti) ∈ grp1
and (pi, ti) /∈ grp2. Since the view is first pushed to the old
group members, p1 cannot be a new member if p2 is an old
member. If both p1 and p2 are old members, due to the ticket
assignment scheme it holds that t1, t2 < ti, so the newly joined
processes pi cannot affect the outcome of an election at p1 or
p2. If p2 is a new member, it is still in the JOIN state and
cannot perform a coordinator election in the first place. Thus
GM1 also holds during a group update phase.

B. No deadlock (GM2)

Given that GM1 holds, GM2 holds too, provided that if
some correct process p2 elects as the coordinator another
correct process p1 then p1 is certain to also consider itself
as a member of the group. This is trivially so if p1 is already
a member when p2 joins the group. It is somewhat less obvious
if p1 and p2 join at the same time (respond to the same join
poll). In this case, GM2 holds because the coordinator pushes
the updated group view to each new member in increasing
ticket order.

To see why, assume that the coordinator pushes the view
grpc that includes entries for the joining members (p1, t1)
and (p1, t2), with t1 < t2. Assume that the coordinator starts
pushing the view in random order, but fails before completion.
Also assume that all other old group members (which may
have received grpc) fail too. Finally, assume that p2 has
received grpc and considers itself as a group member, but p1
has not. Then, p2 will elect p1 as the coordinator. However, p1
remains in the JOIN state, waiting for the next coordinator
to initiate the next join poll, leading to a deadlock.

C. Join commitment (GM3)

In order for GM3 to hold, it must be shown that once a
joining process p receives grpc with an entry (p, t) for it, p
will never have to fall-back to the JOIN state. Equivalently,
it must be shown that if p receives grpc, every other process
pi with (pi, ti) ∈ grpc ∧ ti < t, which could take over as a
coordinator while p is still alive, has already received grpc.
Indeed this holds due to the order in which the coordinator
performs a view-push.

Also, p will not be addressed in the basic request-reply
protocol, unless it considers itself as a member of the group
(its state is NORMAL). This is guaranteed because the
coordinator can proceed with the next request-reply interaction
only after having successfully completed the corresponding
view-push. It is also for this reason that a view-push is



performed when a new coordinator takes over: to ensure that
new members are aware of their membership status. This is not
required if the view does not include any new group members.

VI. EVALUATION

We have implemented GCBRR for a Linux-based platform,
as a user-space library that resides on top of the operating
system. Our implementation uses RAW sockets (bypassing the
IP stack). The library offers a set of primitives in the spirit
of the API in Table I. This section presents a performance
evaluation over WiFi, and discusses the most important results.

A. Experimental setup
We test our implementation using two different setups, a

simulated 802.11 network and a 802.11 testbed.
Simulated setup: For the simulated setup we use the

OpenNet simulator [5]. This is an open-source simulation
environment, which is build on top of Mininet [6] and ns-3,
combining their features to provide a realistic virtual wireless
testbed infrastructure on a single PC. OpenNet uses Mininet
to create a network of virtual Linux hosts, which can run con-
ventional applications without any modification. Each virtual
host features a virtual network interface which is internally
connected via a TAP device to an ns-3 node. In turn, ns-3
provides the modeling of the 802.11 wireless channel between
virtual hosts. To reflect the testbed setup, we configure ns-3
for the 802.11g protocol with a transmission rate of 1Mbps
for both unicasts and broadcasts.

Testbed setup: For the real measurements we use the
NITOS testbed [7] featuring ICARUS [8] wireless nodes.
These are PC-class machines with an Intel Core i7-2600
Processor with 4 GB RAM and wireless Atheros 802.11a/b/g/n
cards, running Linux. The testbed environment is protected
from external traffic/interference. The nodes are placed in a
grid, and can communicate with each other in 1 hop. The WiFi
interface is accessed through the standard socket interface via
ath9k network driver, and is configured to operate with the
802.11g protocol in ad-hoc mode. To make a fair comparison
among broadcast-based and unicast-based approaches, we fix
the transmission rate to 1 Mbps for both. It would also be
possible to transmit broadcast packets at the highest rate of the
wireless interface by using the pseudo-broadcast transmission
approach presented in [9], but this would not contribute to the
essence of our evaluation (the main point is for broadcasts
and unicasts to be equally fast). The average round-trip time
between two nodes is about 26 milliseconds for packets with
a payload of 1500 bytes.

The simulated setup is used to perform experiments across
a wide range of parameters, without requiring physical nodes.
We then use the testbed to test selected scenarios in order
to verify the trends we observed via simulations. In both
cases, each process (group member) is placed on a different
virtual/physical node.

B. Basic 1-N request-reply
To evaluate the raw performance of the basic request-

reply interaction of GCBRR, we use an application that

Fig. 1: 1-to-N request-reply throughput (top), and latency
(bottom), for different group sizes.

issues dummy requests and produces dummy replies, without
performing any processing. Request and reply messages are
filled with dummy data, so all transmitted packets have the
maximum payload size (1500 bytes).

We compare GCBRR with four reliable point-to-point trans-
ports: TCP-SEQ, TCP-PAR, RUP-SEQ and RUP-PAR (RUP
stands for reliable unicast protocol). In the TCP variants, the
coordinator keeps a separate connection with each ordinary
process, which is reused for all interactions. RUP variants use
plain datagrams over RAW sockets, with a simple acknowledg-
ment scheme for the re-transmission of requests. SEQ variants
perform the request-reply interaction sequentially, one process
at a time; this avoids contention but comes at increased latency.
In the PAR variants, the coordinator first sends the request to
all ordinary processes, and then waits for the replies; this can
reduce the total latency but also introduces more contention.

We perform experiments for groups of different sizes: 3, 6
and 12 nodes. To stress the network, we let the coordinator
issue 1000 request-reply interactions at full speed, and record
the total throughput and latency of each interaction. The results
are shown in Figure 1.

As can be seen, GCBRR performs significantly better than
all other variants, and the difference increases with the group
size. For 3 nodes, GCBRR achieves x1.62 and x1.35 the
throughput of TCP and RUP variants, going up to x2.22 and



respectively x1.76 for 12 nodes. This is because GCBRR
transmits fewer packets and scales better for a larger number
of nodes. Note that for each unicast WiFi sends a MAC-level
acknowledgement, which further increases the overhead of
point-to-point variants. TCP achieves lower throughput than
RUP due to the extra (TCP-level) acknowledgments, yet this
difference becomes less pronounced for larger group sizes.
Message loss is negligible in all cases, as the WiFi flow-control
mechanism kicks in when the network is stressed.

The difference in the number of packet transmissions also
reflects on the latency of the request-reply interaction. Again,
GCBRR outperforms all other variants, especially in larger
groups. For 12 nodes, its latency is only about 1/2 and 2/3
that of TCP and RUP, respectively. RUP variants are generally
better than TCP. Note that RUP-PAR has a slightly lower
latency than RUP-SEQ because of the concurrent transmission
of replies back to the coordinator. This advantage does not
show in the TCP variants, due to their higher network traffic.
In fact, TCP-PAR has a much larger variance than TCP-SEQ.
This is an effect of the increased contention: although there is
no message loss, WiFi slows down transmissions internally.

C. One-way N-1 messages

We also evaluate GCBRR regarding its ability to support
a reverse, one-way message flow, from ordinary processes to
the coordinator. In this case, the coordinator polls ordinary
processes via an empty request, and receives their messages
as replies. For comparison, we use TCP-PAR and RUP-PAR,
where each ordinary process sends its messages to the coordi-
nator over a TCP connection and a RAW socket, respectively.
In RUP-PAR, messages are acknowledged explicitly following
an alternating bit scheme. As an additional reference, we use
the simplest possible best-effort approach where messages are
sent via unreliable unicasts over a RAW socket, referred to as
unreliable unicast protocol (UUP-PAR).

We measure the maximum message throughput that can be
achieved in a group of 3, 6 and 12 nodes, at full speed. In
GCBRR, the coordinator polls the ordinary processes 1000
times, while in TCP-PAR, RUP-PAR and UUP-PAR we let
each process send 1000 messages to the coordinator. The
aggregate throughput is calculated at the coordinator, by
recording the time between the arrival of the first and the
last message. At each ordinary process, we record the time
that elapses between two consecutive message transmissions,
which reflects the messaging delay. The results are shown in
Figure 2.

Despite the polling overhead, GCBRR achieves higher
message throughput than TCP-PAR and RUP-PAR, even for
smaller groups. The difference increases for larger groups,
where TCP-PAR and RUP-PAR lead to increased contention,
and the relative cost of polling decreases. At 12 nodes, the
throughput of GCBRR is x1.28 and x1.13 that of TCP-PAR
and RUP-PAR, respectively. In this case, GCBRR even out-
performs UUP-PAR which also has a very significant message
loss of about 7%. Furthermore, unlike the RUP and TCP
variants, GCBRR has a stable and predictable messaging delay.

Fig. 2: Aggregate N-to-1 message throughput for different
group sizes (top), and per-node messaging delay for an in-
dicative run with 12 nodes (bottom; y-axis in log scale).

In fact, with TCP-PAR all nodes occasionally experience huge
delays (the scale of the y-axis in the plot is logarithmic). Due
to contention, TCP-PAR has some message loss, which leads
to retransmissions and the activation of the TCP flow-control
mechanism. In contrast, GCBRR and RUP-PAR did not need
to perform any retransmissions. Also note that in TCP-PAR
message sending sometimes appears to be instantaneous due
to internal buffering.

We wish to note that GCBRR, due to its polling approach,
is not suitable for sporadic messaging from ordinary processes
to the coordinator. In such scenarios, where the contention on
the network is also low, it is better to use an uncoordinated
approach.

D. Group management

Finally, we evaluate GCBRR in terms of the group man-
agement overhead.

As a reference, we use a TCP-based approach where the co-
ordinator keeps an open connection with each member process.
A joining process opens a TCP connection to the coordinator
when it receives a join poll (without sending a join request).
It considers itself as a member once it successfully receives
the group view over the connection. To leave the group, a
process simply closes the connection to the coordinator (it does
not send a leave announcement). If the coordinator wishes to



Fig. 3: Node join delay (top), and group update delay (bottom),
when starting from initial group size N and adding 12 − N
nodes in one shot.

leave the group, it closes the TCP connections to each group
member. Ordinary processes detect that the connection was
closed, elect the new coordinator and open a connection to
it. The coordinator performs a view-push as in GCBRR, but
in this case the group view is sent to each member over the
respective TCP connection. As an implementation detail, we
note that the coordinator uses a single thread for accepting
new connections via a network event loop based on the poll
Linux system call, similar to the technique described in [10].

To chart the cost of the join operation as a function of the
group size and number joining processes, we conduct a series
of experiments. In each experiment, the group starts with a
different initial size, and then more nodes join so that the
group ends up with a total of 12 nodes. The new nodes join
the group following a single join poll. At each joining node,
we record the time between the reception of the poll message
until the reception of the group view from the coordinator. We
also measure the time it takes for the coordinator to receive
all join/connection requests and push the updated view to all
members. The results are shown in Figure 3.

With both approaches the join delay naturally decreases as
fewer nodes try to join the group. However, the average node
join delay and group update delay for GCBRR is only 1/3
that of the TCP-based approach. This is because the TCP

variant has an extra connection setup overhead, which becomes
significant when the number of joining nodes is large. Also,
it sends the group view to each member separately, whereas
GCBRR does this with a single transmission for old group
members.

The leave operation for ordinary group members is very fast,
and the overhead negligible with both approaches. However,
in case of a coordinator departure, in the TCP variant every
ordinary process must open a connection to the new coordi-
nator. The corresponding overhead follows the same trend as
in the join experiments discussed above (it is not shown here
for brevity). In contrast, the cost for such a coordinator switch
in GCBRR is practically zero. Of course, in both approaches,
the new coordinator may have to perform a view push.

VII. RELATED WORK

The reliability issues of multicast communication patterns
over a shared medium have been studied mainly in the lower
level of the network stack.

In [11] authors propose two reliable multicast protocols on
top of IEEE 802.11 mechanisms. Both protocols assume a base
station in the center of a microcell and one single sender at a
time. The first protocol (LBP), is a leader based protocol while
the other (PBP) is a probabilistic feedback-based protocol.
In LBP, a sender claims the channel and sends a broadcast
message to the receivers in the group where an elected leader
responds with an acknowledgement. The rest of the receivers
respond immediately with a negative acknowledgement in case
of erroneous reception to destroy the acknowledgement of the
leader causing a retransmission from the sender. In PBP a
sender before the data transmission sends a multicast-RTS
and waits to receive a CTS from each participant receiver.
The receivers back-off with a certain probability based on the
group size before the CTS transmission to avoid collisions.
Both protocols increase broadcast reliability, however they
do not guarantee collision avoidance and require strict clock
synchronization.

A similar approach with focus on fairness is followed in
LM-ARF [12] where an elected leader acknowledges mulitcast
transmissions with the use of CTS/RTS frames. Moreover,
LM-ARF performs an adaptation of the transmission rate
based on the ARF [13] scheme of 802.11 to avoid inefficient
broadcast transmissions when network saturates to its capacity.
LM-ARF protocol inherits the time synchronization require-
ments from LBP and is closely coupled to the underlying MAC
protocol.

The Broadcast Medium Window method (BMW) [14] pro-
vides a reliable broadcast solution where the nodes maintain
lists for their neighbors and for the sequence numbers of the
missing data packets. Each sender performs a collision avoid-
ance phase and sends an RTS to inquire the missing messages
from its neighborhood. In turn, each neighbor responds with
a CTS that contains the requested information and the sender
performs the transmission of the data. Each neighbor updates
the local protocol state by overhearing the CTS/data exchange.
BMW provides a reliable solution for broadcast, but requires a



large number of messages and creates contention phases equal
to the number of neighbors.

Complementary to the BMW method is the Batch Mode
Multicast MAC (BMMM) [15] which makes use of a new
frame type called AK (Request for ACK) in order to eliminate
the multiple contention phases of BMW to a single one. The
RAK frame follows directly after the transmission of the RTS,
instructing the receivers to send their CTS and ACKs in order.
BMMM follows an approach similar to our protocol with
respect to the coordinated return of the replies, but involves
more messages and abandons reliability when the network is
stressed.

BSMA [16] approach improves the broadcast reliability
assuming that the underlying radio hardware supports the
DS (direct sequence) capture capability in order to lock-on
a strong signal in the presence of interference. The protocol
utilizes the 802.11 RTS/CTS frames to eliminate collision
avoidance and makes use of negative acknowledgments for
prompting re-transmissions.The results show that throughput
and reliability increases over the traditional unreliable broad-
cast but the protocol relies strictly on 802.11 collision avoid-
ance and requires specific radio capabilities. In the opposite,
GCBRR is MAC-neutral while it is not based on any specific
radio functionality.

The works above improve the physical broadcast reliability,
however they do not have predicable performance which is a
useful property for many latency sensitive applications. They
also target general one-way multicast communication where
the receiver merely sends a low-level acknowledgement, as
opposed to GCBRR which works in an end-to-end fashion [17]
and where replies may carry application-level information.

VIII. CONCLUSIONS

We propose a protocol for coordinated request-reply and
group management in wireless systems, which eliminates
contention and exploits the broadcast nature of the shared
medium to minimize the number of message transmissions and
latency. The proposed protocol does not rely on any advanced
MAC features, and can work on top of different networking
technologies.

Our evaluation over 802.11 WiFi for scenarios where the
system operates close to the network capacity, shows that
the proposed protocol achieves significantly higher through-
put, lower latency and better predictability than unicast-based
point-to-point approaches. These results are encouraging given
that WiFi comes with a very effective flow-control mechanism
and MAC-level support for unicasts. Note that, in case of
message loss (e.g., due to external interference) the proposed
protocol would perform even better compared to unicast-based
approaches, as it requires fewer packet transmissions.

In the future we will experiment with simpler radios, and
plan to investigate the usage of this protocol to support
symmetrical process groups with N-to-N message flows.

REFERENCES

[1] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-
physical systems: The next computing revolution,” in Proceedings

of the 47th Design Automation Conference, ser. DAC ’10. New
York, NY, USA: ACM, 2010, pp. 731–736. [Online]. Available:
http://doi.acm.org/10.1145/1837274.1837461

[2] P. Sujit, D. Kingston, and R. Beard, “Cooperative forest fire monitoring
using multiple UAVs,” in 2007 46th IEEE Conference on Decision and
Control. Institute of Electrical & Electronics Engineers (IEEE), 2007.

[3] C.-S. Lee, K.-H. Lee, and J.-K. Lee, “A group RPC protocol for
distributed systems,” in Proceedings of ICICS, 1997 International
Conference on Information, Communications and Signal Processing.
Theme: Trends in Information Systems Engineering and Wireless
Multimedia Communications (Cat. No.97TH8237). Institute of
Electrical & Electronics Engineers (IEEE), 1997. [Online]. Available:
http://dx.doi.org/10.1109/ICICS.1997.652090

[4] L. Mottola, M. Moretta, K. Whitehouse, and C. Ghezzi, “Team-level
programming of drone sensor networks,” in Proceedings of the 12th
ACM Conference on Embedded Network Sensor Systems, ser. SenSys
’14. New York, NY, USA: ACM, 2014, pp. 177–190. [Online].
Available: http://doi.acm.org/10.1145/2668332.2668353

[5] M.-C. Chan, C. Chen, J.-X. Huang, T. Kuo, L.-H. Yen, and
C.-C. Tseng, “OpenNet: A simulator for software-defined wireless
local area network,” in 2014 IEEE Wireless Communications
and Networking Conference (WCNC). Institute of Electrical &
Electronics Engineers (IEEE), apr 2014. [Online]. Available: http:
//dx.doi.org/10.1109/WCNC.2014.6953088

[6] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX.
New York, NY, USA: ACM, 2010, pp. 19:1–19:6. [Online]. Available:
http://doi.acm.org/10.1145/1868447.1868466

[7] http://nitlab.inf.uth.gr/NITlab/index.php/nitos.html, [Online; accessed
28-Jan-2016].

[8] http://nitlab.inf.uth.gr/NITlab/index.php/hardware/wireless-nodes/
icarus-nodes, [Online; accessed 28-Jan-2016].

[9] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” IEEE/ACM
Transactions on Networking, vol. 16, no. 3, pp. 497–510, June 2008.
[Online]. Available: http://dx.doi.org/10.1109/TNET.2008.923722

[10] A. Chandra and D. Mosberger, “Scalability of linux event-dispatch
mechanisms,” in In Proceedings of the 2001 USENIX Annual Technical
Conference, 2001, pp. 231–244.

[11] J. Kuri and S. Kasera, “Reliable multicast in multi-access
wireless LANs,” in IEEE INFOCOM 99. Conference on Computer
Communications. Proceedings. Eighteenth Annual Joint Conference
of the IEEE Computer and Communications Societies. Institute of
Electrical & Electronics Engineers (IEEE), 1999. [Online]. Available:
http://dx.doi.org/10.1109/INFCOM.1999.751463

[12] S. Choi, N. Choi, Y. Seok, T. Kwon, and Y. Choi, “Leader-based
rate adaptive multicasting for wireless LANs,” in IEEE GLOBECOM
2007-2007 IEEE Global Telecommunications Conference. Institute
of Electrical & Electronics Engineers (IEEE), nov 2007. [Online].
Available: http://dx.doi.org/10.1109/GLOCOM.2007.694

[13] A. Kamerman and L. Monteban, “WaveLAN R©-II: a high-performance
wireless LAN for the unlicensed band,” Bell Labs Tech. J.,
vol. 2, no. 3, pp. 118–133, sep 1997. [Online]. Available: http:
//dx.doi.org/10.1002/bltj.2069

[14] K. Tang and M. Gerla, “MAC reliable broadcast in ad hoc networks,”
in 2001 MILCOM Proceedings Communications for Network-Centric
Operations: Creating the Information Force (Cat. No.01CH37277).
Institute of Electrical & Electronics Engineers (IEEE), 2001. [Online].
Available: http://dx.doi.org/10.1109/MILCOM.2001.985991

[15] M.-T. Sun, L. Huang, A. Arora, and T.-H. Lai, “Reliable MAC
layer multicast in IEEE 802.11 wireless networks,” in Proceedings
International Conference on Parallel Processing. Institute of Electrical
& Electronics Engineers (IEEE), 2002. [Online]. Available: http:
//dx.doi.org/10.1109/ICPP.2002.1040910

[16] K. Tang and M. Gerla, “Random access MAC for efficient broadcast
support in ad hoc networks,” in 2000 IEEE Wireless Communications
and Networking Conference. Conference Record (Cat. No.00TH8540).
Institute of Electrical & Electronics Engineers (IEEE), 2000. [Online].
Available: http://dx.doi.org/10.1109/WCNC.2000.904675

[17] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments
in system design,” ACM Trans. Comput. Syst., vol. 2, no. 4, pp.
277–288, Nov. 1984. [Online]. Available: http://doi.acm.org/10.1145/
357401.357402

http://doi.acm.org/10.1145/1837274.1837461
http://dx.doi.org/10.1109/ICICS.1997.652090
http://doi.acm.org/10.1145/2668332.2668353
http://dx.doi.org/10.1109/WCNC.2014.6953088
http://dx.doi.org/10.1109/WCNC.2014.6953088
http://doi.acm.org/10.1145/1868447.1868466
http://nitlab.inf.uth.gr/NITlab/index.php/nitos.html
http://nitlab.inf.uth.gr/NITlab/index.php/hardware/wireless-nodes/icarus-nodes
http://nitlab.inf.uth.gr/NITlab/index.php/hardware/wireless-nodes/icarus-nodes
http://dx.doi.org/10.1109/TNET.2008.923722
http://dx.doi.org/10.1109/INFCOM.1999.751463
http://dx.doi.org/10.1109/GLOCOM.2007.694
http://dx.doi.org/10.1002/bltj.2069
http://dx.doi.org/10.1002/bltj.2069
http://dx.doi.org/10.1109/MILCOM.2001.985991
http://dx.doi.org/10.1109/ICPP.2002.1040910
http://dx.doi.org/10.1109/ICPP.2002.1040910
http://dx.doi.org/10.1109/WCNC.2000.904675
http://doi.acm.org/10.1145/357401.357402
http://doi.acm.org/10.1145/357401.357402

	I Introduction
	II Application interface
	III The GCBRR protocol
	III-A System model and assumptions
	III-B Protocol structure
	III-C Protocol state and messages
	III-D Basic request-reply protocol
	III-E Join protocol
	III-F Leave protocol
	III-G View-push protocol
	III-H Fault handling & coordinator election

	IV Performance properties and semantics
	V Group management properties
	V-A Uniqueness of the coordinator (GM1)
	V-B No deadlock (GM2)
	V-C Join commitment (GM3)

	VI Evaluation
	VI-A Experimental setup
	VI-B Basic 1-N request-reply
	VI-C One-way N-1 messages
	VI-D Group management

	VII Related Work
	VIII Conclusions
	References

