
Improving Energy Efficiency of Permissioned
Blockchains Using FPGAs

Nathania Santoso Haris Javaid
AMD, Singapore

{nathania.santoso, haris.javaid}@amd.com

Abstract—Permissioned blockchains like Hyperledger Fabric
have become quite popular for implementation of enterprise
applications. Recent research has mainly focused on improving
performance of permissioned blockchains without any considera-
tion of their power/energy consumption. In this paper, we conduct
a comprehensive empirical study to understand energy efficiency
(throughput/energy) of validator peer in Hyperledger Fabric (a
major bottleneck node). We pick a number of optimizations
for validator peer from literature (allocated CPUs, software
block cache and FPGA based accelerator). First, we propose
a methodology to measure power/energy consumption of the two
resulting compute platforms (CPU-only and CPU+FPGA). Then,
we use our methodology to evaluate energy efficiency of a diverse
set of validator peer configurations, and present many useful
insights. With careful selection of software optimizations and
FPGA accelerator configuration, we improved energy efficiency
of validator peer by 10× compared to vanilla validator peer (i.e.,
energy-aware provisioning of validator peer can deliver 10× more
throughput while consuming the same amount of energy). In
absolute terms, this means 23,000 tx/s with power consumption of
118W from a validator peer using software block cache running
on a 4-core server with AMD/Xilinx Alveo U250 FPGA card.

Index Terms—Energy-efficient blockchains, Hyperledger Fab-
ric, FPGA accelerators

I. INTRODUCTION

Blockchain technology is on the rise due to its capability
of executing transactions (which contain business logic in the
form of smart contracts) and storing them in a decentralized
manner (same ledger distributed among multiple nodes). The
distributed ledger contains blocks where each block has a hash
value of itself and the previous block, assuring immutability
of the ledger data. Hence, a network of nodes that implement
a blockchain essentially provides an implementation of a
distributed ledger for applications that will be developed and
deployed on top of that blockchain. There are two types
of blockchains: public (permissionless) and private (permis-
sioned) blockchains. In a public blockchain, nodes do not
require identity authorization to participate in the network. On
the other hand, the identity of a node must be authenticated
cryptographically to execute transactions in a permissioned
blockchain. Bitcoin and Ethereum are examples of public
blockchains, while Hyperledger Fabric [1] is an example of
permissioned blockchain.

Hyperledger Fabric is one of the most popular permissioned
blockchains for enterprise applications [2]. Most of the recent
research on Fabric has only focused on improving its through-
put (transactions per second, shortened as tx/s), overlooking its
power and energy consumption. Sedlmeir et al. [3] estimated
that although a Fabric network consumed 8 orders of magni-
tude less energy than a public blockchain, it still consumed

10× more energy than a centralized system. Furthermore,
Fabric nodes are often deployed in datacenters where energy
consumption has become an issue due to environmental and
climate change concerns. Therefore, there is a need to explore
energy efficiency of Fabric nodes. Previous works [4]–[6] have
shown that validator peer node (which runs the validation
of blocks and transactions before committing them to the
ledger) is one of the major bottlenecks. It is a computationally
intensive operation, and thus utilizes significant resources
which will result in high power and energy consumption in
the Fabric network.

In this paper, we propose a power/energy measurement
methodology to conduct a comprehensive evaluation of Hyper-
ledger Fabric validator peer in terms of its power/energy con-
sumption and throughput. Typically, Fabric peer is deployed
on a multicore server (i.e., CPU based system). Recently,
Fabric peer has also been shown to run on a multi-core server
with hardware accelerator on an FPGA card (i.e., CPU+FPGA
based system) for high throughput [6]. In this context, this
paper has the following contributions:

• We propose a power/energy measurement methodology
for a CPU based system, where our approach handles
varying number of vCPUs allocated from the physical
cores of a multi-core server. We use this setup to evaluate
energy efficiency of vanilla validator peer and a promi-
nent software optimization (block cache from [4]).

• We integrate a power measurement module inside the
hardware accelerator from [6] for power/energy measure-
ment of a CPU+FPGA based system. We use this setup
to evaluate energy efficiency of hardware accelerated
validator peer with and without the software block cache.

• We finally present a comprehensive study of the interac-
tions between power, energy and throughput of validator
peer, and deduce many insights from comparison of
CPU-only and CPU+FPGA systems for energy-aware
provisioning of validator peers in a Fabric network.

Our experiments with Hyperledger Fabric v2.2 LTS running
on a multi-core server with Alveo U250 card show that FPGA
based hardware accelerator combined with software block
cache can deliver 10× more throughput than a CPU-only
system with same energy consumption (153 vs. 15 tx/s/J).

II. BACKGROUND AND PRELIMINARIES

A. Hyperledger Fabric

Hyperledger Fabric is an open-source and enterprise-grade
implementation of a permissioned blockchain. It is not as-
sociated with any cryptocurrency, and has applications in

ar
X

iv
:2

21
0.

11
83

9v
1

 [
cs

.D
C

]
 2

1
O

ct
 2

02
2

commit

E
E E

O

V
VV

block verify

 tx verify & vscc

statedb read
& mvcc

1

2

3

validator peerorderersendorsing peersclient

V

idle

idle

T threads

tx5

e5

b1

c5

c5

b1

tx5

ledger write

statedb write

historydb write

4

Fig. 1: Transaction flow in Hyperledger Fabric. txN = transaction N, eN =
endorsement for txN, bN = block N, and cN = confirmation for txN. E =
endorsement, O = ordering, and V = validation phases.

many diverse domains such as supply chain, banking/finance,
healthcare, etc. Figure 1 depicts how a transaction flows
through various nodes of a Fabric network (e.g., endorsing
peers, validator peers, etc. shown on the top).

A client invokes a transaction by sending it to endorsing
peers. Each endorsing peer will simulate the transaction by
computing its input and output (read and write sets) against the
locally stored state database1. Afterwards, the endorsing peer
will send the simulation results along with its digital signature
back to the client. Once the client has enough endorsements,
it will send the transaction along with the endorsements to the
orderer for inclusion into a block. The orderer will create a
new block and broadcast it to all the peers for validation and
subsequent commit to the ledger. Note that each transaction
contains the digital signature of the client that invoked it, while
each block contains the digital signature of the orderer that
created it. In Fabric, all digital signatures are based on Elliptic
Curve Digital Signature Algorithm (ECDSA) scheme.

The validation and commit phase itself consists of several
operations as shown on the right hand side of Figure 1. When
a validator peer receives a block, it will first check the syntax
of the block and verify the orderer’s signature on the block
(step 1). Then, the validator peer will check the syntax of
each transaction in the block and verify the client’s signature
on each transaction (tx verify in step 2). Afterwards, for each
transaction in the block, the signatures of endorsing peers from
the transaction’s endorsements will be verified and evaluated
against an endorsement policy2 (validation system chaincode,
shortened as tx vscc in step 2). If the endorsement policy is
satisfied, then the transaction is marked as valid.

In step 3, multi-version concurrency control (shortened as
mvcc) checks are applied to mark a transaction as valid/invalid.
Once the entire block has been validated in steps 1–3, in
step 4, the validator peer will commit the block to its ledger,

1The state database contains the current snapshot of the ledger. For example,
for a banking application, it would contain the current value of each account.

2An endorsement policy is associated with a smart contract/chaincode, and
governs the business logic for approval of the transaction; e.g., policy of a
money transfer chaincode between two banks may require valid endorsements
from each bank, i.e., endorsements from Bank1 AND Bank2.

SERVER

FPGA Card

System Configuration

C
M

AC
 S

ub
sy

st
em

U
se

r L
og

ic
 B

ox

@
32

2
M

H
z

U
se

r L
og

ic
 B

ox

@
25

0
M

H
z

Pa
ck

et
 A

da
pt

er

Q
D

M
A

Su
bs

ys
te

m

AXI-Lite 125MHz

AXI-Stream
322 MHz

Et
he

rn
et

 P
or

t

CPU

PC
Ie

AXI-Stream
250 MHz

Fig. 2: Overview of OpenNIC shell. The Blockchain Machine hardware is
part of User Logic Box @ 250MHz.

and update its state database (by applying write sets of valid
transactions) and history database (for book keeping). Note
that validator peers only validate and commit incoming blocks,
while endorsing peers do the same in addition to endorsing
incoming transactions.

The vanilla Fabric validator peer incorporates many soft-
ware optimizations for improved throughput. For example, it
uses multiple threads to verify and validate multiple transac-
tions of a block in parallel (taking advantage of multi-core
servers), which is depicted as T threads in Figure 1. Another
software optimization is to use block cache which caches
unmarshaled contents of a block for subsequent accesses, and
has been reported to improve throughput significantly (2.33×
in [4] and 1.67× in [5]). However, block cache is not yet part
of the official Fabric codebase, so we implemented it ourselves
in Fabric v2.2 LTS to evaluate its energy efficiency.

B. Blockchain Machine

Javaid et al. [6] proposed a hardware accelerator called
Blockchain Machine (BMac) for improving validator peer’s
throughput, instead of relying on software optimizations. The
BMac peer is designed for a multi-core server with a network-
attached FPGA card (connected to the CPU via PCIe bus),
where the CPU runs modified Fabric software while FPGA
card is programmed with the hardware accelerator. Since this is
the only hardware accelerator proposed for Hyperledger Fabric
so far, we use it as the CPU+FPGA system in this paper.

Figure 2 provides a simplified overview of the open-
sourced OpenNIC shell [7], which is the basis for BMac
hardware. The OpenNIC shell is an FPGA based NIC shell for
AMD/Xilinx FPGA cards and provides network connectivity
through CMAC/Ethernet port interfacing and CPU connectiv-
ity through QDMA/PCIe interfacing. Consequently, a user-
defined accelerator can be implemented inside the user logic
box where it can access incoming data from the network
through CMAC/Ethernet port while the CPU can access the
output of hardware accelerator through PCIe/QDMA.

The BMac hardware is implemented as user logic box @
250MHz, as shown in Figure 3. The blocks are received in
FPGA card through the CMAC interface. The first module,
protocol processor, processes the incoming Ethernet packets
and extracts relevant data, such as block id, transaction ids,
ECDSA signatures, etc. The second module, block processor,
uses this data to validate the block and its transactions,
commits all valid transactions, and then writes the validation
results in a register map (for CPU access through QDMA).

2

SERVER

FPGA Card

User Logic Box @250 MHz
pr

ot
oc

ol
_p

ro
ce

ss
or

block_processor
bl

oc
k_

ve
rif

y
block_validate

tx_verify 1 tx_vscc 1

tx_verify T

re
g_

m
ap

tx
_m

vc
c_

co
m

m
it

tx_vscc T

C
M

AC
 S

ub
sy

st
em

Q
D

M
A

Su
bs

ys
te

m PC
Ie

CPU

Fig. 3: Overview of Blockchain Machine hardware. Only the relevant modules
of OpenNIC shell are shown here.

Figure 4 shows how blocks and transactions are processed
in BMac peer. The BMac hardware validates the block without
any involvement of the CPU (right hand side). The same
block is also received by the Fabric peer software running on
the CPU (left hand side), which still executes some parts of
the block and transaction verification that are not suitable for
hardware accelerator. After that, the software skips validation
operations and just reads validation results of the block from
hardware, combines them with the original block, and then
commits the updated block to ledger just like any other
validator peer in the Fabric network. In other words, the
validation phase is offloaded to the network-attached hardware
accelerator on FPGA.

Note that the block processor in BMac hardware has sev-
eral pipeline stages and a configurable number of parallel
validators, which is shown as T tx validators in Figs. 3
& 4. Consequently, the block processor processes multiple
transactions in a parallel-pipelined fashion.

III. PROPOSED POWER MEASUREMENT METHODOLOGY

A. Motivation and Challenges

The Fabric validator peer with software optimizations has
been shown to achieve a throughput of 14,000 tx/s [8],
while the hardware accelerator has been shown to achieve a
throughput of up to 69,000 tx/s [6]. Although these throughput
numbers are impressive, all the previous works overlook

validator peer
CPUorderers

V

idle

idle

V

validator peer
FPGA

idle

idle

O
b1

commit

block verify

tx verify

read validation
data from FPGA

1

2

3

T threads

ledger write

historydb write
4

commit

block verify

 tx verify & vscc

statedb read
& mvcc

1

2

3

T tx_validators

statedb write4

Fig. 4: Validator peer with Blockchain Machine hardware.

energy efficiency of the validator peer. Therefore, we aim
to conduct a comprehensive study of not only the validator
peer’s throughput but also its power/energy consumption. We
list several challenges that exist when measuring power/energy
in multi-core servers with an FPGA card, and then present our
methodology to handle those challenges.

Challenge 1: The ideal method for measuring power of a
server is to use a power meter to measure what is called the
wall power, and then compute energy consumption. However,
multi-core servers are typically housed in datacenter-like envi-
ronments where physical access is limited. Therefore, we use
hardware counters available in modern processors to measure
energy consumption, just like many previous works do [9].
The issue with this approach is that such hardware counters
are available at various granularities across different types
of processor architectures. In some architectures, they are
available for each core, while in other architectures, they are
only available for each socket containing multiple cores which
makes it impossible to directly get the energy consumption of
each core. The availability of per-core energy consumption
is pertinent because typical multi-core servers contain tens of
physical cores where a subset of these cores is provisioned
for a particular application as virtual CPUs (vCPUs) [10]. For
example, a validator peer may be allocated only 8 vCPUs when
running on a server with 32 physical cores. The challenge
here is to measure energy consumption of a validator peer
provisioned with varying number of vCPUs when per-core
energy consumption is not available from hardware counters.

We propose a method in Section III-B2 where we stress
different number of vCPUs in a server to empirically deduce
power consumption of an idle core. Then, we use this idle core
power to adjust the overall energy consumption of a validator
peer. Note that our method can be skipped and replaced with
per-core energy consumption values when they are directly
available from hardware counters.

Challenge 2: The validator peer receives and processes a
block, and then waits for the next block as shown in Figs. 1
& 4. The idle period between blocks depends on how fast
an orderer can form a block, which further depends on the
aggregate rate at which clients generate/send transactions.
More clients sending transactions at higher rates will result
in overall higher transaction send rate, which will translate to
shorter idle periods between blocks.

Naively measuring energy consumption when idle periods
are much longer than block validation time means that the
energy consumption would be dominated by the idle power
of cores which will mislead the analysis. Furthermore, any
energy savings from speeding up the validation phase will
not be apparent. Therefore, in an ideal setup, validator peers
should be saturated, i.e., aggregate transaction send rate is high
enough to result in minimal idle periods. However, saturating
validator peers in a research/experimental environment may
not be possible due to lack of high-end servers that can run
tens of clients, meaning that there is not enough computational
power to generate the required transaction workload. Hence,
the challenge here is to automatically detect and exclude idle
periods from the execution of a validator peer irrespective
of the clients’ aggregated transaction send rate and orderer’s
block creation rate.

3

We propose a method in Section III-B3 which collects
execution log of a validator peer and energy consumption log
of the server while validator peer is running. We overlay these
logs to detect and exclude idle periods for computation of total
energy consumption, as if the validator peer was saturated.

Challenge 3: For the validator peer with hardware ac-
celerator, we must measure energy consumption of both the
CPU and FPGA because lightweight operations in Fabric
software run on the CPU while computationally intensive
operations run on the FPGA. For CPU energy consumption,
we use the method proposed in Section III-B. However, for
FPGA power/energy consumption, the OpenNIC shell does
not provide any mechanism.

We use AMD/Xilinx Card Management Solution (CMS) IP
to measure FPGA card power, and integrate it into OpenNIC
shell as an additional subsystem. We describe the architecture
of CMS IP, its integration, and its access from CPU in Sec-
tion III-C. Finally, we propose our complete methodology in
Section III-D which takes care of intricacies between CPU and
FPGA validation phases to compute validator peer’s overall
throughput and energy/power consumption for both CPU-only
and CPU+FPGA systems.

B. CPU Power Measurement
1) Intel Hardware Counters: Modern Intel processors pro-

vide the Running Average Power Limit (RAPL) [9] inter-
face for fine-grained measurement of energy consumption.
The RAPL interface supports multiple power domains, e.g.
package, PP0 and DRAM domains report energy consumption
of an entire socket, only the cores in a socket, and only
the connected DRAMs, respectively. The RAPL interface
uses Model Specific Registers (MSRs) which are basically
hardware counters for accumulated energy consumption of
different modules, and hence not all domains are available
on all processor architectures [11]. For example, Sandy Bridge
supports PP0 domain while Haswell-EP does not. These MSRs
are updated approximately every 1ms [9].

One can read energy consumption values directly from
MSRs, or using sysfs interface or perf command on Linux.
We use perf command in this paper because it abstracts away
differences in processor architectures and provides a simple
command-line interface instead. We conducted many experi-
ments measuring energy consumption directly from MSRs and
perf command, and found the difference to be always within
1.5%. For all our measurements, we include both the CPU and
DRAM energy consumption.

2) CPU Idle Power: As explained in Section III-A, if per-
core energy consumption is not available through a RAPL
domain, then we need a mechanism to measure idle power
of a core which can later be used to adjust socket energy
consumption (RAPL package domain) for a more realistic
measurement (Sec. III-D).

Our approach to measure idle core power is as follows. We
measure socket energy consumption when there is no workload
running on the server (all cores are idle). Then, we generate
workload for only 1 core using stress command on Linux
and measure socket energy consumption again. We repeat this
process by generating workload for 1 more core every time
until all the physical cores are used. Since stress command

0
10
20
30
40
50
60
70
80

77 77.1 77.2 77.3 77.4 77.5 77.6 77.7 77.8 77.9 78

C
PU

 +
 R

AM
 P

ow
er

 [W
]

Time [s]

CPU+RAM power vscc vscc + mvcc vscc + mvcc + commit

idle validation phase

Fig. 5: Annotated time-series power measurements of validator peer.

fully utilizes a core (100% CPU utilization), in each step, we
increase active cores by 1 while decreasing idle cores by 1.
Hence, in this controlled setup, we expect a linear relationship
Ps = Ca × P a

c + Ci × P i
c where Ca and Ci are the number

of active and idle cores respectively, while Ps, P a
c and P i

c

are the power consumption of the entire socket, an active core
and an idle core respectively. In our approach, Ps is measured
as socket energy consumption divided by the measurement
interval while Ca and Ci are known. Hence, we use liner
regression to fit the measured data to deduce the values of
P a
c and P i

c . We ran the stress commands natively on the
server as well as within VMs which are provisioned with 1
vCPU, 2 vCPUs and so on. All our measurements are for an
interval of 30 seconds. Based on this setup, the estimated idle
core power P i

c = 1.44W in our servers. Note that the number
of vCPUs we provision in our setup is always less than or
equal to the total number of physical cores, thus we avoid the
use of hyperthreading which is known to make power/energy
measurements less accurate [12].

3) CPU Idle Periods: As explained in Section III-A, we
need a mechanism to detect idle periods in a validator peer so
they can be excluded when energy consumption is computed
(in order to imitate a saturated validator peer regardless of
the clients’ aggregated transaction send rate or orderer’s block
creation rate).

Our approach is as follows. We collect execution log of a
validator peer where we have modified the Fabric codebase
to log timestamps for various operations, e.g. vscc, mvcc,
etc. At the same time, we collect socket energy consumption
log with timestamps of the server by running perf command
with an interval of 10ms. We chose 10ms because it provided
fine-grained granularity to measure energy consumption across
all operations of the validation phase. Since both these logs
have timestamps, we overlay the execution log on the energy
consumption log to create an annotated time-series data, that
is, we add markers in the energy consumption log to indicate
start and end of each validation operation. Afterwards, we
analyze the annotated time-series data to compute total energy
consumption of the validator peer while excluding idle periods.

Figure 5 shows the annotated time-series power measure-
ments (each energy consumption measurement divided by
10ms) for validator peer with markers added for vscc, mvcc
and commit operations. When there are no markers, then
there are no validation operations running and the validator
peer is waiting for the next block. It is clear that power
consumption increases significantly when blocks are being
validated, while the power consumption is minimal during

4

SERVER

FPGA Card

CMS Subsystem

REG_MAP

AXI_UART

Other
Modules

Microblaze

AX
I-L

ite

Satellite
Controller

12V_PEX
Voltage

12V_AUX
Voltage
VCCINT
Voltage

12V_PEX
Current

12V_AUX
Current
VCCINT
Current

Sensors

U
AR

T

System Configuration

O
th

er
 M

od
ul

es

[Q
D

M
A,

 C
M

AC
, e

tc
.]

AXI-Lite 125MHzAXI-Lite 50 MHz

PC
Ie

CPU

Fig. 6: Integration of CMS IP into OpenNIC shell for power measurements.

idle periods. Our peer runs in a VM (where execution log
is captured) which is time-synchronized with the host server
(where energy consumption log is captured), hence we use
scripts to automatically overlay these logs, detect and exclude
idle periods to compute total energy consumption. Note that
even when a validator peer is saturated with enough transaction
workload, our approach is still applicable since we only
analyze idle periods from the execution log.

C. FPGA Power Measurement

Modern FPGA cards have on-board voltage and current sen-
sors to enable power measurements. Several power domains
are supported (e.g., total card power, only FPGA power, only
BRAM power, etc.) but not all of them are available in every
FPGA card. AMD/Xilinx provides Card Management Solution
(CMS) IP [13] that interacts with these sensors to report power
consumption of the corresponding domains.

Figure 6 shows how we integrate the CMS IP into the
OpenNIC shell as an additional subsystem. Internally, the
CMS subsystem consists of a Microblaze processor that runs
a firmware that interacts with an on-board satellite controller
through UART. The satellite controller accesses on-board
sensors to read voltage and current values for different power
domains. The Microblaze firmware polls the satellite controller
approximately every 120ms to read the new values, and writes
them into a shared memory (REG MAP) for access by host
CPU (server). The CMS subsystem is connected to OpenNIC
shell’s QDMA subsystem through the system configuration
module using AXI-Lite interface. As a result, the host CPU
can access REG MAP of CMS subsystem over PCIe to read
power measurements reported by the satellite controller.

We use AMD/Xilinx Alveo U250 FPGA card in our exper-
iments. The U250 card supports either the total card power
domain (12V PEX and 12V AUX voltages/currents) or only
FPGA power domain (VCC INT voltage/current) [13]. We use
the total card power as power consumption of the hardware
accelerator even when we use only CPU and DRAM energy
consumption for CPU based system (instead of total mother-
board power). In other words, total card power is an upper-
bound on the power consumed by the hardware accelerator.

To compute energy consumption of BMac hardware, we
collect FPGA power consumption log by running a script on
the host that reads and logs total card power with timestamps.
The Fabric peer software running on the CPU reads and logs
latency to validate each block from BMac hardware registers

in its execution log (in addition to the logging described
in Sec. III-B3). Since both these logs have timestamps, we
use scripts to automatically merge them to compute energy
consumption of the validation phase on FPGA. Note that the
smallest interval for FPGA power measurements is 120ms (due
to CMS IP limitation), so to be consistent with 10ms CPU
energy measurement interval in Sec. III-B3, we assume the
same power consumption for all the occurrences of validation
phase in the 120ms interval.

D. Bringing It All Together: Validator Peer Throughput and
Energy Consumption

In this section, we describe how we put together all the
proposed approaches to compute validator peer’s throughput
and total energy consumption. We use the following terms
(which are all measured in seconds):

• vlic and vlif : validation latency of i-th block on CPU and
FPGA respectively (Fig. 1 and Fig. 4 respectively).

• ttc and ttf : total time to validate all blocks on CPU
and FPGA respectively (computed as sum of vlic and vlif
respectively for all blocks).

• tt: total time to validate all blocks in a validator peer,
computed as max(ttc, ttf) because validation phase ex-
ecutes on both CPU and FPGA in parallel.

The throughput of a validator peer is computed as total
transactions in all blocks divided by tt, which is essentially
the rate at which transactions are committed by the peer. The
total energy consumption and average power consumption of
a validator peer are computed as:

E =Ec + Ef = Evp + Eip − Eu
cores + Ef

P =E/tt

where Ec and Ef denote energy consumption of CPU and
FPGA respectively, and the remaining terms are defined as:

• Evp: Energy consumption of the validation phase on
CPU, excluding idle periods. It is computed as described
in Sec. III-B3, and is essentially the energy consumption
of CPU and DRAM over the ttc period.

• Eip: Energy consumption of CPU and DRAM when the
CPU is waiting for the FPGA (i.e., ttf > ttc and tt =
ttf). It is computed as Pip × (tt − ttc) where Pip is
computed as the average CPU + DRAM power from all
the CPU idle periods (e.g., about 40W in Fig. 5). This
term ensures that CPU and DRAM energy consumption
is included even when CPU is idle and waiting for the
next block due to slower validation phase on FPGA.

• Eu
cores: Energy consumption of unused physical cores of

a socket, that is, cores that are not provisioned as vCPUs
for the validator peer. It is computed as P i

c×Ci×tt where
P i
c and Ci are computed as described in Sec. III-B2.

As an example, if a socket has 10 physical cores and
validator peer is run in a VM with 8 vCPUs (pinned
to this particular socket), then the idle power of 2
cores is subtracted to compute a more realistic energy
consumption of the validator peer.

• Ef : Energy consumption of the validation phase on
FPGA, computed as described in Sec. III-C over the tt
period. Note the use of tt period instead of ttf to ensure

5

that FPGA energy consumption is included even when
its idle and waiting for the next block due to slower
validation phase on CPU.

Note that when validator peer is run on a CPU-only system,
all the FPGA related terms (ttf , Ef , etc.) are zero, and
hence all the above equations degenerate into simpler CPU-
only equations. For direct comparison between CPU-only and
CPU+FPGA systems, we exclude ledger write latency from
vlic because ledger write operation is always executed on CPU,
and can either be executed asynchronously in the background
or on a separate storage server [4].

Our overall approach is algorithmically described below,
and is implemented using fully automated scripts:

• Gather validator peer’s execution log, socket energy con-
sumption log and fpga power consumption log.

• Process the above logs to compute ttc, ttf and tt.
• Process execution and socket energy consumption logs to

compute Evp and Pip, and thus Eip.
• Process execution and fpga power consumption logs to

compute Ef .
• Compute validator peer’s throughput, total energy con-

sumption and average power consumption.

IV. EVALUATION SETUP & EXPERIMENTAL RESULTS

A. Hyperledger Fabric Network and Application Setup

We create a Fabric network with two organizations where
each organization has 1 endorsing peer and 1 validator peer,
and a solo RAFT orderer. These organizations interact with
each other through the smallbank smart contract [14] where
AND endorsement policy is configured, meaning that all
transactions must be approved by both organizations. This is a
typical setup used in many previous works [4], [5], [15], and is
representative of two banks processing banking transactions.
We use Hyperledger Caliper [16], the standard blockchain
benchmarking tool, with in-house scripts to automatically
bring up the Fabric network, generate transaction workload
(30,000 random transactions), collect logs, and report through-
put and energy/power consumption of the validator peers.

B. Hardware/Software Setup

We use dual-socket servers where each socket has 10 Intel
Xeon 4114 @ 2.2GHz cores. Each peer is run in its own
VM which is provisioned with a certain number of vCPUs
and 1GB RAM per vCPU, where these vCPUs are pinned
to physical cores. The pinning process allows us to measure
energy consumption more accurately. For example, we can
create two VMs each with 8 vCPUs pinned to physical cores
from two separate sockets. As such, these VMs will not
interfere with each other and their energy consumptions can
be measured by collecting energy consumption of the sockets
separately. Likewise, if vCPUs of a VM are pinned to physical
cores in both sockets, then we only create a single VM in that
server. Both the orderer and Caliper are run in their own VMs
with 8 vCPUs. We used Fabric v2.2 with LevelDB for each
peer, and the number of vscc threads is the same as vCPUs.

All our experiments use the Fabric network from above
where organization 1’s validator peer is run on a VM (CPU-
only system) and then run again on a VM with FPGA card

0

25

50

75

100

10 25 50 100 150 200 250

Po
w

er
 [W

]

Block Size

0
5

10
15
20
25
30
35
40
45

10 25 50 100 150 200 250

Th
ro

ug
hp

ut
 /

En
er

gy
 [t

x/
s/

J]

sw8 hw4+4

(a)

(b)

Fig. 7: (a) Energy efficiency, and (b) power consumption of a sw and hw peer.

(CPU+FPGA system). The BMac hardware on FPGA card
is configured with varying number of tx validators where 2
ECDSA engines are used in each tx vscc instance for AND
endorsement policy [6].
C. Evaluation Metrics

The primary performance and energy efficiency metrics we
use are throughput (the rate at which peer commits transac-
tions, measured as tx/s) and throughput/energy (transactions
committed per second while consuming 1 Joule of energy,
measured as tx/s/J) respectively. In some cases, we also report
the average power consumption and highlight why energy
consumption is more relevant than just the power consumption.
All these metrics are computed as described in Section III-D.

D. Validator Peer Energy Efficiency
We first create two configurations to understand the energy

efficiency of validator peer:
• swN: vanilla validator peer using N vCPUs (CPU-only

system)
• hwN+M: BMac validator peer using N vCPUs and M

tx validators in hardware (CPU+FPGA system)
1) Varying Block Sizes: Figure 7a reports the energy ef-

ficiency of sw8 and hw4+4 validator peers. We consider
8 vCPUs as the common multi-core configuration for sw
peer, while 4 vCPUs with 4 tx validators is the minimal
hw peer configuration in our setup. Typically, 4 vCPUs are
enough for hw peer because its software only commits blocks
to disk-based ledger. It is evident that hardware accelerator
significantly improves energy efficiency, up to 2.8× for block
size 250 (15 vs. 42 tx/s/J). From a deeper analysis, we derive
the following insights.

Insight 1: The improvement in energy efficiency is quite
notable for smaller block sizes (e.g., 10, 25 and 50). Small
block sizes do not have enough transactions to fully utilize
underlying compute resources and amortize the overhead of
block processing. This is even more pertinent for hardware
where internal pipelines do not fill up completely when block
size is small. Therefore, one should choose a large enough
block size keeping in mind the available compute resources
for higher energy efficiency (e.g. 50 in this case).

Insight 2: The energy efficiency saturates after a particular
block size (e.g., after 50 and 100 for sw8 and hw4+4 peers

6

0
10
20
30
40
50
60
70
80

sw4 sw8 sw12 sw16 sw20 hw4+
4

hw4+
8

hw4+
16

Th
ro

ug
hp

ut
 /

En
er

gy
 [t

x/
s/

J]

Peer Configuration

0

5

10

15

20

25

30

35

hw4+
4

hw4+
8

hw4+
16

Th
ro

ug
hp

ut
 [

x1
00

0
tx

/s
] thr(cpu) thr(fpga)

(a) (b)

Fig. 8: (a) Energy efficiency, and (b) Throughput of various sw and hw peer
configurations.

0
10
20
30
40
50
60
70
80
90

10 25 50 100 150 200 250

Th
ro

ug
hp

ut
 /

En
er

gy
 [t

x/
s/

J]

Block Size

hw4+4 hw4+8 hw4+16

Fig. 9: Energy efficiency of various hw peer configurations.

respectively). Once the block size is large enough to fully
utilize the underlying compute resources and amortize the
overhead of block processing, the validator peer achieves a
steady state. Thus, increasing the block size further does
not bring any improvements in throughput and/or energy
consumption, however it does increase the memory footprint
(storing larger blocks requires larger buffers in hardware).
Therefore, one should choose a block size that just saturates
energy efficiency of the validator peer.

Insight 3: Figure 7b shows the average power con-
sumption of the two validator peers. The increase in power
consumption across different block sizes is not significant
which is expected because compute resources are unchanged.
Interestingly, hw4+4 peer consumes 1.5× the power of sw8
for block size 250. However, it also improves throughput by
2× (due to faster block validation, though not shown in the
figure), which more than compensates for the increased power
consumption resulting in higher energy efficiency. Therefore,
looking at just the power consumption can be misleading and
throughput/energy provides better insights.

2) Varying Compute Resources: Figure 8a shows the energy
efficiency of the sw and hw peers when the number of vCPUs
and tx validators is changed with fixed block size of 100. In
general, hw peer delivers much higher energy efficiency than
sw peer when more compute resources are added, from 58
tx/s/J to 76 tx/s/J vs. a maximum of 17 tx/s/J from sw, resulting
in 4.5× improvement. We deduce the following insights.

Insight 1: The energy efficiency of sw peer saturates
after a particular number of vCPUs (e.g., 12). The validation
phase only uses parallel threads for vscc operation, and
mvcc and commit operations are executed sequentially without
any pipelining, limiting the maximum throughput achievable.
The extra power consumption from additional vCPUs is not
compensated by notably higher throughput, and hence energy
efficiency saturates. For example, sw12, sw16 and sw20 peers
consume 66W, 76W and 80W respectively, but deliver about

0.00

0.25

0.50

0.75

1.00

sw8 sw8+
bc

hw4+
8

hw4+
bc+8

hw4+
16

hw4+
bc+16

N
or

m
al

iz
ed

 E
ne

rg
y

0
20

40
60
80

100
120
140
160

sw8 sw8+
bc

hw4+
8

hw4+
bc+8

hw4+
16

hw4+
bc+16

Th
ro

ug
hp

ut
 /

En
er

gy
 [t

x/
s/

J]

(a) (b)

5

10

15

20

25

30

35

sw8 sw8+bc hw4+8 hw8+8 hw4+bc+8 hw4+bc+16

Th
ro

ug
hp

ut
 [x

10
00

 tx
/s

]

Peer Configuration

thr(cpu) thr(fpga)

(c)

Fig. 10: (a) Normalized energy consumption, (b) Energy efficiency, and (c)
Throughput of various sw and hw peer configurations.

the same 17 tx/s/J. Therefore, one should provision vCPUs
that will just saturate energy efficiency of the validator peer
but with minimal power consumption.

Insight 2: The sudden drop in energy efficiency of hw4+16
vs. hw4+8 is quite unexpected. Since validation phase occurs
in parallel on both the CPU and FPGA, we plot their individ-
ual throughputs in Figure 8b. The CPU throughput remains
the same as the number of vCPUs does not change, while
the FPGA throughput increases significantly from 4 to 16
tx validators. FPGA is the bottleneck in hw4+4 peer while
CPU is the bottleneck in hw4+8 and hw4+16 peers. Thus,
in hw4+16, power consumption from additional tx validators
is not compensated at the validator peer level because of the
much lower CPU throughput. Figure 9 shows that the trend is
same between hw4+8 and hw4+16 peers across all block sizes
except 10, where CPU and FPGA throughputs are similar (not
shown in figure). Therefore, one should match the compute
power between the CPU and FPGA in order to achieve the
highest energy efficiency.

3) Software Block Cache: We create two more variants of
the validator peer to understand how software optimizations
can affect its energy efficiency. We chose to implement the
block cache from [4] in peer software because it is not yet part
of Fabric v2.2 and has been shown to improve performance
significantly [4], [5].

• swN+bc: vanilla validator peer using N vCPUs and
software block cache

• hwN+bc+M: BMac validator peer using N vCPUs and
software block cache, and M tx validators in hardware

Figures 10a & 10b report the normalized energy consump-
tion and energy efficiency of various sw and hw peers for a
block size of 100. We do not include hw4+4 peer because
FPGA is the bottleneck (Fig. 8b), thus software optimizations
will not result in any noticeable improvement in its throughput
or energy efficiency.

Insight 1: The software block cache can bring in significant
energy savings across both sw and hw peers, up to 35% in
Fig. 10a. The peer software avoids many redundant operations
because of the block cache, which results in faster block
validation and hence lower energy consumption. The energy

7

savings are more notable when CPU is the bottleneck in hw
peer. Depending on the difference between CPU and FPGA
throughput (Fig. 8b), FPGA can be idle for long periods
because of the CPU. The use of block cache results in shorter
FPGA idle periods, which means higher energy reduction due
to FPGA’s high power consumption. Figure 10b shows that the
use of block cache results in the expected energy efficiency
trend between hw4+8 and hw4+16 peers, in contrast to the
unexpected trend in Fig. 8a. This is because CPU throughput
is now closer to FPGA throughput which results in improved
energy efficiency (compare hw4+16 in Figs. 8b & 10c).

Insight 2: Figure 10c reports how the CPU and FPGA
throughputs are affected when resources/optimizations are
changed. We show only the most interesting validator peer
configurations here. Comparing hw4+bc+8 and hw8+8 with
hw4+8 reveals that the use of block cache has much larger im-
provement in CPU throughput than adding more vCPUs (57%
vs. 18%). Furthermore, CPU is still the bottleneck in hw8+8
peer. Therefore, one should carefully consider the interactions
between hardware resources and software optimizations when
provisioning a validator peer.

4) Summary of Results: We conclude that hw4+bc+16
peer synergistically benefits from its hardware resources and
software optimizations, resulting in 153 tx/s/J which is the
highest in all our experiments. This is a 10× improvement over
15 tx/s/J of sw8 (representative of publicly available validator
peer running on a common 8-core server). This means that
hw4+bc+16 peer can deliver 10× more throughput than sw8
while consuming the same amount of energy. In absolute
terms, this translates to 23,000 tx/s with a power consumption
of 118W.

V. RELATED WORK

Many recent works have proposed software and hardware
optimizations to improve validator peer performance, such as
parallel validation of transactions and/or pipelined execution of
validation operations [4], [5], [17]–[19], caching unmarshalled
blocks [4] and offloading compute-intensive operations to
specialized hardware [6]. All these works only focus on perfor-
mance improvements and overlook power/energy consumption
of the validator peer, which is the focus of this paper. Many
of these optimizations have already been incorporated into
official Fabric v2.2 codebase (e.g., [5], [17], [18]), so our
evaluation already includes them. The software block cache [4]
is not yet part of the official codebase, so we implemented it
ourselves for evaluation.

There is very little research on power/energy consump-
tion of blockchains especially permissioned blockchains like
Hyperledger Fabric. The work in [3] estimated energy con-
sumption of different blockchains, and emphasized that further
detailed energy efficiency studies are needed especially for
permissioned blockchains. The study in [20] proposed an
analytical approach to estimate energy consumption of PoW-
based blockchains and used Bitcoin as an example. Both
these works are analytical in nature and do not use actual
power/energy measurements as we have done in this paper.
We are the first to conduct a comprehensive study of energy
efficiency of Hyperledger Fabric’s validator peer with actual
power/energy measurements, and present insights for energy-
aware provisioning of validator peers in a Fabric network.

VI. CONCLUSION

In this paper, we proposed a power/energy measurement
methodology for CPU and CPU+FPGA based systems in
order to evaluate energy efficiency (throughput/energy) of
Hyperledger Fabric’s validator peer. We presented many useful
insights from our comprehensive evaluation of a diverse set of
validator peer configurations. We concluded that the right com-
bination of hardware resources and software optimizations is
essential for achieving highest energy efficiency. We achieved
up to 153 tx/s/J compared to 15 tx/s/J of vanilla validator peer.

VII. ACKNOWLEDGMENTS

The authors thank Rajesh Panicker from NUS and Sun-
dararajarao Mohan from AMD for their valuable support.

REFERENCES

[1] Hyperledger, “Hyperledger Fabric,” 2019. [Online]. Available: https:
//www.hyperledger.org/projects/fabric

[2] M. del Castillo, “Forbes Blockchain 50 2021,” 2021. [Online].
Available: https://www.forbes.com/sites/michaeldelcastillo/2021/02/02/
blockchain-50/?sh=58a32cb8231c

[3] J. Sedlmeir, H. Buhl, G. Fridgen, and R. Keller, “The energy consump-
tion of blockchain technology: Beyond myth,” Business & Information
Systems Engineering, 2020.

[4] C. Gorenflo, S. Lee, L. Golab, and S. Keshav, “FastFabric: Scaling
Hyperledger Fabric to 20,000 Transactions per Second,” in 2019 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC),
2019.

[5] P. Thakkar and S. Natarajan, “Scaling blockchains using pipelined
execution and sparse peers,” in Proceedings of the ACM Symposium
on Cloud Computing (SoCC), 2021.

[6] H. Javaid, J. Yang, N. Santoso, M. Upadhyay, S. Mohan, C. Hu,
and G. Brebner, “Blockchain machine: A network-attached hardware
accelerator for hyperledger fabric,” in International Conference on
Distributed Computing Systems (ICDCS), 2022.

[7] AMD, “OpenNIC Project,” 2021. [Online]. Available: https://github.
com/Xilinx/open-nic

[8] C. Gorenflo, “FastFabric v1.4 Implementation,” 2020. [Online].
Available: https://github.com/cgorenflo/fabric/tree/fastfabric-1.4

[9] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “Rapl in
action: Experiences in using rapl for power measurements,” ACM Trans.
Model. Perform. Eval. Comput. Syst., 2018.

[10] J. Krzywda, A. Ali-Eldin, T. E. Carlson, P.-O. Östberg, and E. Elmroth,
“Power-performance tradeoffs in data center servers: Dvfs, cpu pinning,
horizontal, and vertical scaling,” Future Generation Computer Systems,
2018.

[11] Intel, “Intel 64 and ia-32 architectures software developer’s manual
volume 4: Model-specific registers,” Tech. Rep., 2021.

[12] Y. Zhai, X. Zhang, S. Eranian, L. Tang, and J. Mars, “HaPPy:
Hyperthread-aware power profiling dynamically,” in USENIX Annual
Technical Conference (ATC), 2014.

[13] Xilinx, “Alveo Card Management Solution Subsystem Product Guide
PG348 v4.0,” Tech. Rep., 2022.

[14] Hyperledger, “Hyperledger Caliper Benchmarks,” 2020. [Online].
Available: https://github.com/hyperledger/caliper-benchmarks

[15] L. Zhu, C. Chen, Z. Su, W. Chen, T. Li, and Z. Yu, “BBS: Micro-
architecture benchmarking blockchain systems through machine learning
and fuzzy set,” in IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2020.

[16] Hyperledger, “Hyperledger Caliper,” 2019. [Online]. Available: https:
//www.hyperledger.org/projects/caliper

[17] P. Thakkar, S. Nathan, and B. Vishwanathan, “Performance Bench-
marking and Optimizing Hyperledger Fabric Blockchain Platform,” in
MASCOTS, 2018.

[18] H. Javaid, C. Hu, and G. Brebner, “Optimizing validation phase of
hyperledger fabric,” in MASCOTS, 2019.

[19] L. Kuhring, Z. István, A. Sorniotti, and M. Vukolić, “StreamChain:
Rethinking Blockchain for Datacenters,” 2020. [Online]. Available:
http://arxiv.org/abs/1808.08406

[20] V. Coroama, “Blockchain energy consumption: An exploratory study,”
Tech. Rep., 2021. [Online]. Available: https://www.aramis.admin.ch/
Default?DocumentID=68053

8

https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric
https://www.forbes.com/sites/michaeldelcastillo/2021/02/02/blockchain-50/?sh=58a32cb8231c
https://www.forbes.com/sites/michaeldelcastillo/2021/02/02/blockchain-50/?sh=58a32cb8231c
https://github.com/Xilinx/open-nic
https://github.com/Xilinx/open-nic
https://github.com/cgorenflo/fabric/tree/fastfabric-1.4
https://github.com/hyperledger/caliper-benchmarks
https://www.hyperledger.org/projects/caliper
https://www.hyperledger.org/projects/caliper
http://arxiv.org/abs/1808.08406
https://www.aramis.admin.ch/Default?DocumentID=68053
https://www.aramis.admin.ch/Default?DocumentID=68053

	I Introduction
	II Background and Preliminaries
	II-A Hyperledger Fabric
	II-B Blockchain Machine

	III Proposed Power Measurement Methodology
	III-A Motivation and Challenges
	III-B CPU Power Measurement
	III-B1 Intel Hardware Counters
	III-B2 CPU Idle Power
	III-B3 CPU Idle Periods

	III-C FPGA Power Measurement
	III-D Bringing It All Together: Validator Peer Throughput and Energy Consumption

	IV Evaluation Setup & Experimental Results
	IV-A Hyperledger Fabric Network and Application Setup
	IV-B Hardware/Software Setup
	IV-C Evaluation Metrics
	IV-D Validator Peer Energy Efficiency
	IV-D1 Varying Block Sizes
	IV-D2 Varying Compute Resources
	IV-D3 Software Block Cache
	IV-D4 Summary of Results

	V Related Work
	VI Conclusion
	VII Acknowledgments
	References

