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Abstract—To cope with the increasing content requests from
emerging vehicular applications, caching contents at edge
nodes is imperative to reduce service latency and network
traffic on the Internet-of-Vehicles (IoV). However, the inherent
characteristics of IoV, including the high mobility of vehicles
and restricted storage capability of edge nodes, cause many
difficulties in the design of caching schemes. Driven by the re-
cent advancements in machine learning, learning-based proac-
tive caching schemes are able to accurately predict content
popularity and improve cache efficiency, but they need gather
and analyse users’ content retrieval history and personal data,
leading to privacy concerns. To address the above challenge, we
propose a new proactive caching scheme based on peer-to-peer
federated deep learning, where the global prediction model is
trained from data scattered at vehicles to mitigate the privacy
risks. In our proposed scheme, a vehicle acts as a parameter
server to aggregate the updated global model from peers,
instead of an edge node. A dual-weighted aggregation scheme
is designed to achieve high global model accuracy. Moreover,
to enhance the caching performance, a Collaborative Filtering
based Variational AutoEncoder model is developed to predict
the content popularity. The experimental results demonstrate
that our proposed caching scheme largely outperforms typical
baselines, such as Greedy and Most Recently Used caching.

Keywords-Federated Learning, Deep Learning, Internet of
Vehicles, Edge Caching, AutoEncoder

I. INTRODUCTION

To improve road safety and travel comfort, the Internet-

of-Vehicles (IoV) has emerged as a new paradigm for

intelligent transportation systems [1]. It supports a wide

range of emerging vehicular applications, such as smart

navigation and infotainment [2]. These applications require

low network latency and substantial network resources (e.g.,
caching, computation, and communication), which places

huge challenges to the IoV. Shifting cloud computing and

storage capabilities to the edge nodes of IoV has been

considered as a promising approach to satisfy the diverse

requirements of vehicular applications. Especially, caching

popular contents at edge nodes (e.g., Base Station (BS),

Road side unit (RSU), vehicles) can alleviate the data traffic

on backhaul links and reduce service latency.

Due to the limited caching storage at edge nodes, efficient

caching schemes that manages the caching resources is

necessary. Recent breakthroughs in Machine Learning (ML)

facilitate many learning-based content caching schemes [3]

[4] [5]. ML techniques can effectively extract hidden features

and representations from users’ data to accurately predict

content popularity. However, conventional caching schemes

cannot be directly applied in IoV, due to the inherent

characteristics of IoV, e.g., the high mobility of vehicles

and dynamic network environment. Additionally, most of the

existing learning-based caching schemes need to centrally

analyse users’ data to make caching decisions. This process

may cause the disclosure of users’ privacy. Thus, it is of

paramount importance to design a learning-based caching

scheme for IoV that can achieve high caching performance

while protecting users’ privacy.

Federated learning (FL) [6] provides a new framework

for fitting ML techniques into the edge while mitigating

user privacy risks. It allows a central server to cooperate

with multiple vehicles to jointly train an ML model in the

IoV. Vehicles upload parameters of the trained model to the

central server and keep their training data locally. However,

if an RSU is chosen as a central server, vehicles with high

speed may pass several RSUs during the FL training process,

since the coverage area of RSU is small. This may seriously

affect the performance of the trained model in FL. To address

this challenge, we propose a Peer-to-Peer Federated learning

based proactive Caching scheme (PPFC) that is well suited

to the highly dynamic IoV environments. In PPFC, a vehi-

cle with enough computation, caching and communication

resources can be selected as a central server to aggregate

a global model from peers. Nearby vehicles with the same

direction can then connect to this server vehicle to participate

in the FL training. Compared with traditional FL, peer-to-

peer FL can eliminate the issue of hand-over between RSUs,

achieve lower latency and adapt to the mobility of vehicles.

PPFC utilises a Collaborative Filtering based Variational

AutoEncoder (CF-VAE) model to predict content popularity

based on the contextual information of users for making

smart caching decisions.

The main contributions of the paper are summarised as

follows:

1) A peer-to-peer federated learning based proactive

caching scheme is proposed to adapt to high mobility

of vehicles in IoV. In the proposed scheme, a vehicle

rather than a fixed edge node, acts as a central server

20
20

 IE
EE

 2
6t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 S

ys
te

m
s (

IC
PA

DS
) |

 9
78

-1
-7

28
1-

90
74

-7
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

PA
DS

51
04

0.
20

20
.0

00
83

Authorized licensed use limited to: Lancaster University. Downloaded on May 06,2021 at 14:59:42 UTC from IEEE Xplore.  Restrictions apply. 



to aggregate ML models from nearby vehicles.

2) Due to the heterogeneous abilities of vehicles, a dual-

weighted model aggregation scheme is designed to

reduce the effect of straggler vehicles, in order to

further improve the accuracy of the trained global

model in the designed peer-to-peer FL.

3) A collaborative filtering based variational autoencoder

model is proposed to predict the popularity of contents

by using users’ historical requests and contextual in-

formation, which can learn deep latent representations

of users’ characteristics, while preserving data privacy

through the use of FL.

The rest of this paper is organised as follows. Section

II reviews the related work. The system architecture of the

proposed cache scheme is presented in Section III. Section

IV describes the detailed implementation of PPFC. The

performance evaluation and analysis of PPFC are provided

in Section V. Section VI concludes this paper.

II. RELATED WORK

Several caching schemes have been widely studied in

IoV scenario. Zhang et al. [3] designed a heterogeneous

information network-based content caching scheme to re-

duce network load and enhance the quality of experience by

combining data mining techniques with the features of IoV.

Ndikumana et al. [4] proposed a deep learning based caching

scheme for IoV to reduce the delivery delay of content.

To optimize caching decisions, the popularity of contents is

estimated by Multi-Layer Perceptron. The age and gender of

passengers are predicted by Convolutional Neural Network.

Then, a k-means algorithm and binary classification are used

to determine contents cached at vehicles. Park et al. [7]

proposed a distributed proactive caching scheme in vehicular

networks by taking the movement of vehicles into account.

Chen et al. [5] developed a cooperative edge caching scheme

for connected vehicles by considering the content popular-

ity and location. Zhang et al. [8] introduced a mobility-

aware cooperative caching framework. To better utilise the

resources of vehicles, vehicles can share contents with BSs.

Ainagar et al. [9] exploited a mobility-aware proactive

caching scheme to minimise communication latency by

considering the demands from users and their mobility.

The effect of vehicle velocity has also been evaluated. Gad

et al. [10] designed a hierarchical proactive caching by

utilising the storages at vehicles and RSUs to minimise the

vehicle communication latency. Zhang et al. [11] proposed

a proactive caching scheme for autonomous vehicles by

adopting a non-negative matrix factorization technique to

estimate the preference of users. The contents at video level

are stored at the core network nodes, whereas the chunk

level contents are cached at edge nodes. Zhu et al. [12]

investigated a deep reinforcement learning based approach

to deal with the problem of automatic vehicle control and

the selection of proactive caching action. Zhang et al. [13]

presented a proactive caching scheme for vehicular multi-

view 3D videos which utilises deep reinforcement learning

to select views set and allocate cache memory.

However, these existing proactive caching schemes in IoV

need to upload and centrally process users’ data at a central

server, which may cause the risk of sensitive data leakage

and misuse, and also result in the large communication cost.

To protect users’ privacy and relieve the communication

load, Federated learning (FL) has been regarded as a promis-

ing framework, which was firstly proposed by Google [6].

There are several works utilising FL in IoV. Samarakoon

et al.[14] introduced a FL-based method to predict the tail

distribution of the network-wide queue lengths, in order to

realise the status of networks. Ye et al. [15] designed a FL

selective model aggregation method to select participating

vehicles by considering the computation capacity of vehicles

and data quality at vehicles. Lu et al. [16] proposed a hybrid

blockchain based asynchronous FL scheme to secure data

sharing. Another asynchronous FL scheme was developed

in [17] for resource sharing purpose, which combines differ-

ential techniques into FL to protect the privacy of local up-

dates. Roy et al. [18] proposed a peer-to-peer decentralized

federated learning, without a central server. However, the

above works lack consideration inherent limitations of edge

caching in IoV, such as mobility of vehicles, time-varying

and location-dependent content popularity. The FL needs to

be incorporated with edge caching in IoV to facilitate cache

efficiency.

III. SYSTEM ARCHITECTURE

The system architecture of the proposed PPFC is shown

in Fig. 1. A vehicular network is considered, which consists

of a BS, RSUs and vehicles. It is a hierarchical structure.

The top layer is a BS, which links to the Internet through

a reliable backhaul link. In the middle layer, several RSUs

are placed equidistantly at the coverage area of the BS. Each

RSU connects to several vehicles that are distributed at the

bottom layer. The communication between BS, RSUs and

vehicles are via wireless links. In our design, both RSUs

and vehicles have cache capability, because vehicles are

equipped with OBUs and RSUs have cache-able servers.

Users can fetch their requested contents from RSUs and

vehicles, instead of the internet only. When a vehicular

user requests a content, it will firstly check its own cache.

If the requested content is stored locally, the vehicle can

directly obtain it without any transmission. If not, this

request will broadcast to neighbour vehicles. If the broadcast

is responded, nearby vehicles will send the requested content

to the vehicle which requested the content. Otherwise, the

request will forward to the current connected RSU. If the

requested content is available in the RSU, the RSU can

delivery this content to the requested vehicle. If the requested

content is still missing, the vehicle has to request this content

from the Internet.
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Figure 1. System architecture

Thus, vehicles fetch contents mainly in the following three

ways: Vehicle-to-Vehicle (V2V) content delivery, Vehicle-to-

RSU (V2R) content delivery and Vehicle-to-Internet (V2I)

content delivery. V2V content delivery links two vehicles

within distance γ. If vehicle ki stores the requested content

from nearby vehicle k j , vehicle ki can directly deliver the

requested content to vehicle k j through V2V link. RSU is

another cache place in our designed PPFC. Vehicles who are

located at the same coverage area of the RSU use the same

frequency band. Vehicles fetch the requested contents from

RSU via V2R links. V2I content delivery is the transmission

between the Internet and vehicles. If the requested contents

are missing in both vehicles and RSUs, it will get from

the Internet with V2I transmission. Obtaining contents from

vehicles and RSUs, without asking for the Internet, can

significantly ease the network load. Moreover, users fetch

their requested contents from near vehicles which can largely

reduce latency.

Due to the limited storage resource of RSUs and vehicles,

we assume that a vehicle can only store up to m contents

and an RSU can cache n contents at most. To make full

use of caching storage at RSUs and vehicles, designing

a smart caching scheme is essential. The gain from the

caching scheme highly depends on the accuracy of content

popularity. However, content popularity is dynamic and hard

to predict. Different vehicular users may prefer different

contents and their preferences may change frequently which

are influenced by location and time. The spatio-temporal

variability on the popularity of contents adds substantial

complexity in content caching of IoV. Moreover, the lifetime

of contents in IoV is short. As a result, the cached contents

are easy to be out-of-date. Thus, according to the estimated

content popularity and the lifetime of contents, updating

cached contents regularly is necessary to the edge caching

in IoV.

We design a proactive caching scheme to make caching

decision by predicting content popularity, based on the peer-

to-peer federated learning. In typical FL, multiple vehicles

collaboratively train a global model from their site-specific

datasets under the instruction of a central server in the RSU.

Instead of sending raw data to the central server in RSU for

model training, vehicles only send parameters of the model

to the central server. With the help of distributed training at

vehicles, user privacy can be largely protected. The global

model that trained in FL is a content popularity prediction

model, which is utilised to make the smart caching decision.

However, due to the high mobility of the vehicle and short

coverage area of an RSU, vehicles with high-speed cannot

complete FL training process within one RSU’s coverage

area. Switching between RSUs happens frequently. If the

fixed RSU is chosen as the central server in FL, computation

and communication costs are increased, and the accuracy of

prediction is degraded. To adapt the FL framework to the

IoV scenario and address the limitations and conundrums

caused by the high mobility of vehicles, the peer-to-peer

FL is proposed, without depending on a central server in

an RSU. A vehicle can be selected as a moving central

server of FL. The same direction of vehicles within one

transmission hop are clustered into one group and then

execute FL training within this group.

IV. PEER-TO-PEER FEDERATED DEEP LEARNING FOR

IOV EDGE CACHING

This section describes the details of our proposed proac-

tive content caching scheme. In light of growing privacy

concerns, FL is designed to collaboratively train a global

ML model by using the local data at distributed vehicles.

However, in the complex and dynamic IoV environments,

the typical FL faces the challenge of frequently switching

connected central servers and heterogeneous abilities of

vehicles. To better fit FL to IoV, we proposed a peer-to-peer

FL, as shown in Fig 2. Training a model in peer-to-peer FL

is performed by multiple communication rounds and each

communication round r consists of the following six steps:

1) Location based vehicle selection: To avoid frequently

switching connected central servers for vehicles during the

FL training process, the vehicle with sufficient computation

and caching capacity can be selected as a central server.

Unlike the server in the fixed RSU for typical FL, the vehicle

server is a moving central server to aggregate models as well

as providing caching contents to other vehicles. The same

direction of vehicles with one transmission hop neighbours

are chosen as participating vehicles to be involved in the FL

model training.

2) Model dissemination: Once the server vehicle and

participating vehicles K are selected, the server vehicle

initialises the global ML model wr and sends it to the

participating vehicles with the aim of distributed model

training at these vehicles.

3) Learning of distributed prediction model: Each

participating vehicle utilises its own data to train the ML

model, which is a Collaborative Filtering based Variational
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Figure 2. Peer-to-peer federated learning

Autoencoder (CF-VAE) model to predict the content pop-

ularity. It is an unsupervised learning algorithm to copy

its input X to its output X̃ , as shown in Fig. 3. The X
is a user-content rating matrix, which consists of vehicular

users’ historical requests. The â is the matrix of the vehicular

users’ context information. We fed X and â into CF-VAE

to learn the hidden representations Z , respectively. Then,

these obtained representations are combined to reconstruct

the input X . X samples variable x. The encoder q (z | x)
which is an inference neural network maps x to a Gaussian

distribution and the latent variable z is estimated. The

decoder, a generative neural network p (z | x), decodes z
back into x. In the generative process, our objective is to

maximise the probability of each x. It can be defined as:

p (x) =
∫

p (x | z) p (z) dz. (1)

p (x | z) is parameterised with a function approximator. The

likelihood p (x | z) and the prior p (z) can be formulated,

while the posterior p (z | x) requires an intractable integral

over the latent space. The posterior q (z | x) generates a

distribution over the latent variables. Kullback-Leibler diver-

gence can be used to minimise difference between p (z | x)
and q (z | x).

KL [q (z | x) ‖ p (z | x)] =

Ez∼q(z |x) [log q (z | x) − log p (z | x)] .
(2)

Applying Bayesian inference we have

KL [q (z | x) ‖ p (z | x)] =

Ez∼q(z |x) [log q (z | x) − log p (z | x)] + log p (x) .
(3)

Then, to minimise KL [q (z | x) ‖ p(z | x)], the Eq. (3) can

Input

X

Additional Information

Output

Input

Figure 3. Collaborative filtering based variational autoencoder

be simplified as the following form:

log p (x) ≥Ez∼q(z |x) [log p (x | z)]

− KL [q (z | x) ‖ p (z)] .
(4)

where the right hand-side is the variational lower bound of

VAE. The approximate posterior q (z | x) follows a Gaussian

distribution N
(
μ, diag

(
σ2) )

where μ is the mean and σ2

is variance. The generative network p (x | z) and inference

network q (z | x) are trained by maximising the variational

lower bound with respect to their parameters. The reparam-

eterisation trick z = μ + σ � ε can be implemented to get

the unbiased estimate of low variance bound. We suppose

the mean and covariance are μ (x) and σ (x), respectively. ε
follows N(0, I), the equation can be rewritten as follow:

Eq(z |x) [log p (x | z)] =

Eε∼N (0,I) [log p (x | z = μ + σ � ε)] ,
(5)

where ε is a vector sampled from standard Gaussian vari-

ables. With the help of the reparameterisation trick, the

inference and generative networks can be trained through

end-to-end backpropagation by SGD.

Once the local training of CF-VAE at vehicles is com-

pleted, the parameters of CF-VAE are sent back to the server

vehicle for model aggregation.

4) Dual-weighted model aggregation: To improve the

quality of the global model, the server vehicle constructs

a new version of the global ML model by aggregating

updated models from nearby vehicles with a dual-weighted

method. Due to the heterogeneous abilities of vehicles,

vehicles contain different amount of local data and have

different learning status. Vehicles cannot equally contribute

to the global model with such large differences. The effect

of straggler vehicles needs to be reduced for the current

FL communication round. Therefore, we introduce a dual-

weighted aggregation scheme to solve this problem, which

is divided into two parts: data weight and staleness weight

[19]. The data weight λD is decided by the proportion of

the local data size dk at a vehicle k to the total data size D
of all participating vehicles. The data weight of vehicle k is
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Algorithm 1 : The peer-to-peer federated learning based
proactive caching scheme, K is the set of participating

vehicles, where k ∈ K . η is the learning rate; E is the number

of epoches. B is the local minibatch size;

Select A Server Vehicle and Participating Vehicles

Server Vehicle Execution:
1: initialise w0
2: for each round r = 1,2,... do:

3: Kr : a set of participating vehicles

4: Get the parameters of the global model wr

5: for each vehicle k ∈ Kr in parallel do:

6: wk
r ← VehicleUpdate(wr, k)

7: end for
8: wk

r+1 ← wr −
∑K

k=1 λ
k
Dλ

k
S
wk
r+1

9: for end
10: Return wr+1

Participating Vehicle Execution:
1: Input: X , wr

2: VehicleUpdate(w, k):
3: for each local epoch i from 1 to E do
4: for batch b ∈ B do
5: Compute parameters with gradient descent:

6: wr+1 ← wr − η∇l (wr ; b)
7: end for
8: end for
9: Return wr+1

λkD =
dk

D , where D =
∑K

k=0 dk , dk = |Dk | and Dk is the set

of training samples on vehicle k. The staleness weight λS
is influenced by the uploading time Tup and downloading

time Tdown, which reflects the staleness for the model. The

staleness is calculated as ϕ = Tup − Tdown. It also indicates

the computing power of the vehicle. A smaller weight is

given to the vehicle with a larger staleness. The staleness

weight is calculated using the following exponential function

[19][20]:

λkS = (e/2)−ϕ . (6)

where e is Euler’s number. Thus, the updated model is

conducted with the weighted average sum:

wr+1 ← wr −

K∑
k=1
λkDλ

k
Sw

k
r+1, (7)

After one round of FL training is finished, vehicles overwrite

their local parameters to the latest downloaded parameters

and refresh their dual-weights to prepare the next round FL

training.

5) Model optimisation: To improve the convergence of

FL, an adam-based optimisation is exploited in the server

vehicle. Based on the local data of server vehicle, the model
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Figure 4. PPFC vs. Other reference schemes (10 vehicles)

will be validated. The aim of our proposed peer-to-peer FL

is to minimise the loss function � (w):

min
w
� (w) =

K∑
k=1

Lk (w) ,

where Lk (w) =
1
dk

∑
i∈Dk

�i (w) .

(8)

6) Caching decision and model update: Based on the

output of the updated model, the highest m predicted rating

scores in X̃ are selected as the caching contents in the

vehicle. The less n popular contents will cache in RSUs.

Meanwhile, the server vehicle updates the global model and

this model will be disseminated to all one-hop neighbour

vehicles who will participate in the next FL communication

round.

Above steps are repeated until an optimal model achieved

at the server vehicle. The pseudo-code of PPFC is outlined

in Algorithm 1.

V. PERFORMANCE EVALUATION

In this section, comprehensive experiments are conducted

to evaluate the performance of PPFC under various IoV

environments and compare the PPFC with four baseline

caching schemes with respect to the cache hit ratio.

A. Experiment Settings and Dataset

We set up a networking testbed, consisting of 10 Rasp-

berry Pi devices. Each Raspberry Pi represents a vehicle

and has a local dataset to conduct learning-based prediction

model training. The dataset is MovieLens 1M which con-

tains about 1 million ratings from 6000 anonymized users on

3883 contents [21]. This dataset also involves the contextual

information of users, such as, age, gender and address. Keras

and TensorFlow are used to implement the CF-VAE and

FL. The evaluation metric we used to measure the proposed
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Figure 5. PPFC vs. Other reference schemes (5 vehicles)

PPFC is cache hit ratio, which represents the percentage

of requested contents from users that enable to serve from

vehicles and RSUs.

B. Experimental Results

Fig. 4 and Fig. 5 compare the performance of PPFC

with other four reference caching schemes (Optimal, Greedy,

MRU and Random) and show the cache hit ratio for varying

cache sizes from 50 to 400 contents. They also demonstrate

the impact of 10 vehicles and 5 vehicles participating in

peer-to-peer FL training on cache hit ratio, respectively.

Both figs exhibit the same trend. The cache hit ratios of

all caching schemes increase, with the growth of cache size.

The Optimal reference caching scheme presents the highest

cache hit ratio, because it has a perfect knowledge of future

vehicular user demands. Our proposed PPFC outperforms

the other three reference caching schemes, since PPFC

predicts the future popular contents for users by learning

hidden features from the request of users and clustering these

requests in the latent space. Greedy is a simple learning al-

gorithm, caching the m highest previous demanded contents,

but it does not consider future content popularity. MRU

is the third reference caching scheme. It follows a static

rule that firstly discards the most recently used contents.

However, it lacks consideration of dynamically changing

content popularity. The random algorithm shows the lowest

cache hit ratio, which randomly selects the m contents to the

cache. Compared Fig. 4 with Fig. 5, the cache hit ratio of

10 participating vehicles in the peer-to-peer FL training is

higher than 5 participating vehicles. When the cache size is

50, the cache hit ratio of 10 participating vehicles is 25.2%,

while 5 participating vehicles can only achieve 21%.

Fig. 6 investigates the relationship between vehicle den-

sity, training time and cache hit ratio. The vehicle density is

from 2 to 10 vehicles per/km. The results demonstrate that

Figure 6. Vehicle density vs. Training time vs. Cache hit ratio
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Figure 7. PPFC vs. RSU caching (10 vehicles)

when the cache size is 50, the cache hit ratio rises with the

increase in vehicle density. When 2 vehicles participate in

the peer-to-peer FL, the cache hit ratio is 16.2%. Whereas,

the cache hit ratio will rise to 25.3%, if 10 vehicles attend in

FL training. Meanwhile, when the number of participating

vehicles changes from 2 to 10, the training time for per

communication round increases from 3.98 seconds to 16

seconds. It indicates that more accurate prediction can be

achieved if more vehicles participate in the FL training. It

is due to that more training data and computation capacity

are provided in more participating vehicles. However, it is

a trade-off between the training time, vehicle density and

cache hit ratio. As more vehicles attend to the FL training,

the cache hit ratio improves, but the training time takes

longer.

Fig. 7 and Fig. 8 depict the effectiveness of vehicle-to-

vehicle caching. These experiments compare the caching

performance of traditional RSU caching with the proposed
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Figure 8. PPFC vs. RSU caching (5 vehicles)

PPFC that combines vehicle-to-vehicle caching and RSU

caching. Fig. 7 shows the cache hit ratio for various cache

sizes between 50 and 400 contents, when the number of

participating vehicles in peer-to-peer FL training is set to

10. By contrast, Fig. 8 describes the results of 5 vehicles

attending to the FL training. It can be seen from both

Fig. 7 and Fig. 8, the PPFC demonstrates a better caching

performance compared to RSU caching. When cache size is

50 and 10 vehicles participate in the FL training, the cache

hit ratio of PPFC is 25.3%, while RSU caching can only

reach 14.49%. Maintaining the same cache size, when the

number of participating vehicles reduces to 5 vehicles, the

cache hit ratio of PPFC can obtain 21%, but a similar cache

hit ratio for RSU caching is achieved. For the other cache

sizes, the same trend has been observed. It indicates vehicle-

to-vehicle caching can improve the cache hit ratio. As the

number of participating vehicles increases, more caching

capacity from vehicles are brought, and therefore, the cache

hit ratio rises. However, the caching performance of RSU

caching is not affected by the number of participating

vehicles.

VI. CONCLUSION

In this paper, we have proposed a new Proactive content

Caching scheme on Peer-to-Peer Federated learning (PPFC)

to protect vehicles’ privacy, enhance caching performance

and reduce latency. Due to the mobility of vehicles, a vehicle

is selected as a moving central server, to ease reliance on

the fixed central server in RSU and eliminate the issue

of frequently hand-over between RSUs. PPFC utilises a

collaborative filtering based variational autoencoder model

to predict content popularity in the future and pre-fetch

predicted popular contents at vehicles and RSUs to improve

caching performance. Numerical results show that PPFC

outperforms other reference caching schemes in terms of

cache hit ratio. More vehicles participating in the peer-to-

peer FL training can achieve better caching performance.
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