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Abstract

Computing and spreading global information in large-scale distributed systems pose significant challenges
when scalability, parallelism, resilience and consistency are demanded. Epidemic protocols are a robust and
scalable computing and communication paradigm that can be effectively used for information dissemination
and data aggregation in a fully decentralised context where each network node requires the local computation
of a global synopsis function. Theoretical analysis of epidemic protocols for synchronous and static network
models provide guarantees on the convergence to a global target and on the consistency among the network
nodes. However, practical applications in real-world networks may require the explicit detection of both
local convergence and global agreement (consensus).

This work introduces the Epidemic Consensus Protocol (ECP) for the determination of consensus on
the convergence of a decentralised data aggregation task. ECP adopts a heuristic method to locally detect
convergence of the aggregation task and stochastic phase transitions to detect global agreement and reach
consensus.

The performance of ECP has been investigated by means of simulations and compared to a tree-based
Three-Phase Commit protocol (3PC ). Although, as expected, ECP exhibits total communication costs
greater than the optimal tree-based protocol, it is shown to have better performance and scalability pro-
perties; ECP can achieve faster convergence to consensus for large system sizes and inherits the intrinsic
decentralisation, fault-tolerance and robustness properties of epidemic protocols.

Keywords: Epidemic protocols, Gossip-based protocols, Distributed consensus, Decentralised algorithms,
Large-scale distributed computing.

1 Introduction

The Internet as a ubiquitous infrastructure and the widespread use of mobile and wireless devices have laid the
foundation for the emergence of innovative large-scale network applications and computing paradigms. Complex
network applications may involve the real-time aggregation of large-scale distributed data, thus raising challenges
and demands for the application scalability, resilience and consistency. In particular, the computation of global
aggregation functions over a large set of distributed values is a non-trivial problem due to the decentralised
nature and continuous variability of the environment [1].

Distributed data aggregation is essential for a broad range of network services such as calculating system
size, resource capacity and average uptime [2]. In a distributed large-scale scenario, a centralised aggregation
mechanism cannot be adopted as it would limit the system scalability and would be subject to a single points
of failure and to bottlenecks [3]. Thereby an effective solution has to utilise decentralised and fault-tolerance
computational paradigms. Moreover, practical applications like failure detection [4], distributed data mining
[5], global attribute computation in Wireless Sensor Networks (WSN ) [3], coordination among vehicles [6]
and reaching unanimity in transactions order in the P2P electronic cash system (Bitcoin) [7], may require the
explicit detection of (1) the local convergence to a target value and (2) the global agreement among participating
nodes. A typical example is the local approximation of a global data aggregation function, where a node may
need to achieve three different levels of information, the true target value with some approximation, awareness
of local convergence to the target and certainty of a global agreement on the target.

Achieving global agreement is a fundamental problem in large-scale distributed systems (Consensus Pro-
blem) and is critical to many distributed applications. The problem studied in this work is the extension of
the consensus problem to distributed data aggregation. Nodes in the system have to (1) compute a local ap-
proximation of a global data aggregation function and (2) achieve consensus on the approximation target value.
The challenge is to achieve global agreement among all participants from locally computed data with a full
decentralisation and fault-tolerance.

Epidemic (a.k.a. Gossip-based) protocols are known for their applicability, scalability and fault-tolerance
properties. Epidemic protocols enable fully decentralised solutions for various distributed problems, such as
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information dissemination and data aggregation [1]. In epidemic data aggregation, computation and communi-
cation are uniformly distributed among nodes thanks to a randomised communication strategy. Moreover, the
random pairwise communication approach provides stochastic robustness and guarantees that the nodes in the
system ultimately converge to a common state in logarithmic time w.r.t. the system size [8].

This paper proposes a novel decentralised solution that integrates distributed data aggregation and distri-
buted consensus using the epidemic paradigm. The innovative contribution is that the proposed solution is
not only achieving local convergence on the data aggregation target but also explicit global agreement among
all nodes using a decentralised decision mechanism. An Epidemic Consensus Protocol (ECP) is introduced in
the proposed solution. ECP achieves consensus on the data aggregation using transition across phases, heu-
ristic methods and epidemic computation. The validation and performance of ECP are examined by means of
simulations.

This paper also presents a comparative analysis on the performance and the communication overhead of ECP
and a tree-based 3PC protocol. The 3PC protocol provides a baseline performance with optimal communication
overhead, though it is not fault-tolerant and is generally affected by single points of failure and potentially large
communication latency. ECP achieves consensus faster than the tree-based 3PC protocol and presents better
scalability and decentralisation properties in large-scale networks.

The following section briefly reviews distributed data aggregation and consensus in structured networks.
Section 3 describes the concept of the epidemic consensus solution. The protocol ECP is described in section
4. The comparative analysis and experimental results are detailed in section 5. In section 6 some related works
are listed and conclusions are drawn in section 7.

2 Distributed Consensus and Distributed Data Aggregation

Two of the fundamental support services in large-scale distributed applications are distributed consensus and
distributed data aggregation. The former attains the agreement among participants and the latter provides
participants with a global information.

The consensus is a collective decision-making process to reach agreement among participants on a common
target [9]. The consensus process is usually formulated by the way in which is used to reach the agreement.
In a classic formulation, the distributed process of consensus is an iterative procedure that each participant
follows to achieve a global agreement on an output which is in a common interest of all participants [10]. In
a distributed system of n nodes, each node i proposes an initial value xi; and eventually, all nodes decide on
some target value x̂ that is among the set of proposed values [11].

Another formulation of consensus utilises the distributed averaging approach, e.g. the Coordination Problem
in WSN and multi-agent systems [12]. In this case, the consensus target is the average of initial values x̄ =
1
n

∑n

i=1 xi. Each node i performs a pair data exchange with a neighbour node j and computes x̂i =
1
2 (xi + xj).

After a number of iterations, x̂i at each node i will converge to x̄. The consensus is achieved when the
convergence to x̄ holds in all nodes [13]. However, consensus based on distributed averaging is shown to be
feasible under certain conditions, for instance, reliable and static networks. In large asynchronous networks, the
local approximation x̂i may not converge to x̄ at all nodes at the same time, thus failing to provide certainty of
the global agreement.

Distributed data aggregation protocols generally provide global information about a system by computing a
synopsis function f ∈ {sum, average, random, sample, quantiles, etc.} over distributed data values [8]. Let us
consider a system with n nodes where each node i has a set of neighbours and holds a numeric value xi which
describes a property in node i or in its environment. The aggregation protocol at node i exchanges xi with
neighbours to compute some global function f . At the reception of a message from node j, the node i performs
x̂i = f(xi, xj) and updates its local value xi = x̂i. After a sufficient number of data exchanges, all nodes in a
system will converge to the same output x̂ which is the aggregation target.

The optimum performance of distributed data aggregation is obtained when the computation of a function
f is distributed over a structured topology such as trees [14]. There are two mechanisms to perform data aggre-
gation over trees, Broadcast-Convergecast and Convergecast only. In Broadcast-Convergecast, a
root node disseminates a request for the aggregation over a tree and collects results. In a Convergecast tree,
data computation starts from the deepest nodes and results are sent towards the root node, e.g. the Collection
Tree Protocol (CTP) [15] provides a faster gathering of results at the root node. Each non-root node i in CTP
computes x̀i = f(xi, x̀1, . . . , x̀mi

) where mi is the number of child nodes at the node i and x̀1, . . . , x̀mi
are the

computation results at child nodes. Thereafter, node i sends x̀i to its parent node. After a sufficient number of
steps, the root node receives x̀1, . . . , x̀mi

from child nodes and calculates the final target value x̂.
In CTP and similar schemes, the target x̂ is eventually known to the root node only. In the consensus

problem, x̂ is in the interest of all participants [11]. For a consensus to be achieved on x̂, a root node needs to
disseminate x̂ back to the tree [15]. The consensus is then achieved because the x̂ become known to all nodes.
However, in unreliable networks, the root is no more certain about the reception of x̂ at non-root nodes. Thus,
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a root node needs to collect acknowledgements from all non-root nodes to attain the certainty on the reception
of x̂.

The Commitment Protocols such as 3PC protocol can achieve consensus in the presence of asynchrony
and failure [16, 17]. In a tree that using 3PC protocol to achieve consensus on the output of f , the protocol
begins in (Broadcast phase) in which a coordinator broadcasts a ”compute” message to a tree and collects
acknowledgements. Each non-root node i computes x̀i = f(xi, x̀1, . . . , x̀mi

) and sends x̂i in the acknowledgement
to its parent node and so on towards the coordinator. Subsequently, in the (Agreement phase) and in the
absence of faulty nodes, the coordinator computes the final x̂ and disseminates it back to the tree. Since x̂

is disseminated to all nodes, the same global knowledge is then known to each node and so each node can
acknowledge its readiness to commit. After the collection of acceptance acknowledgements from all non-root
nodes in the Agreement phase, the coordinator attains the certainty on the reception of x̂ and so it sends
commit message to the tree and starting the (Commit phase). At the reception of commit message, non-root
nodes can commit as the certainty of the global agreement is attained at each node. The 3PC protocol encloses
certainty steps to achieve consensus in unreliable networks but it still susceptible to the single points of failure
problem, for instance, the failure of coordinator in the Commit phase.

Unlike using the convergence in distributed averaging to achieve the consensus which is merely possible in
reliable and static networks, and in the contrast to fast computation of x̂ in CTP over a presumed tree, the
tree-based 3PC protocol can achieve the consensus in unreliable networks with optimal overhead. On another
hand, static trees are not ideal in the real environment due to node failure problem and network dynamics [2].
Dynamic trees are introduced to cope with some problems in the real environment. However, dynamic trees
require additional overhead to establish a tree for every change in the underlying network [15]. Generally, the
robustness of tree-based schemes typically relies on the consistency of the network and dynamic trees require
additional effort for tree construction and maintenance.

This paper presents a decentralised solution that overcomes limitations in tree-based schemes. The new
solution achieves consensus without establishing or maintaining any particular network structure. Moreover,
the solution uses local information to detect global agreement on the outcome of data aggregation. Consider
a distributed application of n nodes, each node holds a local value xi and the application wants to compute a
global target value x̂ and also wants to achieve consensus on the target. Thereby, each node i locally computes
an approximation x̂i by performing a global aggregation function f and uses x̂i to detect convergence to x̂.
Thereafter, each node passes across phases based on stochastic measurements on the local information to reach
an explicit global agreement. More description of the epidemic consensus solution is given in the following
section.

3 Consensus in Epidemic Data Aggregation

In large-scale distributed systems, the detection of a global agreement requires addressing potential issues such
as randomisation, asynchrony and variability of approximation during the convergence of epidemic aggregation.
Each node uses local information to decide upon convergence and eventually agreement. The reliance on the
local information in an epidemic algorithm can lead to an incorrect approximation of the target value or to
early false detection of convergence. Additionally, some nodes may reach convergence before other nodes; and
naturally nodes have no local knowledge on the convergence state of other nodes. From that, attaining certainty
of a global agreement at each node requires global awareness of the convergence state among nodes. The global
awareness should be obtained from locally available information and using epidemic computation.

Similar to 3PC that achieves consensus in three consecutive phases, the proposed solution achieves consensus
by accomplishing a number of successive phases. In particular, the protocol ECP comprises four consecutive
phases. The first phase in ECP is dedicated to data aggregation. In the first phase, each node i computes
a global aggregation function f and periodically monitors the local approximation output x̂i to detect the
convergence. The protocol in node i makes the transition to the successive phase when the approximation x̂i

converges to a target value that holds for a certain period of time.
After the completion of the first phase, each node needs to obtain awareness on the convergence state of

other nodes to ensure the certainty of the convergence. Therefore, a second phase is established intending to
estimate the number of nodes achieved convergence in the first phase using the global aggregation function
count. The target value of the count function in this phase is the initial system size n. In this phase, The
convergence to n at each node i indicates local awareness of other nodes. Due to asynchrony, nodes will not
converge to n exactly at the same time. Therefore, to reach the explicit global agreement, a third phase is
needed to count the number of nodes which have converged to n in phase two. At the completion of phase
three, each node has a global knowledge about every node else in terms of local convergence and awareness of
convergence in other nodes, and thus the certainty of a global agreement is attained. The prior mechanism
provides the required consistency for the global implementation of an action or a decision. The next Section
details the inner stochastic transitions of computation across phases of ECP.
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4 The Epidemic Consensus Protocol (ECP)

Algorithm 1: Epidemic Consensus Protocol (ECP)

1 Require: ε1 and ε2: error thresholds; Υ: consecutive cycles threshold; l: length of the history queue H;
getSize(): size estimation service in SSEP; getRandomPeer(): peer sampling service in NCP;

2 Initialisation: at each node i set: vd = xi, wd = 1, vc = 0, va = 0, w = 0;
phase=AGGREGATION ; H ←− {} where |H| = l, leader = i;

3 At each cycle at node i:

4 j = getRandomPeer() // contact random peer

5 vd = vd
2 , wd = wd

2 , vc = vc
2 , va = va

2 , w = w
2

6 send(j, 〈leader, vd, wd, vc, va, w〉, reply = true)
7 switch phase do // make assessment and phase transitions

8 case AGGREGATION do

9 if Ĉv(H) ≤ ε1 for at least Υ cycles then // detect convergence in Aggregation phase

10 phase = CONV ERGENCE // make transition to Convergence phase

11 vc = vc+ 1

12 if leader has not changed for at least Υ cycles then // detect leader node

13 if leader == i then w = 1

14 case CONV ERGENCE do // obtain awarness of convergence

15 if

∣∣∣ getSize()− vc

w

getSize()

∣∣∣ ≤ ε2 for at least Υ cycles then // detect convergence to system size

16 phase = AGREEMENT // make transition to Agreement phase

17 va = va+ 1

18 case AGREEMENT do // obtain explicit global agreement

19 if

∣∣∣ getSize()− va

w

getSize()

∣∣∣ ≤ ε2 for at least Υ cycles then

20 phase = COMMIT // take some application-specific decision or action

21 At event ’received m message from j’ at node i:

22 if m.reply then // reply to incoming message

23 vd = vd
2 , wd = wd

2 , vc = vc
2 , va = va

2 , w = w
2

24 send(j, 〈leader, vd, wd, vc, va, w〉, reply = false)

25 H ←− H ∪ { vd
wd

, m.vd
m.wd

} // enqueue estimates to H where |H| = l

26 vd = vd+m.vd, wd = wd+m.wd, // update local pairs

vc = vc+m.vc, va = va+m.va, w = w +m.w

27 leader←− max(leader,m.leader) // elect leader node

ECP consists of four subsequent phases: Aggregation, Convergence, Agreement and Commit. It maintains
a tuple containing three aggregation pairs 〈vd, wd〉 for data aggregation, 〈vc, w〉 and 〈va, w〉 for Convergence

and Agreement phases respectively. The tuple also contains leader for the computation of the election. In
order for ECP to function, two other protocols are involved in the solution, System Size Estimation Protocol
(SSEP) [18] and Node Cache Protocol (NCP) [19]. SSEP is an independent epidemic protocol that provides a
robust estimate of system size and exports the size using the service getSize(). The protocol NCP is a simple
dynamic topology management protocol that exports a peer sampling service through getRandomPeer().

In the Aggregation phase, ECP computes the global average for the distributed set of initial data values in
the system. Each node i holds a numeric aggregation pair 〈vdi, wdi〉 [19] where vdi is set to local value xi and
the weight is set to wdi = 1. Node i halves the values of its pair 〈vdi

2 , wdi

2 〉 and sends the results to a random
peer. At the reception of a message from node j, node i halves its pair values, replies to j and updates its local
pair values 〈vdi + vdj , wdi + wdj〉. And thus, the initial pair values 〈vdi, wdi〉 at each node i are divided and
evenly distributed to the entire system. After a number of cycles, data values eventually converge to 1

n

∑n

i=1 vdi
and weight values converge to 1

n

∑n

i=1 wdi = 1. An approximation of the global average can be estimated at

each node i by vdi

wdi

at any cycle.
In the Convergence phase, nodes attain awareness of convergence of other nodes. This is accomplished by

computing the global count of nodes converged to the global average in the Aggregation phase. The global
count function requires each node i to hold a pair 〈vci, wi〉 [19] such that vci = 1 at all nodes, wı̂ = 1 at a single
node ı̂ and wi = 0 where 0 < i ≤ n and i 6= ı̂. After a sufficient number of cycles, wı̂ will distribute equally in
the system and each node will converge to a target fraction 1

n
where n is the initial system size. The number
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of nodes can be estimated locally by vci
wi

at every node i, whereas 1
n

∑n

i=1 vci = 1 and 1
n

∑n

i=1 wi =
1
n
.

The Agreement phase adopts the same mechanism in the Convergence phase to attain the certainty of
global agreement. The pair 〈vai, wi〉 is used to calculate the global count in this phase. The same setting of wi

is used for the sake of optimisation as described later in this section. Finally, ECP phases end in the Commit

phase representing the reach to the explicit global agreement and the right moment to take a system-wide
decision or a global action.

ECP detects convergence by computing the relative error value of the local approximation result at each
cycle using dedicated heuristic methods [20]. For this purpose, two error thresholds ε1 and ε2 are defined to
enable distinct accuracy measurements in different phases. The determination of the threshold value is an
application requirement that trades-off convergence speed against approximation accuracy. The error threshold
ε1 is used for accuracy in the Aggregation phase and ε2 is used in the subsequent phases. The convergence
in the Aggregation phase is detected using moving average method. Thus, each node maintains a fixed length
history queue H and stores local estimate and a peer’s estimate after each received message. At each cycle, each
node examines the Coefficient of Variance Ĉv = H.s

H.x̄
for all elements in thec queue H where H.s is the standard

deviation and H.x̄ is the average. The local convergence is detected when Ĉv decreases below ε1 for a number of
consecutive cycles Υ. The consecutive cycles threshold Υ is used to avoid precocious convergence detection. On
another hand, the threshold error ε2 is used for the transition in the Convergence and the Agreement phases.
The transition is made when the percentage of absolute error between the count approximation and the size
provided by SSEP falls below the error threshold for Υ cycles.

The ECP carries out an epidemic election to appoint a single node as a leader [19]. The weight value wı̂ in
the leader node ı̂ will be set to wı̂ = 1 as required by the count aggregation function. Leader election assumes
that each node has a unique global identifier which can be the IP address and the local port. The leader is the
node with the highest identifier. The convergence to a leader node is achieved when the local leader estimate
holds for Υ cycles. Leader election is embedded into Aggregation phase and starts immediately when the
system starts allowing early propagation of wı̂ and enabling faster convergence in the subsequent phases.

The protocol ECP is illustrated in Algorithm 1, at each cycle, the protocol halves the aggregation pairs
and sends the pairs to a random peer in lines 4-6. In line 9, the protocol detects the convergence in the
Aggregation phase. Lines 10-11 in the protocol makes the transition to the Convergence phase. In line 12, the
convergence to a leader node is detected and line 13 sets the value of w at the leader node. In lines 15 and 19,
the criterion decides upon the transition to Agreement and Commit phases. Lines 16-17 trigger the transition
to the Agreement phase and line 20 triggers the transition to Commit phase. At the reception of a message,
ECP halves the aggregation pairs in lines 22-23 and responds in line 24. In line 25, the protocol stores estimates
of the Aggregation phase in the history queue H. In line 26, the protocol updates the local pairs and computes
a new leader in line 27.

5 Simulations and Experimental Results

5.1 Distributed System Model

The model of the distributed system consists of large number of nodes n. Nodes are connected to the Internet and
communicate using the uniform gossiping paradigm [21]. A connected physical topology and a reliable transport
protocol are assumed. On another hand, a partial synchrony setting is adopted in the model influenced by the
impossibility result [22] that refers to the unattainable detection of consensus in an asynchronous distributed
system of unreliable processes. The setting identifies the minimal properties of distributed systems that are
needed to solve the consensus problem [10]. Upper bounds of relative process speed and communication latency
are defined but unknown to nodes. Each node starts the randomised communication at the beginning of each
cycle. Cycles are time intervals of fixed length and the length is equivalent to the average Round-Trip-Time
(RTT ) of the Internet [23, 24]. The start of the first cycle at each node is uniformly distributed within a bound
offset Tstart equivalent to maximum drifts among internal clocks in network nodes. After Tstart, protocol cycles
within a node do not overlap, however, the subsequent cycle of different nodes may overlap. The value of Tstart

is adjusted to 100 milliseconds.
Communication Latency is generated using the Gaussian distribution where the mean of send/receive delays

is Tdelay = 200 milliseconds and standard deviation σ = 75 milliseconds such that 50% of messages are delivered
in Tdelay, 95% are delivered within Tdelay ± 2σ milliseconds and the rest are eventually delivered but after long
delays. The minimum message delay is 50 milliseconds. The cycle length Tcycle is set to the maximum RTT
value and thus Tcycle = 2×Tdelay. The prior setting is a reasonable trade-off between maximum latency needed
for most messages to be delivered and minimum process speed. The setting forms a practical implementation of
a large-scale network of simultaneous processes and asynchronous communication where the presence of message
interleaving [25], late arrival messages and out-of-cycle messages [26] are present at all times.
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5.2 Simulations Model and Configurations

Simulations are carried out using PeerSim [27], a Java-based discrete-event P2P simulation tool. PeerSim is
flexible, configurable and scalable. The simulation model is fully Event-based and uses the event-driven engine
in PeerSim. Two events are defined in the model: (i) The Activate Event is scheduled within Tstart. The
event then occurs at every Tcycle and stops after a predefined number of cycles. At this event, a node contacts
a random peer and makes assessment and phase transitions. (ii) The Message Receive Event occurs when
a node receives a message from a peer. At this event, the incoming message is processed. The local aggregation
pairs are updated and a leader is computed.

The simulation model includes four protocols, ECP, PTP+ and two tree-based 3PC protocols. The protocol
PTP+ is inspired by Phase Transition Protocol (PTP) in [18]. PTP+ is adopted earlier in the formulation of
this solution to achieve consensus in distributed data aggregation. PTP+ is used in the comparative simulations
for the evaluation of ECP.

The protocol 3PC is simulated over a static binary tree [28]. Nodes identifiers are assumed globally unique
and incremental. The node with identifier 0 is the coordinator and each node i has two child nodes 2i + 1
and 2i + 2. The binary spanning tree is constructed by a dedicated initialiser prior to simulations. 3PC is
implemented to achieve the global agreement on the outcome of the distributed averaging over the same data
distribution that is used in ECP and PTP+. Two versions of 3PC protocol are used in the experimental
simulations, a classic 3PC and a modified version of 3PC motivated by the CTP [15] namely 3PC-Convergecast
or (3PC-C ). In 3PC-C, the step of broadcasting compute message is omitted and the protocol starts in a
Convergecast step from the depth of the tree towards the coordinator. The subsequent phases of 3PC-C
proceeds as same as in classic 3PC. This optimisation improves the total time required for 3PC-C to achieve
consensus and thus challenge the performance competition with ECP.

The performance, convergence and communication overhead of ECP, PTP+, 3PC and 3PC-C are periodi-
cally monitored using dedicated observation modules. All protocols stop when the global agreement is achieved
and the simulation terminates when the total number of cycles is reached. Different random seeds are used
in each simulation to enforce randomisation and each experiment is repeated for tens of times to validate the
setting and ensure results. The protocols are initialised by a Peak data distribution where vdı̂ = n in a single
node ı̂ and vdi = 0 where 0 < i ≤ n and i 6= ı̂. Local parameters in ECP are tuned carefully to certain values
depending on the experimental results of the internal performance of the protocol in Section 5.3. The error
thresholds ε1 and ε2 are set to ε1 = ε2 = 0.01. The consecutive cycles threshold is set to Υ = 5. The length of
the history queue H is set to l = 10. NCP is configured to maintain a random k-regular overlay with k = 10.

5.3 Results and Discussion

The execution of ECP involves local detection of convergence and the transition across phases. Phases transition
towards the explicit global agreement in the ECP is illustrated in Figure 1. Figure 1.a shows the percentage of
nodes in each phase over time. The figure also illustrates the smooth transition from a phase to the successive.
Figure 1.b shows the average of estimates in each phase. It is clear that estimates in each phase converge to the
same approximation value at all nodes. In the Aggregation phase, local estimates converge to 1 which is the
correct average of spreading vdı̂ = n over n nodes. Estimates in Convergence and Agreement phases converge
to n as expected. In Figure 1.c, the variance of estimates over all nodes is tending towards very small value
indicating the reduction in estimation error and the reach of convergence among nodes in each phase. Results
in Figure 1 validates the ability of ECP to locally detect convergence, makes the transition in phases and attain
the certainty of the explicit global agreement on the outcome of the global averaging.

The internal performance of the ECP is examined by varying one of the associated parameters in each
experiment. The error thresholds ε1 and ε2 are used in different phases, the effect of each one can be recognised
by monitoring the corresponding phase, and hence both parameters are set to the same value. Figure 2 shows
linear rising in the completion times of each phase when error thresholds are set for a higher accuracy. The
values of ε1 and ε2 can be tuned to trade-off between accuracy and speed. For instance, a small error threshold
can be used in Aggregation phase whilst using bigger one in Convergenc and Agreement phases to speed up
convergence. On another hand, the use of higher values of Υ significantly slows the detection of convergence
in each phase. Thereby, Υ is set to 5 which allows feasible convergence speed for large network sizes up to one
million nodes. Also, a small delay in the completion time of Aggregation phase is noticed when the length of
history queue H increases as shown in Figure 2.b. and thus the use of minimum reasonable length is preferable
for faster convergence and less execution load.

A summery on the comparative experiments among ECP, PTP+, 3PC and 3PC-C protocols is illustrated
in Figure 3.a The phases transition and completion times of each protocol are illustrated in Figure 3.b. The
comparison involves the performance of protocols over various system sizes. Figure 3.a shows the modest
linear increase in the completion times in ECP. Also, it shows faster completion times in comparison to PTP+
reflecting the use of tuned parameters and the early leader election mechanism. The completion times of 3PC
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and 3PC-C protocols significantly rise w.r.t the system size. The increase in depth of the tree increases the
convergence time in 3PC and 3PC-C protocols. The ECP shows equivalent performance in small sizes but
performs much better in large sizes. ECP outperforms tree-based 3PC and 3PC-C protocols without the need
to establish any specific network structures.

The communication overhead in ECP, 3PC and 3PC-C protocols are illustrated in Figure 4. Figure 4.a
shows the average number of messages at each cycle in ECP. Each node sends two messages in average at
each cycle, one to contact a random peer and one to reply to an incoming message. Figure 4.a illustrates the
distribution of communication load among all nodes in ECP. Figure 4.b illustrates the cumulative number of
messages sent in each phase. ECP produces higher overhead in each phase due to the continuous communication
natural of epidemic protocols.

The communication overhead in tree-based 3PC and 3PC-C protocols are shown in Figures 4.c-4.f. In
general, nodes in 3PC and 3PC-C protocols send two compute messages to child nodes in Broadcast step
and two acknowledgement messages are sent back to the parent node in Convergecast step in each phase.
Broadcast messages and Convergecast messages occur at different cycles and encounter different latency,
hence two messages are sent in average per-node at each cycle. As the structure of the tree expands towards
the depth, the number of messages increases in the Broadcast step and decreases in the Convergecast step
until nodes reach the global agreement. At the most depth of the tree, the number of sent messages is 1

2n+ 1
and thus in the corresponding cycle, around 1

2 message is sent in average per-node. Figures 4.c and Figure 4.e
illustrate this effect in 3PC and 3PC-C protocols. Figures 4.d and Figure 4.f, shows the cumulative number of
messages in each phase which is noticeably less than ECP protocol.

In summary, ECP achieves consensus faster than tree-based protocols in large system sizes. Tree-based
protocols have optimal total communication overhead whilst ECP has higher overall overhead. The overhead
in ECP is distributed over system nodes and hence the per-node overhead is perfect.

6 Related work

The protocol PTP is proposed by [18] to achieve consensus on the convergence of information dissemination
over large number of nodes. A simple application scenario (IDA) is used to demonstrate the key idea of the
solution. PTP achieves consensus in IDA for multiple items without a global uniqueness of items identifiers
and without centralised coordination or prior knowledge of system size. The work in [4] introduces three failure
detection and consensus algorithms using randomised pinging and the timeout mechanism. In particular, the
third algorithm is a three-phase distributed failure detection and consensus algorithm that provides consistency
guarantees. The algorithm achieves consensus on failed processes among correct processes using the epidemic
aggregation. In [20], a number of heuristic methods to locally detect convergence in epidemic protocols are
investigated. For instance, the standard deviation and root-mean-square error of a fixed number of buffered
estimates are used as a criterion in the detection formulas.

The work in [29] studied global data aggregation in spanning trees and gossip-based schemes. The study
concludes that gossip-based approaches are adaptive and efficient for dynamic topologies while spanning trees are
preferable in stable topologies. In [15], an evaluation of performance, communication overhead and accuracy in
gossip-based and tree-based approaches are conducted. Randomised gossip, broadcast gossip and CTP protocols
are compared for the aggregation of distributed averaging overWSN. The evaluation shows that broadcast gossip
is more efficient and requires no prior setting up whilst CTP performance is restrained due to the need of tree
maintenance.

The Consensus Problem is described in [10, 11]. Studies on the consensus in asynchronous distributed
systems are provided in [9, 16]. In [13], a corrective consensus algorithm to achieve consensus using distributed
averaging in WSN is presented. The algorithm is proven to converge to a very close approximation to the
correct average. The work in [6] introduces a review on distributed consensus strategies, assumptions and
research issues.

The work in [7] provides a wide analysis of Bitcoin challenges. For instance, the double spending problem
which requires a decentralised global agreement on the order of cash transactions, and hence ECP could be a
choice solution.

7 Conclusions

This paper has presented an innovative epidemic-style approach for the consensus problem in large-scale distri-
buted aggregation. The proposed approach provides a novel practical solution to real-world applications which
need to achieve both local convergence and global agreement in a decentralised, scalable, fault-tolerant and
consistent way. The solution not only achieves local convergence on the data aggregation target but also attains
explicit global agreement among all nodes using a decentralised decision mechanism.
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Figure 1: Convergence and phases transition in ECP, n = 104, ε1 = ε2 = 0.01, Υ = 5, l = 10
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Figure 2: Phases completion times in ECP when varying simulations parameters, n = 104

The paper has introduced the Epidemic Consensus Protocol (ECP) for the determination of consensus on
the convergence of a distributed data aggregation task. ECP adopts heuristic methods for the local detection
of convergence and makes phase transitions to achieve the explicit global agreement. A comparative study of
the performance and the communication overhead between ECP and the tree-based 3PC protocol has been
presented. Experimental results have shown that ECP reaches the global agreement faster than 3PC in large
systems. Although the overall communication load associated with the performance of ECP is noticeably high,
the total overhead is distributed among the nodes in the system and hence the overhead at each node is typical.
The protocol ECP is fault-tolerant, scalable and requires no structured networks; whilst more effort is needed
to establish and maintain tree structures for 3PC and trees are susceptible to propagation delay and single
points of failure.

Future research may amend the epidemic consensus approach to attain consistency and reliability in dynamic
networks. An adaptive approach with a continuous detection of network churn could be a solution. Other
future work may apply the epidemic consensus approach to other agreement problems, e.g. coordination in
multi-vehicle networks, decision-making in service oriented IoT and the ”proof-of-work” system in Bitcoin.
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