
1

Remove-Win: a Design Framework for
Conflict-free Replicated Data Types

Yuqi Zhang, Hengfeng Wei, and Yu Huang

Abstract—Distributed storage systems employ replication to improve performance and reliability. To provide low latency data access,
replicas are often required to accept updates without coordination with each other, and the updates are then propagated
asynchronously. This brings the critical challenge of conflict resolution among concurrent updates. Conflict-free Replicated Data Type
(CRDT) is a principled approach to addressing this challenge. However, existing CRDT designs are tricky, and hard to be generalized
to other data types. A design framework is in great need to guide the systematic design of new CRDTs.
To address this challenge, we propose RWF – the Remove-Win design Framework for CRDTs. RWF leverages the simple but powerful
remove-win strategy to resolve conflicting updates, and provides generic design for a variety of data container types. Two exemplar
implementations following RWF are given over the Redis data type store, which demonstrate the effectiveness of RWF. Performance
measurements of our implementations further show the efficiency of CRDT designs following RWF.

Index Terms—CRDT, remove-win, replicated data store

F

1 INTRODUCTION

Internet-scale distributed systems often replicate applica-
tion state and logic to reduce user-perceived latency and
improve application throughput, while tolerating partial
failures [1], [2]. In such distributed systems, user-perceived
latency and overall service availability are widely regarded
as the most critical factors for a large class of applica-
tions. Thus, many Internet-scale distributed systems are
designed for low latency and high availability in the first
place [3], [4]. To provide low latency and high availability,
the update requests must be handled immediately, without
communication with remote replicas. Updates can only be
asynchronously transmitted to remote replicas, and rolling-
back updates to handle conflicts is not acceptable.

According to the CAP theorem, low latency and high
availability can only be achieved at the cost of accepting
weak consistency [5], [6]. To provide certain guarantees
to developers of upper-layer applications, eventual conver-
gence is widely accepted, which ensures that when any two
replicas have received the same set of updates, they reach
the same state [7]. Eventually consistent replicated data
types are widely used in scenarios where responsiveness is
critical, e.g. in collaborative editing [8], distributed caching
[9] or coordination-avoidance in databases [10]. The design
of replicated data types guaranteeing eventual convergence
brings the challenge of conflict resolution for concurrent
updates on different replicas of logically the same data
element. The Conflict-free Replicated Data Type (CRDT)
framework provides a principled approach to addressing
this challenge [1], [2].

• Yuqi Zhang, Hengfeng Wei, and Yu Huang are with the State Key
Laboratory for Novel Software Technology, and Department of Computer
Science and Technology, Nanjing University, China, 210023.
E-mail: cs.yqzhang@gmail.com, {hfwei, yuhuang}@nju.edu.cn

(Corresponding author: Hengfeng Wei and Yu Huang.)

The conflict resolution is typically hard and error-prone,
especially for data types having complex semantics. This
explains why existing CRDT designs are tricky, and why it is
hard to generalize design for one type to other similar types
[1], [2]. A design framework is in great need to guide the
systematic design of new CRDTs, and the design of CRDTs
needs to shift from a craft to an engineering discipline. The
essential issue of proposing a design framework is to refine
the commonalities among different CRDT designs. Thus the
developer can focus on designing special features pertinent
to each data type and reuse the common design based on
the framework. In this way, the design framework can help
even not-experienced developers handle complex and error-
prone CRDT designs.

Toward this objective, we propose RWF – the Remove-
Win design Framework for CRDTs. RWF aims at facilitating
the design of replicated data container types. A data con-
tainer is first a set of unique data elements. Existence of each
element is identified by its key. Moreover, each data element
can have values. Complex semantics of the data type and
the structure among the data elements are “encoded” in the
values of the data elements.

RWF facilitates the design of replicated data container
types leveraging the simple but powerful remove-win strat-
egy for conflict resolution. The basic rationale of the remove-
win strategy is that when any operation is concurrent with
a remove operation, the remove operation wins. This means
that the data element involved in the operations will be
eliminated from the container. One salient feature of the
remove-win strategy is that, it is independent of the seman-
tics of the data type under concern. The remove operation
simply eliminate the data element, no matter how complex
the semantics of the data type are. Though elimination of
one element may affect the overall structure of the data
container, the maintenance of the structure of the container
is independently handled by each replica and requires no
coordination with remote peer replicas. The salient feature

ar
X

iv
:1

90
5.

01
40

3v
3

 [
cs

.D
C

]
 5

 J
ul

 2
02

2

2

of the remove-win strategy makes it applicable to different
data container types and one design framework is proposed
to capture the common remove-win resolution for different
data types.

Note that the remove-win strategy adopted in RWF is
different from the remove-win strategy used in the exist-
ing work, e.g. in the Remove-Win Set [11]. When a non-
remove operation is concurrent with a remove operation,
the remove-win strategy in the existing work makes all
replicas put the remove operation behind the non-remove
operation. Thus the effect of the remove operation will over-
write that of the preceding operations. In the remove-win
strategy used in RWF, the data element is simply eliminated,
requiring no further processing. Our strategy is more simple
but also more powerful. It can be more easily applied to
different data types.

RWF provides a generic algorithm skeleton for conflict-
free replicated data container types (denoted as RWF-DTs).
User-defined logics are implemented as stubs and inserted
into the skeleton to obtain concrete RWF-DT designs. The
RWF framework can be implemented over different data
type stores. We present an exemplar implementation over
the widely used Redis data type store. In the implemen-
tation level, RWF provides a template for RWF-DT imple-
mentations. Common logics of CRDTs as well as those of
RWF-DTs are provided in the template. The user only needs
to provide logics pertinent to the specific data type under
development.

The usefulness of RWF is illustrated by two exemplar
RWF-DT implementations – implementation of a priority
queue and that of a list. Performance measurements of our
implementations also show the efficiency of CRDT designs
following RWF.

The rest of this work is organized as follows. In Section 2,
we overview our design framework. In Section 3 and 4, we
present the generic design of RWF-DTs and provide an ex-
emplar implementation. Section 5 presents the performance
evaluation results. Section 6 discusses the related work. In
Section 7, we summarize our work and discuss the future
work.

2 RWF OVERVIEW

The RWF design framework first decomposes the design of
RWF-DTs into two dimensions. It then provides a template
for RWF-DT implementations, as detailed below.

2.1 Design of RWF-DTs
The RWF design framework refines the commonalities in
CRDT design from two dimensions, as shown in Fig. 1. RWF
first extracts the commonalities from different data types.
RWF focuses on the data container types. Each element in the
container first has its unique existence, which is modified
by the add and rmv operations. Each data element can also
be associated with values, which is modified by the upd
operation1. Elements in the container may collectively form
complex data structures, such as lists, queues and trees. The
data structure info is encoded in the value of each element.

1. Possibly a container type can have multiple upd operations. We mention
only one upd operation for the ease of presentation. Also we only consider “pure”
operations, i.e. each operation is either a query or an update.

RWF employs the remove-win strategy to resolve con-
flicts between concurrent updates. For conflicting updates
involving a rmv and a non-remove operation (i.e., add or
upd), the rmv operation just eliminates the existence of
the data element, no matter what value the element has.
For non-remove operations, RWF requires the user provide
conflict resolution logics. The remove-win strategy common
to different RWF-DTs is implemented in an algorithm skeleton.
User-specified conflict resolution logics are implemented as
stubs, which can be inserted into the skeleton to obtain con-
crete RWF-DT designs, as detailed in the following Section
3.

rmv vs. add
rmv vs. rmv

add vs. add

rmv vs. upd
upd vs. upd
add vs. upd

Remove-win

User-specified Stubs

Existence

Value

User-defined

Conflict resolution

Data element

RWF-Skeleton

Fig. 1. Two dimensions in RWF-DT design.

2.2 Implementation of RWF-DTs

Based on the commonalities in the design, RWF further
provides a template for RWF-DT implementations, as shown
in Fig. 2. The template has the “onion” structure and consists
of three levels, namely the CRDT level, the RWF level and
the user-defined data type level (denoted as the DT level in
short).

In the CRDT level, the basic structure of the imple-
mentation is decided, following the operation-based CRDT
algorithm framework [7]. Common operations required
by the CRDT framework are implemented as tool func-
tions/macros and can be reused for different RWF-DTs.

In the RWF level, common metadata pertinent to the
predetermined remove-win strategy is defined. Common
operations pertinent to the remove-win strategy are also
implemented as tool functions.

In both the CRDT level and the RWF level, tool functions
contain logics which are generic and independent of the
specific type of data element in the data container. The
user only needs to pass specific type of the data element
to the tool functions in the DT level. Moreover, the user also
needs to provide conflict-resolution logics which can only
be decided by the users.

3 RWF-DT DESIGN

In this section, we first describe the system model. Then we
present design of the RWF-Set, which is the core of RWF-DT
design. Finally, an algorithm skeleton is presented.

3

User-defined
Data Type RWF CRDT

General CRDT
framework

Remove-win conflict resolution
for data collections

User-defined data type and
conflict resolution logic

Fig. 2. Three layers in the RWF-DT implementation.

3.1 System Model

We use the typical system model for CRDT [1]. Suppose
there are n server processes p0, p1, · · · , pn−1, each holding
one replica of an RWF-DT. Servers are interconnected by an
asynchronous network, and can only fail by crash. Messages
may be delayed, reordered but cannot be forged. The com-
munication network ensures that eventually all messages
are delivered successfully.

3.1.1 Temporal Order among Events and Operations

One update operation o initiated on pi consists of one local
event o.el on pi, and n remote events, one remote event
o.er for each replica, including pi itself2. Here, we say the
operation o has executed on replica pi at time t, denoted by
o ∈ E(pti) where pti is the replica state of pi at time t3, and
E(pti) is the set of executed operations of pti, if o.el or any
of o.er has taken place on pi. We define function TYPE(o),
which maps operation o to its type (e.g, add, rmv or upd).

The temporal order among local and remote events are
essential to the design of RWF-DTs:

Definition 1 (order between events). There are two basic
types of order between events:

• Program order. Events on the same replica are totally
ordered by the program order, denoted by

po−→.
• Local-remote order. The local event o.el and each re-

mote event o.er belonging to the same operation o

have the local-remote order, denoted by lr−→.

The happen-before relation between events, denoted by →, is
defined as the transitive closure of the program order and
the local-remote order. �

Given the order between events, we can further define
the visibility relation between operations:

Definition 2 (visibility). Operation o1 is visible to o2, de-
noted by o1

vis−→ o2, if o1.el → o2.el. Operation o is visible
to replica state pt, if o ∈ E(pt) ∨ ∃o′ : o′ ∈ E(pt) ∧ o vis−→ o′.
�

Note that the vis−→ relation is transitive. Two update
operations o1 and o2 are concurrent, denoted by o1 ‖ o2,
if neither o1

vis−→ o2 nor o2
vis−→ o1 holds.

2. For the ease of presentation, the remote event on the initiating process is
omitted.

3. We use pcur to denote the current state of replica p.

The importance of the vis−→ relation is obvious. The
remove-win strategy is interpreted with the vis−→ relation as:
non-remove operations which are visible to or are concur-
rent with a remove operation is eliminated by this remove
operation.

3.1.2 Segmenting System Execution into Phases
Given the remove-win strategy, the execution is segmented
into phases. Within a phase, non-remove operations initial-
ize a data item and update its value. The remove operation
wipes off everything and ends the current phase, and then
starts a new phase from scratch. Phase-based resolution is
central to the design of RWF-DTs, as detailed below.

To define the concept of phase, we first define the remove
history of an operation and a replica state:

Definition 3 (remove history). The remove historyHr(o) of
an operation o is the set of all remove operations that are
visible to it:

Hr(o) = {op | TYPE(op) = rmv, op
vis−→ o}

The remove history Hr(pt) of one replica state pt is defined
as the union of remove histories of all operations executed
on this replica, together with all the remove operations
executed on this replica:

Hr(pt) = ∪o∈E(pt)Hr(o)∪{o | TYPE(o) = rmv, o ∈ E(pt)}

�

Note that Hr(o) is defined for both non-remove and
remove operations.

With the definition of remove history, we can formally
define phase:

Definition 4 (phase). Operations and replica states belong
to the same phase, if they have the same remove history.
Or equivalently, the phases of the system execution are the
equivalence classes in (O ∪ S)/ ≈Hr

, where O is the set
of operations, S is the set of replica states, and ≈Hr

is the
equivalence relation defined by Hr(·):

a ≈Hr
b , Hr(a) = Hr(b).

We denote the phase that operation/replica state a belongs
to as [a]. �

Phases are temporally ordered. We say [a] ≺ [b], if
Hr(a) ⊂ Hr(b).

3.2 Design of the RWF-Set

Given the definition of vis−→ and Hr(·), we can now present
the design of an RWF-DT. For the ease of presentation, we
first present the core of the design, which is the design of an
RWF-Set. Then we augment the design of the RWF-Set into
an algorithm skeleton, which greatly simplifies the design
of various replicated data container types.

3.2.1 Encoding of Remove History
Since our design is centered around the remove history, we
first discuss how to efficiently encode the remove history
for each operation. The remove operation has the salient
feature that it does not require any parameters (except for e

4

identifying the element of concern), it is idempotent and its
effect is always the same (wiping off everything) no matter
how the value of the data element has changed. Thus we
do not care how many times the remove operations have
taken place. If the kth remove operation that is initiated by
pi is visible, all remove operations, from the 1st to the (k −
1)th, initiated by pi are visible as well. Since the remove
operation is idempotent, we only need to record the last
remove operation initiated on pi.

The encoding/decoding scheme we use is principally the
vector clock [12]. The remove operations visible to an oper-
ation o or some replica state pt can be encoded as a vector
v[1..n], which we call the remove history vector (abbreviated
as rh-vec). All remove operations initiated on replica pi are
totally ordered, and we use the index k to uniquely identify
each remove operation. When we have v[j] = k on replica
pi, it means that the last remove operation initiated by pj
that is visible to pcuri is pj ’s kth remove operation (remove
operations visible to an operation o is defined similarly).
When replica pi receives an operation o carrying a rh-vec
v[1..n], pi’s local rh-vec vi[1..n] needs to be updated as:
∀j ∈ [1..n] : vi[j] = max(ti[j], t[j]).

3.2.2 Payload of an RWF-Set

Following the CRDT framework, each RWF-Set S is imple-
mented over its payload, two sets E and T . On one replica
of S , set E contains the IDs of data elements. Element e ∈ E
basically means that this element is in S . Set T is the set of
tuples (e, t), where tag t is the rh-vec encoding the remove
history of the current replica state, concerning data element
e.

We first discuss how add and rmv operations update
the payload. When an add operation add(e) is initiated
on replica pi, it first conducts the local processing, taking
e as the user-specified parameter (the prepare part, Line
4 – 7 in Algorithm 14). Replica pi checks whether e is
already in S (Line 5). If not, the remove history of this
add operation is obtained as vrh (Line 6). After the local
processing on the initiating replica pi, pi broadcasts this
add(e) operation and triggers the remote processing on all
replicas (the effect part, Line 8 – 13 in Algorithm 1). This
broadcast has two parameters, the user-specified parameter
e and the parameter vrh prepared in the local processing.

For a remove operation rmv(e), the initiating replica pini
first checks whether this element is actually in S , and then
it locally increases the rh-vec t[pini] to record this remove
operation (Line 19 in Algorithm 1). The remove history of
this operation is prepared in vrh for the broadcast (Line
17). The user-specified parameter e and locally prepared
parameter vrh are broadcast to remote replicas on behalf
of the operation rmv(e). If in any dimension k, the local rh-
vec element t[k] is older than the vector element vrh[k] from
the broadcast, we remove e from E, since there are unseen
remove operations (Line 22–24). Then the local rh-vec t[1..n]
is updated to the pairwise maximum of vrh and t, and this
update is recorded in the payload T (Line 25 – 26).

4. The Algorithm 1 contains the RWF-Set Algorithm, with some detailed
extensions like more parameters/steps.

3.2.3 Conflict Resolution for RWF-Set
To resolve the conflict between concurrent operations, we
first need to handle the anomaly caused by the fact that the
remove operation can arrive at the remote replica arbitrarily
late, since we do not require the communication channel
provide causal message delivery [13]. This means that when
an add(e) operation arrives at pi, the rmv(e) operations
visible to it may have not arrived yet. This means that the
phase of pcuri may precede the phase of add(e). However,
since all the rmv(e) do not need additional parameters,
and the rh-vec vrh of add(e) encodes all the visible rmv(e),
we can do these missing rmv(e) operations first (Line 9 in
Algorithm 1), update the remove history of pcuri , and then
do the add(e) operation.

We now discuss the conflict resolution between concur-
rent add and rmv operations. Suppose operation add(e)
is initiated at replica pi. Then the remote event of add(e)
arrives at a remote replica pj . Note that the remote event
from pi brings with it the remove history vrh of the add(e)
operation (Line 8 in Algorithm 1). The rh-vec on remote
replica pj is recorded in its local payload T , denoted as t.
With the supplement of missing rmv(e) operations, t has
been updated by vrh. We now have vrh ≤ t. Given this fact,
we have two cases left to handle:

• vrh = t. This means that add(e) and pcurj have seen
the same set of remove operations. There will be no
conflict, and we directly add e into payload E on pj .

• vrh < t. This means that ∃rmv(e) : rmv(e)
vis−→

pcurj ∧ ¬(rmv(e)
vis−→ add(e)). This rmv(e) either

is concurrent with add(e) or happens after add(e).
According to the remove-win strategy, the effect of
add(e) will be wiped off by rmv(e).

Thus only when we have vrh = t can we successfully add
element e into the payload E. Otherwise, it is to be wiped
off by some rmv operation and can be safely ignored.

3.3 From RWF-Set to RWF-Skeleton

The RWF-Set can be augmented to store application-specific
values. Since the conflict concerning the existence of ele-
ments is handled by the RWF-Set, the user can focus on the
conflicts concerning the value of elements.

The specification of our RWF-Set is {e|∃add(e) :

∀rmv(e) : rmv(e)
vis−→ add(e)}. This is different from the

specification of the existing Remove-Win Set [11], which is
{e|∃add(e) ∧ ∀rmv(e) : ∃add(e) : rmv(e)

vis−→ add(e)}.
The existing remove-win strategy actually records all the
newest add/remove operations and decide whether the
element exist afterwards, which is mostly like the add-win
strategy of OR-Set [1] with different concurrent add/remove
preference. This kind of strategies that record operations
and decide afterwards is not suitable for handling the value
of elements, which is needed to further augment the set into
container CRDT design framework. Because the validity of
value depends on the existence of the element, which can
not be decided until all relevant add/remove operations
are recorded. This increases the complexity of designing
the container type CRDT. In our RWF-Set, system execu-
tion is segmented into phases by more powerful remove

5

operations. This helps designing the RWF for container type
CRDTs.

The conflict resolution concerning values can be de-
structed into three basic cases. Thus the RWF-Skeleton is
proposed, where three open terms are left for the user
to develop stubs containing their own conflict resolution
logics, as shown in Algorithm 1. With the RWF-Skeleton, the
concrete design of an RWF-DT can be obtained by specifying
how the values are initialized and updated via the RWF-DT
APIs and plugging the conflict-resolution stubs.

We first briefly overview conflict resolution involving
remove operations. Then we focus on the three basic cases
of conflict resolution among non-remove operations. An
exemplar RWF-RPQ design is presented here, and its imple-
mentation is presented in Section 4. More exemplar designs
are presented in Appendix A-D in [14].

3.3.1 Remove-Win Resolution
The RWF-Skeleton has the new value-updating operation
upd, which enables the user to modify the values of existing
data elements. Comparing with the RWF-Set, the add opera-
tion in the RWF-Skeleton not only creates a data element,
but also sets its initial value. Owing to the remove-win
strategy, the conflict resolution between remove and non-
remove operations (add and upd) are principally the same.
The rmv operations win, and the effects of (concurrent or
causally visible) non-remove operations are wiped off.

The execution is still segmented into phases by rmv
operations. When executed on a remote replica, each non-
remove operation carries the rh-vec, uses the vector to firstly
execute the missing rmv operations at the effect part of this
operation and then takes effect only if this operation is in
the same phase with the replica.

3.3.2 User-specified Resolution
With the help from the RWF-Set, the user only needs to
care about the conflicts concerning data values among non-
remove operations within each phase. Two types of non-
remove operations, add and upd, may modify the value and
potentially cause conflicts. Thus, there are three different
types of possible conflicts to be considered, as detailed one
by one below.
Add-add resolution. When two different add operations both
add the same element, but setting different initial values,
there will be a conflict. An open term is left in the skeleton
(Line 13 in Algorithm 1) to let the user specify how to
handle this conflict. Principally, the user must use certain
information of the initiating replicas, in order to differentiate
concurrent add operations. Thus, the payload E not only
contains the element ID, but also contains pini, the ID of the
initiating replica. The pini can be thought as a handler, with
which the add operation can access any information of the
replica necessary to differentiate concurrent add operations.
For example, the user may specify “larger replica ID wins”,
assuming that the replica IDs are totally ordered. Thus the
initial value of element is set to the value from the add
operation initiated by the replica with larger ID.
Upd-upd resolution. The value of elements may be modified
by application-specific upd operations. Conflict between upd
operations is to be resolved by user-specified resolution
logic (Line 35 in Algorithm 1). For example, for a list, the

Algorithm 1: RWF-Skeleton

1 payload E: set of (e, pini) tuples, T : set of (e, t)
tuples, V : set of (id, vinn, vacq) tuples

2 initial E = ∅, T = ∅, V = ∅
3 update add(e)
4 prepare (e)
5 pre e is not in the data collection
6 let vrh = t s.t. (e, t) ∈ T B vrh = ~0 if there

is no (e, t) in T.

7 let pini be id of the initiator of this operation
8 effect (e, pini, v

rh)
9 rmv(e, vrh) B Execute the effect part of

rmv(e) using vrh.

10 let t : (e, t) ∈ T B t = ~0 if there is no (e, t)

in T.

11 if vrh = t then B The remote replica and the

add operation are in the same phase.

12 E := E ∪ {(e, pini)}
13 〈determine the innate value vini for e〉

B Resolve possible conflicts between

concurrent adds, using pini to obtain the

replica information.

14 update rmv(e)
15 prepare (e)
16 pre e is in the data collection
17 let vrh = t s.t. (e, t) ∈ T B vrh = ~0 if there

is no (e, t) in T.

18 let pini be id of the initiator of this operation
19 vrh[pini] := vrh[pini] + 1
20 effect (e, vrh)
21 let t : (e, t) ∈ T B t = ~0 if there is no (e, t) in

T.

22 if ∃k : t[k] < vrh[k] then B There are

unrecorded rmv operations in vrh.

23 Remove (e, pini) from E if any
24 Remove (e, vinn, vacq) from V if any
25 let t′ : ∀k : t′[k] := max(vrh[k], t[k])
26 T := T \ {(e, t)} ∪ {(e, t′)}
27 update upd(e)
28 prepare (e)
29 pre e is in the data collection
30 let vrh = t s.t. (e, t) ∈ T B vrh = ~0 if there

is no (e, t) in T.

31 effect (e, vrh)
32 rmv(e, vrh) B Execute the effect part of

rmv(e) using vrh.

33 let t : (e, t) ∈ T B t = ~0 if there is no (e, t)

in T.

34 if vrh = t then B The remote replica and the

add operation are in the same phase.

35 〈Modify the acquired value vacq for e〉
B Resolve possible conflicts between

concurrent upds, using pini to obtain the

replica information if necessary.

6

user may employ an operational transformation algorithm
to decide the results of all possible conflicting list up-
dates (insert and delete) [8], [15]. As for a priority queue,
the value increase/decrease operations naturally commute.
Thus no resolution is needed, as detailed in Appendix A of
[14].
Add-upd resolution. Though the add operation and the upd
operation both can modify the value of data items, they have
different types of user intention behind them. Specifically,
the add operation initializes the value. It has semantics
similar to those of value assignments. The upd operation
modifies value. The semantics is application-specific, and
usually are different from those of value assignments. For
example, priority values of elements in a priority queue are
often modified by increase or decrease of the (numerical)
priority values.

According to the two (often) different types of user
intentions, we divide the value of an element into the innate
value and the acquired value (payload V = (id, vinn, vacq) in
Line 1 in Algorithm 1). Accordingly, the innate value stores
the initial value of the element brought by add operations,
whose conflict have been resolved. And the acquired value
stores the relative change of the actual value of the element
from the innate value brought by upd operations. The result
of upd-upd resolution related to the value of the element is
stored here.

Thus, the conflict between an add and an upd operation
is resolved by dividing the data value into two parts, one
part for each operation. And the actual value of the element
is the summary of the innate value (initial value set when
added) and the acquired value (relative change that sum-
marizes all upd operations). Such division of value is rather
conceptual here, and requires further implementation by the
CRDT designer.

4 RWF-DT IMPLEMENTATION

In this section, we explain how to use the RWF design
framework in practice, with an exemplar priority queue
implementation over Redis. More details of another list
implementation can be found in Appendix C of [14]. Redis
is a widely-used in-memory data type store. It adopts the
master-slave architecture5. We modify Redis to work in
the multi-master mode, and CRDTs are used for conflict
resolution. Note that the adoption of RWF is orthogonal to
that of the underlying data store, and RWF can be applied to
other data type stores like Riak [16]. All the implementation
can be found at the GitHub repository [17].

The implementation of an RWF-DT has the “onion”
structure, and proceeds through three levels – the CRDT
level, the RWF level and the DT level, as shown in Fig. 2. In
the outermost level, the data type is first a CRDT. The basic
template for local processing and asynchronous propagation
of data updates is specified. In the middle level, the data
type uses RWF for conflict resolution. Common metadata
and conflict resolution logics following the RWF-Skeleton
are specified. In the innermost level, definition of the specific
data type and user-specified logics for conflict resolution are

5. The enterprise version of Redis supports the multi-master architecture, and
uses CRDT to handle conflicts. However, this version is not open source.

provided. In this section, we introduce these three levels one
by one.

4.1 CRDT Level Implementation
In the outermost level, we implement the CRDT framework
as a code template over Redis, as shown in Fig. 3. Operations
which are common to different CRDT designs are abstracted
as four macros and 2 types of tool functions, as detailed
below.

void exampleCommand(client* c)
{

CRDT_BEGIN
CRDT_PREPARE

// Check: 1. the format of the command,
// 2. the type of the targeted CRDT.
CHECK_ARGC(...);
CHECK_CONTAINER_TYPE(...);
CHECK_ARG_TYPE_INT(...);
CHECK_ARG_TYPE_DOUBLE(...);
// Check the precondition of the prepare phase.
// Read the local state.
// Add additional parameters to broadcast.
RARGV_ADD_SDS(...);
RARGV_ADD_SDS(...);
... // Multiple RARGV_ADD_SDS as needed.

CRDT_EFFECT
// Get the parameters from c->rargv.
// c->rargc is the number of paremeters.
// Check the precondition of the effect phase.
// Do the effect phase according to the algorithm.

CRDT_END
}

Fig. 3. Implement one CRDT operation with framework.

4.1.1 CRDT BEGIN

The CRDT BEGIN macro checks if the data store (Redis
instance) works in the multi-master replication mode. If not,
it is invalid to use CRDTs.

4.1.2 CRDT PREPARE

When receiving a request, the server first needs to check its
type, i.e., a client request, or a server request. In case of a client
request, the server proceeds to the prepare part processing.
For a server request, the server directly jumps to the effect
part. In the local processing (in the prepare part) of a client
request, two types of operations are common to different
CRDTs.

First, the server needs to check whether the client is
using the correct API the server provides. In case the API
is correct, the server further checks whether the client is
providing correct parameters for the API invocation. Note
that the number of parameters and the type of each pa-
rameter can only be decided in the DT level. Now in the
CRDT level, we provide tool functions, which encapsulate
the logic for checking the number of parameters, while the
actual number of parameters to be checked will be passed
in as parameters later in the DT level. We also provide
tool functions for parameter type checking, for widely used
types such as INT and DOUBLE. The user just chooses the
correct tool function and passes the correct parameter in the
DT level. In case the parameter type checking function is not
provided, e.g. checking functions for user defined types, the
user needs to implement the checking functions themselves,
following the existing tool functions.

Second, the local processing needs to prepare multiple
parameters to be broadcast for the remote processing. A
dynamic array is used to contain any number of parameters,
and in our Redis implementation, each parameter is in
the Simple Dynamic String (SDS) format defined by Redis.
For any type of parameters to be broadcasted, the user
only needs to provide the serialization and de-serialization
functions to and from the SDS format.

7

4.1.3 CRDT EFFECT

In the effect part, the server first acknowledges its reception
of the server request. The concrete logics for the processing,
mainly the conflict resolution logics, are filled in later in the
RWF level and the DT level.

4.1.4 CRDT END

At the end of a CRDT operation, the server acknowledges
the client or server request.

4.2 RWF Level Implementation – Data Element Defini-
tion

In this section, we discuss the data element definition in the
RWF level, which extracts the common characteristics of the
data container type we focus on. We first discuss the innate
and acquired values of concrete data. Then we discuss the
metadata for the remove-win conflict resolution.

4.2.1 Innate and Acquired Values

Each RWF-DT shares the common nature of being a con-
tainer of data elements. Each data element has its ID, which
identifies the existence of the element. How the ID is de-
fined, e.g. using a 64 bit string or a long integer, will be
decided in the DT Level.

Each element in the container has its value. The value
is initialized by add operations, and is then updated by the
upd operations (together with the conflict resolution logics).
However, one important common pattern is that the value
of each data element has two different types of constituents,
with different intentions behind (see detailed discussions in
Section 3.3). One is innate value. It is often associated with
initialization. The intention behind the initialization is value
assignment. The new initialization should overwrite the old
one. However, the concrete definition of ‘old’ and ‘new’ is
user-specified since there may be concurrent initializations
(later in the DT level). The other one is acquired value.
The conflict resolution logic could be arbitrary and user-
defined. However, it is often different from the conflict
resolution logic for innate values. The classification of innate
and acquired values further simplifies the development of
conflict resolution logics.

4.2.2 Metadata for Conflict Resolution

The conflict resolution is based on the pre-defined remove-
win strategy. Thus each element has pid and current. The
pid is the ID of the replica which accepts the request from
the client. This pid info identifies each replica. This info
is leveraged to break the symmetry between concurrent
(conflicting) updates.

The current is the rh-vec timestamp. As in the RWF-
Skeleton, the rh-vec is encoding of the remove history,
which is essential to the conflict resolution following RWF.
We define the struct Rwf element header containing this
metadata, as shown in Fig. 4. All RWF-DT metadata structs
extend the header to contain specific (innate and acquired)
values.

4.2.3 Data Organization on the Server Replica
Here we use a hash map to store the metadata of a data type
following RWF. This hash map can be used to get the ele-
ment in the container by its key. Other data structures can be
used for the RWF-DT if needed. For example, our exemplar
RWF-RPQ implementation additionally uses a skiplist [18]
to maintain the order of elements.

typedef struct RWF_RPQ_element
{

reh header;
double innate;
double acquired;

} rwfze;

HashTable

key1 rwfze

Key2 rwfze

… …

Key10 rwfze

typedef struct
RWF_element_header

{
int pid;
vc *current;

} reh;

SkipList

Fig. 4. The data storage implementation of RWF-RPQ.

4.3 RWF Level Implementation – Conflict Resolution
In the RWF level, the CRDT template (in Fig. 3) is further
extended to include the data definitions and conflict res-
olution operations which are pertinent to the remove-win
resolution strategy, as highlighted in Fig. 5. Here we use
the add command as an example to illustrate the RWF level
implementation.

4.3.1 Prepare
In the local processing of a client request, we first need
to get the element in the hash table. Though the specific
data element type may vary, getting the handler of one
data element in the hash table has the generic pattern.
Specifically, we first get the correct data container in the data
store (we may have multiple data containers working in the
data store). We then get the element by its key. We also need
to get the handler of the local data structure for maintaining
the structure among data elements. In the RWF level, we
provide tool function rehHTGet(· · ·)6, and the user further
provides parameters as required in the DT level.

Before doing the actual processing, we need to first
guarantee that certain precondition holds. In the RWF level,
we implement two common precondition checking func-
tions widely used in data container types. Specifically, data
container operations often need to ensure that the current
element is or is not in the container. We implement two
tool functions for these two types of checking. Other user-
defined precondition checking can be supplemented by the
user in the DT level.

In the end of the local processing, the remove history
of data element needs to be updated, which is essential to
the remove-win conflict resolution. The tool function for
updating the remove history is implemented in the RWF
level.

6. See detailed comments of the “rehHTGet” function in “redis-
6.0.5/src/RWFramework.h” at the repository [17].

8

4.3.2 Effect
To conduct remove-win conflict resolution, the replica
should first get the remove history (rh-vec) of the element
under processing. The tool functions/macros of getting and
deleting the rh-vec is provided in the RWF level. Given the
rh-vec of the remote replica, the current replica needs to get
the element from the hash table. This is principally the same
with the rehHTGet(· · ·) operation in the prepare part.

As discussed in Section 3.2.3, to cope with the late arrival
of messages, the replica should check the remove history
and do the missing remove operation first. Note that the
remove operation not only eliminates the current element.
It also needs to update the data structure after the delete
operation. This update is provided in the DT level.

Before doing the actual processing, the replica needs
to check whether the remove operation and the current
replica are in the same phase, by comparing the rh-vecs (see
Line 11 of Algorithm 1). After the checking, the actual pro-
cessing can be conducted. In our example, we provide the
“addCheck” function. Similarly for rmv and upd operations,
we provide the corresponding “rmvCheck” and “updCheck”.

void exampleRWFAddCommand(client* c)
{

CRDT_BEGIN
CRDT_PREPARE

CHECK_ARGC(...);
CHECK_CONTAINER_TYPE(...);
CHECK_ARG_TYPE_INT(...);
CHECK_ARG_TYPE_DOUBLE(...);
rwfe *e = rehHTGet(...); // Get/create element in hashtable.
PREPARE_PRECOND_ADD(e); // Prepare precondition of add.
// Add additional parameters to broadcast.
RARGV_ADD_SDS(...); // Use it multiple times if needed.
ADD_CR_NON_RMV(e); // Add causal remove history at last.

CRDT_EFFECT
vc *t = CR_GET_LAST;
rwfe *e = rehHTGet(...);
// Call the effect part code of remove.
// - removeCheck((reh *)e, t) is the common remove

of RWF used in it.
if (addCheck((reh *)e, t))
{

// Do the actual add operation.
}
vc_delete(t); // Don't forget to free what you malloced.

CRDT_END
}

Fig. 5. Implement the add operation of a RWF CRDT using the frame-
work.

4.4 DT Level Implementation – an RPQ Example
Here we give an example of how to implement a replicated
priority queue, denoted as RWF-RPQ, using the RWF. We
first “inherit” the Rwf element header to define the meta-
data struct of elements rwfze, as shown in Fig. 4. As an RWF-
RPQ element, it further contains the innate and acquired
values. Each data element has its ID and value (defined
in rwfze). The key-value pairs (ID, rwfze) are stored in
the hash table. For the priority queue, each server uses the
skip list to organize the elements with their priorities. Local
organization of data elements is orthogonal to the design of
the RWF-DT.

The users provide parameters to the tool functions. They
may also implement the concrete “removeFunc” for deleting
an element from a data structure. Finally the users provide
the logics for conflict resolution.

The development task is greatly simplified. The user
only needs to adopt the template, choose the tool functions,
and provide parameters to the functions. The user-defined
logics are then supplemented in the indicated places.

5 EXPERIMENTAL EVALUATION

In this section, we first present the experiment setup and
design. Then we discuss the evaluation results.

void rwfzaddCommand(client *c)
{

CRDT_BEGIN
CRDT_PREPARE

CHECK_ARGC(4);
CHECK_CONTAINER_TYPE(OBJ_ZSET);
CHECK_ARG_TYPE_DOUBLE(c->argv[3]);
rwfze *e = rehHTGet(c->db, c->argv[1],

RWF_RPQ_TABLE_SUFFIX,
c->argv[2], 1, rwfzeNew);

PREPARE_PRECOND_ADD(e);
ADD_CR_NON_RMV(e);

CRDT_EFFECT
vc *t = CR_GET_LAST;
rwfze *e = rehHTGet(c->db, c->rargv[1],

RWF_RPQ_TABLE_SUFFIX,
c->rargv[2], 1, rwfzeNew);

removeFunc(c, e, t);
if (addCheck((reh *)e, t))
{

...
}
vc_delete(t);

CRDT_END
}

CRDT: Check the validity of
the request

RWF: Check prepare precondition,
add causal remove history

to broadcast

RWF: Skeleton line 9~11

DT: Actual add operation code.

1

2

3

4
4

3

1

2

Fig. 6. The implementation of add operation of RWF-RPQ in Redis.

5.1 Experiment Setup

The experiment is conducted on a workstation with an Intel
i9-9900X CPU (3.50GHz), with 10 cores and 20 threads,
and 32GB RAM, running Ubuntu Desktop 16.04.6 LTS. We
run all server nodes and client nodes on the workstation.
Logically we divide the Redis servers into 3 data centers
as shown in Fig. 7. Each data center has 3 instances of
Redis. We use traffic control (TC) [19] to control the network
delay among Redis instances. The default inter-data center
communication delay follows N (50, 10)7, while the default
intra-data center delay followsN (10, 2) (the time unit is ms).
We use this set of network delay based on our experience.

The clients obtain when and what operations to issue
to the servers from the workload module. This module
generates workloads of different patterns. The clients record
statics about how operations are served by the servers in the
log module. When generating the operations, the workload
module needs to query the log module, to obtain current
status of the CRDT. This is because the workload module
may need to intentionally generate conflicting update oper-
ations. Also, it needs to prevent invalid operations such as
removing an element that does not exist in the CRDT.

R

R

R

DC1

R

R

R

DC2

R

R

R

DC3

Server

Client
Workload

Log

C C CC ...

Fig. 7. Experiment setup.

5.2 Experiment Design

We design replicated priority queue and replicated list,
using both the existing remove-win strategy [11] and our
RWF design framework (namely the Remove-Win RPQ, the
RWF-RPQ, the Remove-Win List and the RWF-List). The

7. N (µ, σ) stands for the normal distribution, where µ is the mean and σ is
the standard deviation.

9

design and implementation of the data types used in the
experiments are all available online8.

The key space for elements in the RPQ has size 200,000.
The workload module randomly chooses elements to be
added from all possible ones. The inc and rmv operations
are conducted on random elements in the RPQ. The initial
values of elements are randomly chosen from integers rang-
ing from 0 to 100. The value increased is randomly chosen
from -50 to 50.

Because the key space of RPQ in our experiment is
relatively large, the probability of generating conflicting
operation pairs containing add on the same element is low,
as we randomly choose elements from the key space for
add. We intentionally create such conflict operation pairs to
evaluate the performance of an RPQ. When the workload
module generates the latest operation o, it will pair o with
all operations which are less than µ units of time before o.
Here, µ is the average message delay of intra-data center
communication. The workload module is concerned of add-
add and add-rmv pairs. All such pairs have probability 15%
to execute on the same data element. Note that we do not
explicitly control the conflict for inc-rmv pairs. It is because
there will be fairly high probability of such conflicts, as they
are conducted only on the elements that are already in the
RPQ. All workloads we consider have 59%–89% operations
which are inc or rmv.

The replicated lists are targeted at strings of text chars
in collaborative editing scenarios. We use (clientID, num)
pairs as the keys of the elements in lists. We generate a new
key for each add operation, and all undo and redo operations
are translated into add and rmv operations. To exercise the
conflict resolution strategies, 50% add operations will add
previously removed elements, and the rest of add operations
will add new elements. There are 6 properties for elements
in the list: font(0-9), size(0-99), color(24 bits), bold(Y/N),
italic(Y/N), underline(Y/N). The upd operation randomly
chooses one property to update. Both the initial properties
and the upd operation parameters are chosen at random.
The upd and rmv operations are conducted on random
elements which are currently in the list. We do not need
to intentionally create conflicting operations for lists, as the
probability of conflict is fairly high.

Since the CRDTs serve operations instantly by design,
they have statistically the same performance in terms of
query / update delay. However, there is the intrinsic trade-
off between data consistency and response latency. Thus
we need to measure the data consistency, in order to show
how much data consistency is sacrificed to obtain the per-
formance in response delay. As for the priority queue, we
measure the difference between the return value of get max
and the real max value. The read-time order in which
queries/updates are logged on the client side is approxi-
mately the order they are served by the servers. We use
this total real-time order to decide the status of the priority
queue and calculate the correct max values. As for the list,
we also use the real-time order on the client side to obtain
the linearized list. We measure the edit distance between the
list on the server and the list linearized on the client side.

8. See detailed discussions on the design in Appendix A-D of [14]. The source
codes are also available in the repository [17].

TABLE 1
Data inconsistency on average. ‘r ’ means Remove-Win CRDT, and

‘rwf ’ means RWF-DT. ‘upd-dom’ stands for the upd-dominant pattern,
and ‘a/r-dom’ stands for the add/rmv-dominant pattern.

RPQ (Fig.8) List-local (Fig.9) List-replica (Fig.10)

r rwf r rwf r rwf

upd-dom 14.8 4.0 449.8 301.0 7.8 7.5
a/r-dom 31.4 38.4 15416.1 11725.2 12.4 14.8

We further measure the edit distance between lists from
different servers. Also we record the metadata overhead
for resolving conflicts by the CRDTs under evaluation. The
metadata overhead is averaged among all elements in the
data container.

We use two types of workload patterns for both RPQs
and Lists. First, we have the add-rmv dominant pattern where
41% operations are add, 39% operations are rmv and 20%
operations are upd. Second, we have the upd dominant
pattern where 80% operations are update, 11% operations
are add and 9% operations are rmv9. We generate 4,000,000
operations in total for RPQs, 10,000 operations per second.
As for lists, the number of operations generated is 400,000,
1000 operations per second.

5.3 Evaluation Results

We list the average performance in terms of data inconsis-
tency of all data types in Table 1.

Then we discuss the evaluation results for the priority
queues and lists in detail. Please note that, more evaluation
results and the corresponding discussions are provided in
Appendix E of [14], due to the limit of space.

5.3.1 Replicated Priority Queue

We first compare the return value of get max from server,
and the max value of the centrally linearized queue. As
shown in Fig. 8, the difference vibrates mostly between -100
and 100. This is relatively small, considering the increase
value we generate are chosen randomly between -50 and
50. According to evaluation results in Fig. 8 and Table
1, two RPQs act similarly considering the read max dif-
ference. The add/rmv-dominant workload pattern causes
more differences. This is mainly because, in the add/rmv-
dominant workload, data items enter and leave the queue
more frequently, while in the upd-dominant workload, data
elements in the queue are relatively stable, only their pri-
ority values change more frequently. Thus in the add/rmv-
dominant workload, the max priority value in the queue are
frequently changed abruptly, due to the add and deletion of
data elements10.

As for the metadata overhead of two RPQs, it slowly
increases as more operations are executed. We do not have
garbage collection for the removed elements, thus needing
to store their tombstones. Such removed elements require

9. We make the add operations appear slightly more than rmv to prevent the
RPQ from being often empty.

10. We also compare the difference between two queues. The results are
principally the same with those by comparing the replicated queue and the
linearized queue. The results are shown in Appendix E in [14].

10

more storage as more rmv are executed. The metadata over-
head is higher in the add/rmv-dominant pattern, because
the RPQ needs to store more conflict resolution data for
add/rmv operations than for inc operations. The RWF-RPQ
has less metadata overhead than the Remove-Win RPQ,
mainly because the latter needs more space to guarantee
the causal delivery of messages.

0 50 100 150 200 250 300 350 400
time: second

−300

−200

−100

0

100

200

300

re
ad

 m
ax

 d
iff

upd_d: Remove-Win
upd_d: RWF
ar_d: Remove-Win
ar_d: RWF

0 50 100 150 200 250 300 350 400
time: second

200

400

600

800

1000

1200

1400

ov
er

he
ad

: b
yt

e

upd_d: Remove-Win
upd_d: RWF
ar_d: Remove-Win
ar_d: RWF

Fig. 8. The performance of RPQs, comparing max value read from the
server with the max value of local linearized queue.

5.3.2 Replicated List
We first compare the list on the replicas with the list lin-
earized on the client side. The results are shown in Fig. 9.
The edit distance increases as more operations are executed.
This is because the CRDTs only guarantee eventual conver-
gence. The replica is not guaranteed to be the same with (or
similar to) the linearized one. The edit distance of the upd-
dominant pattern is relatively small. This is because upd op-
eration does not affect the order of elements. Less add/rmv
operations mean that the server will execute add/rmv in a
more sequential manner, and need less conflict resolution.

We then compare the lists on different servers at the same
time instant. As shown in Fig. 10 and Table 1, both Remove-
Win List and RWF-List perform well. The distances of two
lists are mostly within 50, and two lists quickly converge.
The distance of the upd-dominant pattern is slightly small,
as shown in Table 1. This is also because less add/rmv
operations induce less divergence between the replicas.

As for the metadata cost, the overhead slowly increases
as we need to store the tombstone of the removed elements.
The overhead is much lower in the experiment of com-
parison between replicas (Fig 10), because here we make
50% add to add previously removed elements, causing their
tombstones to be efficiently reused. The metadata overhead
is much lower in the upd-dominant pattern. Similar to the
RPQ case, conflict resolution data needed for upd is much
less for that of add/rmv operations. Moreover, the Remove-
Win List needs to maintain causal message delivery, which
causes higher metadata overhead.

0 50 100 150 200 250 300 350 400
time: second

0

5000

10000

15000

20000

25000

30000

lis
t e

di
tin

g
di

st
an

ce

upd_d: Remove-Win
upd_d: RWF
ar_d: Remove-Win
ar_d: RWF

0 50 100 150 200 250 300 350 400
time: second

0

1

2

3

4

5

6

7

8

ov
er

he
ad

: b
yt

e

1e6

upd_d: Remove-Win
upd_d: RWF
ar_d: Remove-Win
ar_d: RWF

Fig. 9. The performance of lists, comparing the edit distance between
the list read from the server and the local linearized list.

0 50 100 150 200 250 300 350 400
time: second

0

50

100

150

200

lis
t e

di
tin

g
di

st
an

ce

upd_d: Remove-Win
upd_d: RWF
ar_d: Remove-Win
ar_d: RWF

0 50 100 150 200 250 300 350 400
time: second

0

2000

4000

6000

8000

10000

12000

ov
er

he
ad

: b
yt

e

upd_d: Remove-Win
upd_d: RWF
ar_d: Remove-Win
ar_d: RWF

Fig. 10. The performance of lists, comparing the edit distance between
two lists read from different servers at the same time.

6 RELATED WORK

Conflict resolution is the essential issue in the design of
CRDTs. For data container types, the dual add-win and
remove-win strategies are intuitive and widely used. The
Add-Win Set proposed in [1] lets each rmv operation record
all add operations it has seen. The effect of a rmv operation
is limited to the add operations it has seen, which makes
the add operation win over the concurrent rmv. The design
of the Remove-Win Set proposed in [11] is dual to that
of the Add-Win Set. Each add operation is required to
record all the rmv operations it has seen. The effect of add
operations is limited to these rmv operations it has seen,
which makes the rmv operation win over the concurrent
add. In existing add-win and remove-win sets, all operations
are recorded in the execution and a total order among all
operations is derived to interpret the state of each replica. In
our RWF design framework, non-remove operations which
are concurrent with a remove operation are pruned from
the execution under concern. Thus no conflict will occur
concerning remove operations. The remove-win strategy
used in RWF further utilizes the potential of the remove-win
strategy, thus better supporting a design framework. Exper-
iments show that the semantics of RWF-DTs are statistically
similar to CRDTs using the existing remove-win strategy.

Existing CRDT designs are often obtained via deriva-
tions from seminal and widely-used designs, which moti-
vates us to propose our design framework. In the area of
collaborative editing, the WOOT model is proposed, which
essentially designs a conflict-free replicated list [20]. Mul-
tiple improved designs following WOOT were proposed,
including WOOTO and WOOTH [21]. In the area of compu-
tational CRDTs, for a class of CRDTs whose state is the result
of a computation over the executed updates, a brief study
is presented in [22] and three generic designs are proposed.
The non-uniform replication model is further proposed to
reduce the cost for unnecessary data replication, which is
often seen in computational scenarios [23]. Though existing
derivations of CRDT designs are mainly driven by the
application scenarios, our RWF design framework focuses
on the data type itself. RWF focuses on the widely-used data
collection type and can be used in a variety of application
scenarios.

7 CONCLUSION

In this work, we propose the RWF design framework to
guide the design of CRDTs. RWF leverages the remove-win
strategy to resolve conflicting updates pertinent to remove
operations, and provides generic design for a variety of data

11

container types. Exemplar implementations over the Redis
data type store show the effectiveness of RWF. Performance
measurements show the efficiency of CRDT implementa-
tions following RWF.

In our future work, we will design more CRDTs using
RWF. We will also formally specify and verify the designs
and implementations following RWF. More comprehensive
experimental evaluations under various workloads are also
necessary.

REFERENCES

[1] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski,
“A comprehensive study of Convergent and Commutative
Replicated Data Types,” Inria – Centre Paris-Rocquencourt ;
INRIA, Research Report RR-7506, Jan. 2011. [Online]. Available:
https://hal.inria.fr/inria-00555588

[2] N. Preguiça, “Conflict-free replicated data types: An overview,”
arXiv preprint arXiv:1806.10254, 2018.

[3] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Stronger semantics for low-latency geo-replicated storage,” in
Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation, ser. nsdi’13. Berkeley, CA, USA:
USENIX Association, 2013, pp. 313–328. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2482626.2482657

[4] L. Gondelman, S. O. Gregersen, A. Nieto, A. Timany, and
L. Birkedal, “Distributed causal memory: Modular specification
and verification in higher-order distributed separation logic,”
Proc. ACM Program. Lang., vol. 5, no. POPL, Jan. 2021. [Online].
Available: https://doi.org/10.1145/3434323

[5] E. A. Brewer, “Towards robust distributed systems (abstract),”
in Proceedings of the Nineteenth Annual ACM Symposium
on Principles of Distributed Computing, ser. PODC’00. New
York, NY, USA: ACM, 2000, pp. 7–. [Online]. Available:
http://doi.acm.org/10.1145/343477.343502

[6] S. Gilbert and N. A. Lynch, “Perspectives on the cap theorem,”
Computer, vol. 45, no. 2, pp. 30–36, 2012.

[7] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Proceedings of the 13th International
Conference on Stabilization, Safety, and Security of Distributed
Systems, ser. SSS’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 386–400. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2050613.2050642

[8] H. Wei, Y. Huang, and J. Lu, “Specification and implementation
of replicated list: The jupiter protocol revisited,” in 22nd
International Conference on Principles of Distributed Systems,
OPODIS 2018, December 17-19, 2018, Hong Kong, China, 2018, pp.
12:1–12:16. [Online]. Available: https://doi.org/10.4230/LIPIcs.
OPODIS.2018.12

[9] S. Bussey. Distributed in-memory caching in
elixir. https://stephenbussey.com/2019/01/29/
distributed-in-memory-caching-in-elixir.html. Accessed: 04-
13-2019.

[10] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein,
and I. Stoica, “Coordination avoidance in database systems,”
Proc. VLDB Endow., vol. 8, no. 3, p. 185–196, Nov. 2014. [Online].
Available: https://doi.org/10.14778/2735508.2735509

[11] M. Zawirski, “Dependable Eventual Consistency with Replicated
Data Types,” Theses, Universite Pierre et Marie Curie, Jan. 2015.
[Online]. Available: https://tel.archives-ouvertes.fr/tel-01248051

[12] F. Mattern, “Virtual time and global states of distributed systems,”
in Proc. International Workshop on Parallel and Distributed Algorithms,
Holland, 1989, pp. 215–226.

[13] K. Birman, A. Schiper, and P. Stephenson, “Lightweight causal
and atomic group multicast,” ACM Trans. Comput. Syst.,
vol. 9, no. 3, pp. 272–314, Aug. 1991. [Online]. Available:
http://doi.acm.org/10.1145/128738.128742

[14] Remove-win: a design framework for conflict-free
replicated data types. 01-15-2021. [Online]. Avail-
able: https://github.com/anonymous2159-sys/CRDT-Redis/
blob/master/document/rwf-tr.pdf

[15] H. Attiya, S. Burckhardt, A. Gotsman, A. Morrison, H. Yang,
and M. Zawirski, “Specification and complexity of collaborative
text editing,” in Proceedings of the 2016 ACM Symposium
on Principles of Distributed Computing, ser. PODC ’16. New
York, NY, USA: ACM, 2016, pp. 259–268. [Online]. Available:
http://doi.acm.org/10.1145/2933057.2933090

[16] “Riak distributed database,” https://riak.com/, 2019.
[17] “Conflict-free replicated data type implementations based on re-

dis,” https://github.com/anonymous2159-sys/CRDT-Redis.
[18] W. Pugh, “Skip lists: A probabilistic alternative to balanced trees,”

Commun. ACM, vol. 33, no. 6, p. 668–676, Jun. 1990. [Online].
Available: https://doi.org/10.1145/78973.78977

[19] M. A. Brown, “Traffic control howto,” http://tldp.org/HOWTO/
Traffic-Control-HOWTO/index.html, 2020, accessed: 09-30-2020.

[20] G. Oster, P. Urso, P. Molli, and A. Imine, “Data consistency for p2p
collaborative editing,” in Proceedings of the 2006 20th Anniversary
Conference on Computer Supported Cooperative Work, ser. CSCW ’06.
New York, NY, USA: ACM, 2006, pp. 259–268. [Online]. Available:
http://doi.acm.org/10.1145/1180875.1180916

[21] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, H.-G. Roh, and P. Urso,
“Evaluating crdts for real-time document editing,” in Proceedings
of the 11th ACM Symposium on Document Engineering, ser. DocEng
’11. New York, NY, USA: ACM, 2011, pp. 103–112. [Online].
Available: http://doi.acm.org/10.1145/2034691.2034717

[22] D. Navalho, S. Duarte, and N. Preguiça, “A study of crdts that do
computations,” in Proceedings of the First Workshop on Principles
and Practice of Consistency for Distributed Data, ser. PaPoC ’15.
New York, NY, USA: ACM, 2015, pp. 1:1–1:4. [Online]. Available:
http://doi.acm.org/10.1145/2745947.2745948

[23] G. M. Cabrita, “Non-uniform replication for replicated objects,”
Master thesis, Universidade Nova de Lisboa, 2017.

https://hal.inria.fr/inria-00555588
http://dl.acm.org/citation.cfm?id=2482626.2482657
https://doi.org/10.1145/3434323
http://doi.acm.org/10.1145/343477.343502
http://dl.acm.org/citation.cfm?id=2050613.2050642
http://dl.acm.org/citation.cfm?id=2050613.2050642
https://doi.org/10.4230/LIPIcs.OPODIS.2018.12
https://doi.org/10.4230/LIPIcs.OPODIS.2018.12
https://stephenbussey.com/2019/01/29/distributed-in-memory-caching-in-elixir.html
https://stephenbussey.com/2019/01/29/distributed-in-memory-caching-in-elixir.html
https://doi.org/10.14778/2735508.2735509
https://tel.archives-ouvertes.fr/tel-01248051
http://doi.acm.org/10.1145/128738.128742
https://github.com/anonymous2159-sys/CRDT-Redis/blob/master/document/rwf-tr.pdf
https://github.com/anonymous2159-sys/CRDT-Redis/blob/master/document/rwf-tr.pdf
http://doi.acm.org/10.1145/2933057.2933090
https://riak.com/
https://github.com/anonymous2159-sys/CRDT-Redis
https://doi.org/10.1145/78973.78977
http://tldp.org/HOWTO/Traffic-Control-HOWTO/index.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/index.html
http://doi.acm.org/10.1145/1180875.1180916
http://doi.acm.org/10.1145/2034691.2034717
http://doi.acm.org/10.1145/2745947.2745948

12

APPENDIX A
RWF-RPQ DESIGN

We design and implement a Replicated Priority Queue
(RPQ), under the guidance of the Remove-Win Frame-
work. The RPQ is a container of elements of the form
e = (id, priority). Each element is identified by its id, and
without loss of generality, we assume that the priority value
is an integer. The client can modify (the replica of) the RPQ
by the following update operations:

• add(e, x) : enqueue element e with initial priority x.
• rmv(e) : remove the element e.
• inc(e, δ) : increase the priority of element e by δ (δ

may be negative).

Additionally, we assume that the RPQ supports the query
operations below to better illustrate our RPQ design:

• empty() : returns true if the RPQ is empty.
• lookup(e) : returns true if e is in the RPQ.
• get pri(e) : returns the priority value of e.
• get max() : returns the id and priority of the ele-

ment with the highest priority.

Following the RWF-Skeleton, design of the RPQ is obtained
by instantiating the RWF-Skeleton and develop RPQ-specific
stubs, as detailed below.

A.1 RPQ Design
Since conflicts concerning element existence is handled by
the RWF-Set, the user only needs to care about element
values. The user needs to specify how priority values are
initialized and updated by the RPQ APIs. More impor-
tantly, the user needs to develop conflict-resolving stubs and
“plug” them into the RWF-Skeleton.

As for the add-upd conflict, the priority value of an
element e is divided into two parts: the innate value set by its
initiating add(e) operation, and the acquired value updated
by the following inc(e, i) operations. In the RPQ design,
the priority value exposed to the upper-layer application is
the sum of innate and acquired values. The add and upd
operations take effects on the innate and acquired values
respectively and conflicts are prevented.

As for the add-add conflict, the user needs to specify
an total order among concurrent add operations. This order
decides the unique add that finally “wins”, while other adds
are overwritten. In our exemplar design, we can simply
specify “largest replica id wins” (assuming that the ids of
all replicas are totally ordered).

As for the upd-upd conflict, there will be no this type
of conflict in the priority queue case. It is because the
add/subtraction of priority values (integers) naturally com-
mute.

The detailed RPQ design is presented in Algorithm 2 and
Algorithm 3.

A.2 Illustrating Examples
We use three examples to better illustrate the design of our
RPQ. This first example mainly shows how the remove-win
strategy works. The second example shows how the conflict
resolution among non-remove operations within one phase

Algorithm 2: RWF-RPQ (payloads and queries)

1 payload E: set of (e, pini) tuples, T : set of (e, t)
tuples, V : set of (e, vinn, vacq) tuples

2 initial E = ∅, T = ∅, V = ∅
3 query empty(): boolean
4 return E 6= ∅
5 query lookup(e): boolean
6 return ∃pini : (e, pini) ∈ E
7 query get pri(e): integer
8 pre lookup(e)
9 let x, δ : (e, x, δ) ∈ V

10 return x+ δ
11 query get max(): id, integer
12 pre ¬empty()
13 let e : lookup(e) ∧ ∀o : lookup(o) ∧ get pri(o) ≤

get pri(e)
14 return e, get pri(e)

works. The third example mainly shows that we don’t need
causal delivery for phases because we redo rmv operations
in non-remove operations using the rh-vec they carry.

In the remove-win example in Figure 11, the rmv op-
eration initiated by p1 is concurrent with the add and inc
operations initiated by p0. On p1, after the rmv operation
is executed, the rh-vec of e in T is set to v1 = [0, 1], which
is larger than the rh-vecs of add and inc on p0. So when
the remote events of add and inc arrives at p1, they will be
safely ignored, and the payload on p1 remains unchanged
whether add and inc arrive or not. When the remote event
of rmv from p1 is received by p0, p0 will remove the element
e from E, since the rmv carries the larger rh-vec v1.

In the example of conflict resolution among non-remove
operations in Figure 14, the payloads of p0 and p1 are
initially empty. First, we have p0 and p1 add the element
e concurrently, with the same rh-vec v0 = [0, 0]. This indi-
cates that they belong to the same phase and need conflict
resolution. Here we adopt the strategy that “larger replica
id wins”. Thus the add of p1 wins. We find that the tuple
in E on p0 remains (e, p0) until it finally receives the add
operation from p1 and the tuple in E is changed to (e, p1).
Then we have p0 and p1 increase e with the rh-vec v0,
and the increased values merged without conflict into the
acquired value of e. Finally p0 and p1 converge to the same
state.

In the example in Figure 13, we show the reason why
we don’t need causal delivery. The rmv initiated by p0 is
visible to the inc initiated by p2, not directly but via the add
operation initiated by p1. The rh-vec is initially v0 = [0, 0, 0].
The rmv on p0 updates the rh-vec to v1 = [1, 0, 0]. Then v1
is transmitted to from p0 to p1 and from p1 to p2, and the
missing rmv operation is redone at p2, updating the rh-vec
of p2 to v1. Thus when the rmv operations arrives late at
p2 (bringing with it the rh-vec v1), it will be safely ignored
since p2 has already obtained the rh-vec v1 before. Without
the redo of the rmv triggered by add that update the rh-
vec on p2, the rmv from p0 will arrive at p2 late and falsely
removes element e. Causal message delivery is necessary to
ensure that on p2, rmv is delivered before add.

13

Algorithm 3: RWF-RPQ (updates)

1 update add(e, x)
2 prepare (e, x)
3 pre ¬lookup(e)
4 let vrh = t s.t. (e, t) ∈ T B vrh = ~0 if there

is no (e, t) in T.

5 let pini be id of the initiator of this operation
6 effect (e, x, pini, v

rh)
7 rmv(e, vrh) B Execute the effect part of

rmv(e) using vrh.

8 let pid : (e, pid) ∈ E B pid = −1 if there is
no (e, pid) in E.

9 let t : (e, t) ∈ T B t = ~0 if there is no (e, t)

in T.

10 if vrh = t ∧ pini > pid then B Larger replica
id wins.

11 E := E \ {(e, pid)} ∪ {(e, pini)}
12 let x′, δ : (e, x′, δ) ∈ V B x′ = 0 and δ = 0

if there is no (e, x′, δ) in V .

13 V := V \ {(e, x′, δ)} ∪ {(e, x, δ)}
14 update inc(e, i) B i ∈ Z, i < 0 means ‘decrease’.

15 prepare (e, i)
16 pre lookup(e)
17 let vrh = t s.t. (e, t) ∈ T B vrh = ~0 if there

is no (e, t) in T.

18 effect (e, i, vrh)
19 rmv(e, vrh) B The same as the effect part of

add.

20 let t : (e, t) ∈ T B t = ~0 if there is no (e, t)

in T.

21 if vrh = t then
22 let x, δ : (e, x, δ) ∈ V B x = 0 and δ = 0 if

there is no (e, x, δ) in V .

23 V := V \ {(e, x, δ)} ∪ {(e, x, δ + i)}
24 update rmv(e)
25 prepare (e)
26 pre lookup(e)
27 let vrh = t s.t. (e, t) ∈ T B vrh = ~0 if there

is no (e, t) in T.

28 let pini be id of the initiator of this operation
29 vrh[pini] := vrh[pini] + 1
30 effect (e, vrh)
31 let t : (e, t) ∈ T B t = ~0 if there is no (e, t) in

T.

32 if ∃k : t[k] < vrh[k] then
33 let pid : (e, pid) ∈ E B pid = −1 if there

is no (e, pid) in E.

34 E := E \ {(e, pid)}
35 let x, δ : (e, x, δ) ∈ V B x = 0 and δ = 0 if

there is no (e, x, δ) in V .

36 V := V \ {(e, x, δ)}
37 let t′ : ∀k : t′[k] := max(vrh[k], t[k])
38 T := T \ {(e, t)} ∪ {(e, t′)}

r𝑚𝑣(𝑒, (𝑣1))

𝑎𝑑𝑑(𝑒, 6, (𝑝0, 𝑣0)) 𝑖𝑛𝑐(𝑒, 1, (𝑣0))

𝑎𝑑𝑑(𝑒, 3, (𝑝1, 𝑣0))

𝐸: ∅
𝑇: ∅
𝑉: ∅

𝑝0

𝑝1

𝐸: ∅, 𝑇: {(𝑒, 𝑣1)}, 𝑉: ∅

𝐸: ∅, 𝑇: {(𝑒, 𝑣1)}, 𝑉: ∅

Fig. 11. An example showing how an rmv wins, where v0 = [0, 0], v1 =
[0, 1].

𝑎𝑑𝑑(𝑒, 6, (𝑝0, 𝑣0)) 𝑖𝑛𝑐(𝑒, 4, (𝑣0))

𝐸: ∅
𝑇: ∅
𝑉: ∅

𝑝0

𝑝1
𝑎𝑑𝑑(𝑒, 3, (𝑝1, 𝑣0)) 𝑖𝑛𝑐(𝑒, −1, (𝑣0))

𝐸: {(𝑒, 𝑝0)}, 𝑇: {(𝑒, 𝑣0)}, 𝑉: 𝑒, 6,4 𝐸: {(𝑒, 𝑝0)}, 𝑇: {(𝑒, 𝑣0)}, 𝑉: 𝑒, 6,3

𝐸: {(𝑒, 𝑝1)}
𝑇: {(𝑒, 𝑣0)}
𝑉: 𝑒, 3,3

𝐸: {(𝑒, 𝑝1)}, 𝑇: {(𝑒, 𝑣0)}, 𝑉: 𝑒, 3,0

Fig. 12. Conflict resolution among non-remove operations, where v0 =
[0, 0].

APPENDIX B
REMOVE-WIN RPQ DESIGN

Here we try to design a Remove-Win RPQ without our RWF-
Skeleton.

Note that the classic remove-win doesn’t mean that
the remove operation simply kills all other concurrent
non-remove operations. Sometimes these concurrent non-
remove operations will still take effect. See the example
in figure 14. There are no communication between two
processes. Therefor r1 and a1 are concurrent with r2 and a2.
Although both a1 and a2 has a concurrent remove operation
(r2 and r1) that may kill them due to the remove-win
semantics, combined they win over the remove operations.
Then the element is in the RPQ rather than removed. This is
reasonable, because if you linearize the causal order of these
four operations, the last operation will always be an add.

The detailed design is shown in Algorithm 4. Here we
assume that causal delivery is provided by the underlying
network. We can use now() function to get the vector clock
of the current operation. We denote v1 ‖ v2 as two vector
clocks v1 and v2 are parallel, and v1 < v2 means v1 is
less than v2. Note that this vector clock indicates the visible
relation between operations: op1

vis−→ op2 ⇐⇒ op1.vec <
op2.vec.

We first discuss the existence of elements. Firstly the
Remove-Win specification: e ∈ RPQ ⇐⇒ ∃add(e) ∧
∀rmv(e).∃add(e).rmv(e)

vis−→ add(e). We notice that to
decide if an element e is in the RPQ, we only need to store
all the add(e) and rmv(e) operations that may be effective,
which means there is no add(e) or rmv(e) operation that
happen after them. Then we decide if the element e is in the
RPQ strictly by the Remove-Win specification.

Then the value of elements, we resolve the conflicts of
initial value brought by concurrent add operations with
the process id. Here we let the add with larger process id
win, and yet we store all the value records of these add
operations. As for the inc operations, we let it only increase

14

𝑝0

𝑝1

𝑝2

𝑟𝑚𝑣(𝑒, (𝑣1))

𝑎𝑑𝑑(𝑒, 1, (𝑝1, 𝑣1))

𝑖𝑛𝑐(𝑒, 2, (𝑣1))

𝐸: {(𝑒, 𝑝0)}

𝑇: {(𝑒, 𝑣0)}

𝑉: 𝑒, 0,0

𝐸: {(𝑒, 𝑝1)}, 𝑇: {(𝑒, 𝑣1)}, 𝑉: 𝑒, 1,0 𝐸: {(𝑒, 𝑝1)}, 𝑇: {(𝑒, 𝑣1)}, 𝑉: 𝑒, 1,2

Fig. 13. No need for causal delivery for phase, where v0 = [0, 0, 0],
v1 = [1, 0, 0].

𝑝0

𝑝1
𝑟2 a2

𝑟1 a1

Fig. 14. The case of remove-win.

the value records brought by the add operations that are
visible to it. We use the vector clock to identify this. Because
of causal delivery, the inc operation will be correctly applied
at all replicas.

APPENDIX C
RWF-LIST DESIGN

We design and implement a Replicated List under the guid-
ance of the Remove-Win Framework. The List is a container
of elements of the form e = (id, content, properties). Ele-
ments are totally ordered. An element has its unique ID, the
content (letter, word, or paragraph...), and properties (font,
size, color, shape...). The content of one element will not be
changed in co-editing scenario. Clients can modify the list
by the following update operations:

• add(e, ep, P) : add the element e after ep with initial
properties P .

• upd(e, p) : update the element e with some new
property p.

• rmv(e) : remove the element e.

Additionally, we assume that the List supports the query
operations below:

• empty() : returns true if the List is empty.
• lookup(e) : returns true if e is in the List.
• properties(e) : returns the properties of e.
• read list() : returns the list of elements with its

content and properties, totally ordered.

Following the RWF-Skeleton, design of the RWF-List is ob-
tained by instantiating the RWF-Skeleton and develop List-
specific stubs.

The detailed RWF-List design is presented in Algorithm
5 and Algorithm 6.

Here we use the Logoot ID to identify the position of the
element. The Logoot ID is unique, totally ordered and dense.
Hence the list is transformed into the ordered set whose
elements are ordered by the Logoot ID. By using the RWF-
Skeleton, the existence of elements is properly handled. The
order of elements is identified by Logoot IDs. Now we only
need to care about the consistence of values of elements.

Algorithm 4: Remove-Win RPQ

1 payload A: set of (e, t, id, x, δ) tuples, R: set of (e, t)
tuples

2 initial A = ∅, R = ∅
3 query empty(): boolean
4 return ∀e : (e, t, id, x, δ) ∈ A→ ¬lookup(e)
5 query lookup(e): boolean
6 return ∃t : (e, t, id, x, δ) ∈ A ∧ @t′ : (e, t′) ∈ R
7 query get pri(e): integer
8 pre lookup(e)
9 let id, x, δ : ∀(e, t, id′, x′, δ′) ∈ A : id′ < id

10 return x+ δ
11 query get max(): id, integer
12 pre ¬empty()
13 let e : lookup(e) ∧ ∀o : lookup(o) ∧ get pri(o) ≤

get pri(e)
14 return e, get pri(e)
15 update add(e, x)
16 prepare (e, x)
17 pre ¬lookup(e)
18 let t = now()
19 let id: the id of the process
20 effect (e, x, t, id)
21 A := A ∪ {(e, x, t, id, 0)}
22 foreach (e, x, t, id, δ) ∈ A do
23 if t′ < t then A := A \ {(e, x, t, id, δ)}
24 end
25 foreach (e, t′) ∈ R do
26 if t′ < t then R := R \ {(e, t′)}
27 end
28 update rmv(e)
29 prepare (e)
30 pre lookup(e)
31 let t = now()
32 effect (e, t)
33 R := R ∪ {(e, t)}
34 foreach (e, x, t, id, δ) ∈ A do
35 if t′ < t then A := A \ {(e, x, t, id, δ)}
36 end
37 update inc(e, i)
38 prepare (e, i)
39 pre lookup(e)
40 let t = now()
41 effect (e, i, t)
42 foreach (e, x, t′, id, δ) ∈ A do
43 if t′ < t then A :=

A \ {(e, x, t′, id, δ)} ∪ {(e, x, t′, id, δ + i)}
44 end

15

Moreover, the innate value of elements brought by add
operations are handled by the RWF-Skeleton. The add-add
conflict resolution is done by using the pid of the initiating
process. As for the add-upd conflict, we let the update
operations win over add operations if they are in the same
phase. As for the upd-upd conflict, we attach a totally-
ordered lamport-clock generated by now() function to each
update operation. Then we adopt the last-write-win policy
for conflicting update operations in the same phase.

Algorithm 5: RWF-List (payloads and queries)

1 payload E: set of (e, pini, pos) tuples, T : set of (e, t)
tuples, V : set of (e, I, A) tuples B pos: Logoot ID,

I: set of propertyinn, A: set of (propertyacc, t)

tuples

2 initial E = ∅, T = ∅, V = ∅
3 query empty(): boolean
4 return @e : lookup(e)
5 query lookup(e): boolean
6 return ∃pini : (e, pini, pos) ∈ E ∧ pini 6=

−1 ∧ @A : (e, ∅, A) ∈ V
7 query properties(e): properties
8 pre lookup(e)
9 let I, A : (e, I, A) ∈ V

10 return for each kind of property, the value in A
with max t, or the value in I if no such property
in A

11 query read list(): list
12 pre ¬empty()
13 let R = (e, pos)|(e, pini, pos) ∈ E ∧ lookup(e)
14 return the list of e in R, sorted by pos

APPENDIX D
REMOVE-WIN LIST DESIGN

Here we try to design a Remove-Win List without our RWF-
Skeleton. The detailed design is shown in Algorithm 7. The
same as Remove-Win RPQ, here we assume that causal
delivery is provided by the underlying network. And we
can use now() function to get the vector clock of the current
operation. Like RWF-List, we use Logoot ID to identify the
position of an element in the list. Then the consistency of
element order is guaranteed.

We use the same technique of the Remove-Win RPQ to
ensure the consistency of the existence of elements and the
remove-win semantics, which is to store the effective add
and rmv operations, and then decide if the element e is in
the list by the Remove-Win specification.

Then the consistency of the element value. We store all
the initial value brought by add operations that are still
effective, together with the process id of the replica that
generated the add, as value records. The update operations,
like it is in Remove-Win RPQ, will update all the value
records of add operations that is visible to it. The update op-
erations adopt a last-write-win strategy if two update want
to update the same value record simultaneously. Finally, the
value record that is read by clients is that with the highest
process id.

Algorithm 6: RWF-List (updates)

1 update add(e, ep, P) B add e after ep, or at the

beginning if ep = null, P: initial properties

2 prepare (e, ep, P)
3 pre ¬lookup(e) ∧ (lookup(ep) ∨ ep is null)
4 let vrh = t s.t. (e, t) ∈ T B vrh = ~0 if there

is no (e, t) in T.

5 let pini be id of the initiator of this operation
6 let pos : (e, pini, pos) ∈ E if there is such

tuple, or otherwise the proper Logoot ID
after ep and before the next element of ep

7 effect (e, pos, P, pini, v
rh)

8 rmv(e, vrh) B Execute the effect part of

rmv(e) using vrh.

9 let pid : (e, pid, pos) ∈ E B pid = −1 if there
is no (e, pid, pos) in E.

10 let t : (e, t) ∈ T B t = ~0 if there is no (e, t)

in T.

11 if vrh = t ∧ pini > pid then B Larger replica
id wins.

12 E := E \ {(e, pid, pos)} ∪ {(e, pini, pos)}
13 let (e, I, A) ∈ V B I = ∅ and A = ∅ if

there is no (e, I, A) in V .

14 V := V \ {(e, I, A)} ∪ {(e, P,A)}
15 update upd(e, p) B p is some property

16 prepare (e, p)
17 pre lookup(e)
18 let vrh = t s.t. (e, t) ∈ T B vrh = ~0 if there

is no (e, t) in T.

19 let tu = now() B lamport clock

20 effect (e, p, tu, v
rh)

21 rmv(e, vrh) B The same as the effect part of

add.

22 let t : (e, t) ∈ T B t = ~0 if there is no (e, t)

in T.

23 if vrh = t then
24 let (e, I, A) ∈ V B I = ∅ and A = ∅ if

there is no (e, I, A) in V .

25 V := V \ {(e, I, A)} ∪ {(e, I, A ∪ (p, tu))}
26 update rmv(e)
27 prepare (e)
28 pre lookup(e)
29 let vrh = t s.t. (e, t) ∈ T B vrh = ~0 if there

is no (e, t) in T.

30 let pini be id of the initiator of this operation
31 vrh[pini] := vrh[pini] + 1
32 effect (e, vrh)
33 let t : (e, t) ∈ T B t = ~0 if there is no (e, t) in

T.

34 if ∃k : t[k] < vrh[k] then
35 let pid : (e, pid, pos) ∈ E B pid = −1 if

there is no (e, pid, pos) in E.

36 E := E \ {(e, pid, pos)} ∪ {(e,−1, pos)}
37 let (e, I, A) ∈ V B I = ∅ and A = ∅ if

there is no (e, I, A) in V .

38 V := V \ {(e, I, A)}
39 let t′ : ∀k : t′[k] := max(vrh[k], t[k])
40 T := T \ {(e, t)} ∪ {(e, t′)}

16

Algorithm 7: Remove-Win List

1 payload L: set of (e, pos) tuples, A: set of (e, t, id, P)
tuples, R: set of (e, t) tuples B P: set of

(property, t, id) tuples

2 initial L = ∅, A = ∅, R = ∅
3 query empty(): boolean
4 return @e : lookup(e)
5 query lookup(e): boolean
6 return ∃t : (e, t, id, P) ∈ A ∧ @t′ : (e, t′) ∈ R
7 query properties(e): properties
8 pre lookup(e)
9 let id, P : ∀(e, t, id′, P ′) ∈ A : id′ < id

10 return properties in P
11 query read list(): list
12 pre ¬empty()
13 let R = (e, pos)|(e, pos) ∈ L ∧ lookup(e)
14 return the list of e in R, sorted by pos
15 update add(e, ep, P) B add e after ep, or at the

beginning if ep = null, P: initial properties

16 prepare (e, ep, P)
17 pre ¬lookup(e) ∧ (lookup(ep) ∨ ep is null)
18 let t = now()
19 let id: the id of the process
20 let pos : (e, pos) ∈ L if there is such tuple in

L, or otherwise the proper logoot ID after ep
and before the next element of ep

21 effect (e, P, t, id, pos)
22 L := L ∪ {(e, pos)}
23 A := A ∪ {(e, t, id, P × {(t, id)})}
24 foreach (e, t, id, P) ∈ A do
25 if t′ < t then A := A \ {(e, t, id, P)}
26 end
27 foreach (e, t′) ∈ R do
28 if t′ < t then R := R \ {(e, t′)}
29 end
30 update rmv(e)
31 prepare (e)
32 pre lookup(e)
33 let t = now()
34 effect (e, t)
35 R := R ∪ {(e, t)}
36 foreach (e, t, id, P) ∈ A do
37 if t′ < t then A := A \ {(e, t, id, P)}
38 end
39 update upd(e, p) B p is some property

40 prepare (e, p)
41 pre lookup(e)
42 let t = now()
43 let id: the id of the process
44 effect (e, p, t, id)
45 foreach (e, t′, id′, P) ∈ A do
46 if t′ < t then
47 let p′, tu, idu : (p′, tu, idu) ∈ P and p′

is the same type of p
48 if tu < t ∨ (tu ‖ t ∧ idu < id) then

P := P \ {(p′, tu, idu)} ∪ {(p, t, id)}
49 end
50 end

TABLE 2
Data inconsistency on average.

RPQ-replica (Fig.15)

r rwf

upd-dom 8.7 9.2
a/r-dom 33.2 21.4

APPENDIX E
EXPERIMENT RESULT

In this section, we provide more evaluation results and
discussions.

E.1 RPQ max difference between replicas

Here we compare the max read from two different replicas
at the same time. The experiment settings are the same with
the previous RPQ experiment. The statistics are shown in
Table 2, and the result is shown in Fig. 15.

The results are principally the same with those by com-
paring the replicated queue and the linearized queue. The
difference vibrates mostly between -100 and 100. And the
add/rmv-dominant workload pattern causes more differ-
ences. As for metadata overhead, it slowly increases, the
add/rmv-dominant pattern causes higher overhead, and
the RWF-RPQ has less metadata overhead than the Remove-
Win RPQ. The reasons are discussed in the previous sec-
tions.

0 50 100 150 200 250 300 350 400
time: second

−300

−200

−100

0

100

200

300

re
ad

 m
ax

 d
iff

upd_d: Remove-Win
upd_d: RWF
ar_d: Remove-Win
ar_d: RWF

0 50 100 150 200 250 300 350 400
time: second

200

400

600

800

1000

1200

ov
er

he
ad

: b
yt

e

upd_d: Remove-Win
upd_d: RWF
ar_d: Remove-Win
ar_d: RWF

Fig. 15. The performance of RPQs. Compare max read form different
servers at the same time.

E.2 Impact of Concurrency among Operations

There are three environment factors we can tune to control
the impact of concurrency among operations. Thus, we
conduct three experiments accordingly, tuning one factor
in each experiment. Specifically, to control the concurrency
among operations in the time dimension, we tune the speed
at which operations are issued from clients to the servers.
We increase the operation speed from 500 to 10,000 ops/s
for RPQ, and from 50 to 1,000 ops/s for list. To control
the concurrency in the space dimension, we change the
network delay and the number of replicas. We tune the
inter-data center delay from N (20, 4)ms to N (380, 76)ms,
and tune the intra-data center delay from N (4, 0.8)ms to
N (76, 15.2)ms. As for the number of replicas, we increase
the number of Redis instances from 1 to 5 in every data
center, and fix the operation generation speed for each Redis
instance.

17

After the discussion of the former experiment, we here
focus on comparing the max value between server and
local record for RPQ, and comparing the list edit distance
between lists read from two replicas.

As for the data consistency, we find that the average
error x̄ of read max for both RPQs, and the list edit distance
for both lists increases linearly with the concurrency among
operations, as shown in Fig. 16, 17 and 18 for RPQ, and Fig.
19, 20 and 21 for List. This is mainly because the CRDT guar-
antees strong eventual consistency, and the inconsistency is
mainly determined by the number of operations that are yet
to be synchronized. As the concurrency among operations
increases, the number of operations to be synchronized in-
creases linearly. Thus we have the read differences increase
linearly.

As for the metadata overhead, at the end of each run
of the experiment, we measure the average total metadata
overhead during this run. We find that the Remove-Win
CRDTs have more metadata overhead as the operation
speed increases, as shown in Fig. 16 and 19. This is because
the Remove-Win CRDTs require causal delivery. And as the
operation speed increases, there are more causally unready
operations that need more memory to deal with. And our
RWF CRDTs do not need to deal with causally unready
operations. They do not require causal delivery. As long
as the number of operations conducted on the queue is
statistically similar, the metadata overhead is also similar.

The message delay has less impact on the data consis-
tency and the metadata overhead, as shown in Fig. 17 and
20. We think this is because the message delay has less
influence on the concurrency among operations than the
other two factors in our experiment setups.

The metadata overhead of our CRDTs increases as there
are more replicas in Fig. 18 and 21. Not only because the
concurrency among operations increases as the number
of replica increases, since we fix the operation generation
speed for each replica, but also the dimension of both vector
clock and rh-vec get increased, as they are equal to the
number of replicas on the server side. Thus the metadata
overhead (for recording the vector) increases linearly as the
number of replicas increases.

2000 4000 6000 8000 10000
op/second

2

4

6

8

10

av
er

ag
e

re
ad

_m
ax

 d
iff

Rmv-Win
RWF

500 1500 2500 3500 4500 5500 6500 7500 8500 9500
op/second

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ov
er

he
ad

: b
yt

e

1e6

Rmv-Win
RWF

Fig. 16. The performance of RPQs over different operation speed.

20ms,
4ms

60ms,
12ms

100ms,
20ms

140ms,
28ms

180ms,
36ms

220ms,
44ms

260ms,
52ms

300ms,
60ms

340ms,
68ms

380ms,
76ms

latency: between DC, within DC

0

2

4

6

8

10

12

14

av
er

ag
e

re
ad

_m
ax

 d
iff

Rmv-Win
RWF

20ms,
4ms

60ms,
12ms

100ms,
20ms

140ms,
28ms

180ms,
36ms

220ms,
44ms

260ms,
52ms

300ms,
60ms

340ms,
68ms

380ms,
76ms

latency: between DC, within DC

0

1

2

3

4

ov
er

he
ad

: b
yt

e

1e7

Rmv-Win
RWF

Fig. 17. The performance of RPQs over different network delay.

3 6 9 12 15
num of replicas

0

5

10

15

20

av
er

ag
e

re
ad

_m
ax

 d
iff

Rmv-Win
RWF

3 6 9 12 15
num of replicas

0

1

2

3

4

5

6

7

ov
er

he
ad

: b
yt

e

1e7

Rmv-Win
RWF

Fig. 18. The performance of RPQs over different number of replicas.

200 400 600 800 1000
op/second

0

2

4

6

8

10

12

av
er

ag
e

lis
t e

di
t d

ist
an

ce

Rmv-Win
RWF

50 150 250 350 450 550 650 750 850 950
op/second

0

100000

200000

300000

400000

500000

600000

700000

ov
er

he
ad

: b
yt

e

Rmv-Win
RWF

Fig. 19. The performance of Lists over different operation speed.

20ms,
4ms

60ms,
12ms

100ms,
20ms

140ms,
28ms

180ms,
36ms

220ms,
44ms

260ms,
52ms

300ms,
60ms

340ms,
68ms

380ms,
76ms

latency: between DC, within DC

0

20

40

60

80

100

120

140

160

av
er

ag
e

lis
t e

di
t d

ist
an

ce

Rmv-Win
RWF

20ms,
4ms

60ms,
12ms

100ms,
20ms

140ms,
28ms

180ms,
36ms

220ms,
44ms

260ms,
52ms

300ms,
60ms

340ms,
68ms

380ms,
76ms

latency: between DC, within DC

0

1

2

3

4

5

ov
er

he
ad

: b
yt

e

1e6

Rmv-Win
RWF

Fig. 20. The performance of Lists over different network delay.

3 6 9 12 15
num of replicas

0

20

40

60

80

av
er

ag
e

lis
t e

di
t d

ist
an

ce

Rmv-Win
RWF

3 6 9 12 15
num of replicas

0.0

0.2

0.4

0.6

0.8

1.0

ov
er

he
ad

: b
yt

e

1e7

Rmv-Win
RWF

Fig. 21. The performance of Lists over different number of replicas.

	1 Introduction
	2 Rwf Overview
	2.1 Design of Rwf-DTs
	2.2 Implementation of Rwf-DTs

	3 Rwf-DT Design
	3.1 System Model
	3.1.1 Temporal Order among Events and Operations
	3.1.2 Segmenting System Execution into Phases

	3.2 Design of the Rwf-Set
	3.2.1 Encoding of Remove History
	3.2.2 Payload of an Rwf-Set
	3.2.3 Conflict Resolution for Rwf-Set

	3.3 From Rwf-Set to Rwf-Skeleton
	3.3.1 Remove-Win Resolution
	3.3.2 User-specified Resolution

	4 Rwf-DT Implementation
	4.1 CRDT Level Implementation
	4.1.1 CRDT_BEGIN
	4.1.2 CRDT_PREPARE
	4.1.3 CRDT_EFFECT
	4.1.4 CRDT_END

	4.2 Rwf Level Implementation – Data Element Definition
	4.2.1 Innate and Acquired Values
	4.2.2 Metadata for Conflict Resolution
	4.2.3 Data Organization on the Server Replica

	4.3 Rwf Level Implementation – Conflict Resolution
	4.3.1 Prepare
	4.3.2 Effect

	4.4 DT Level Implementation – an RPQ Example

	5 Experimental Evaluation
	5.1 Experiment Setup
	5.2 Experiment Design
	5.3 Evaluation Results
	5.3.1 Replicated Priority Queue
	5.3.2 Replicated List

	6 Related Work
	7 Conclusion
	References
	Appendix A: Rwf-RPQ Design
	A.1 RPQ Design
	A.2 Illustrating Examples

	Appendix B: Remove-Win RPQ Design
	Appendix C: Rwf-List Design
	Appendix D: Remove-Win List Design
	Appendix E: Experiment Result
	E.1 RPQ max difference between replicas
	E.2 Impact of Concurrency among Operations

