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Abstract—Sparse general matrix multiplication (SpGEMM) is
a fundamental building block in numerous scientific applications.
One critical task of SpGEMM is to compute or predict the
structure of the output matrix (i.e., the number of nonzero
elements per output row) for efficient memory allocation and
load balance, which impact the overall performance of SpGEMM.
Existing work either precisely calculates the output structure
or adopts upper-bound or sampling-based methods to predict
the output structure. However, these methods either take much
execution time or are not accurate enough. In this paper, we
propose a novel sampling-based method with better accuracy
and low costs compared to the existing sampling-based method.
The proposed method first predicts the compression ratio of
SpGEMM by leveraging the number of intermediate products
(denoted as FLOP) and the number of nonzero elements (denoted
as NNZ) of the same sampled result matrix. And then, the
predicted output structure is obtained by dividing the FLOP
per output row by the predicted compression ratio. We also
propose a reference design of the existing sampling-based method
with optimized computing overheads to demonstrate the better
accuracy of the proposed method. We construct 625 test cases
with various matrix dimensions and sparse structures to evaluate
the prediction accuracy. Experimental results show that the
absolute relative errors of the proposed method and the reference
design are 1.56% and 8.12%, respectively, on average, and 25%
and 156%, respectively, in the worst case.

Index Terms—Sparse matrix multiplication, SpGEMM, pre-
dicting output structure, nonzero structure, size estimation

I. INTRODUCTION

Sparse general matrix multiplication (SpGEMM) is a fun-
damental building block in numerous scientific and machining
learning applications such as Markov clustering [1], algebraic
multigrid solvers [2], [3], molecular dynamics simulations [4],
multi-source breadth first search [5], and finite element simu-
lations based on domain decomposition [6].

Given two sparse matrices A and B, SpGEMM computes
the matrix multiplication C = AB, where C is the sparse
output matrix. To reduce the memory footprint and compu-
tation complexity when performing SpGEMM, all the input
and output sparse matrices should be stored in a sparse matrix
format. However, processing the sparse matrices with a sparse
matrix format causes many performance issues due to the

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version
may no longer be accessible. Corresponding author: Zhaoyang Du (email:
11731021@zju.edu.cn).

irregularities of the three involved matrices and the unknown
structure of the output matrix.

Two essential aspects critical to SpGEMM’s performance
are the memory allocation method [7], [8] for the output
matrix and the load balance method [9]–[11] when performing
SpGEMM. Both performance issues are highly related to the
output structure (i.e., the number of nonzero elements of each
output row) of SpGEMM and how the output structure is
computed [7]–[11].

Existing methods to compute the output structure in-
clude the precise-method [7], [10]–[12], the upper-bound
method [7], [8], [13], [14], and the sampling-based method [9],
[15]. The precise method computes the exact output structure,
which is called the symbolic phase, before performing the
actual numeric matrix multiplication [10]. The benefit is that
the SpGEMM library adopting the precise method does not
need to allocate the intermediate result matrix. However, the
major problem with the precise method is that the computation
complexity of the symbolic phase is similar to that of the
numeric phase [7], [10], [11]. As a result, the symbolic phase
(precise method) takes non-trivial computing overheads.

In contrast, the upper-bound method computes the number
of necessary intermediate products (denoted as FLOP [7])
per output row as the output structure, which is a low-cost
computation step [7], [8]. However, the upper-bound method
may allocate much memory space for the intermediate result
matrix. For example, for a SpGEMM task with a compression
ratio of 10, the memory footprint of the intermediate result
matrix is 10× that of the actual result matrix. The compression
ratio of a SpGEMM task (or simply of a result matrix) is
defined by dividing the total FLOP to perform SpGEMM by
the total number of nonzero elements (denoted as NNZ) of the
result matrix.

Due to these limitations of the aforementioned methods,
in this paper, we focus on developing a novel sampling-
based method targeting high prediction accuracy and low
computing cost. The existing sampling-based method first
randomly samples two sub-matrices of the two input matrices
and computes the NNZ of the sampled result matrix (denoted
as sampled NNZ). It then divides the sampled NNZ by p to
predict the NNZ of the result matrix, where p represents the
matrix size proportion of the sampled result matrix to the entire
result matrix.
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To predict the output structure of SpGEMM, the existing
sampling-based method has to compute the precise FLOP per
output row and the total FLOP of the result matrix. And
then, the predicted compression ratio of the result matrix
is computed by dividing the total FLOP by the predicted
total NNZ of the result matrix. At last, the output structure
is predicted by dividing the FLOP per output row by the
predicted compression ratio. Since the FLOP per output row
and the total FLOP are precisely calculated, the accuracy of
the predicted output structure, the predicted compression ratio,
and the predicted NNZ of the result matrix can be seen as
equivalent.

An intuition is that when the NNZ of a sampled result
matrix is larger than its expectation, the FLOP of the same
sampled result matrix (denoted as sampled FLOP) may also
be larger than its expectation. Note that the expectations of the
sampled NNZ or sampled FLOP are the precise NNZ(C) or
FLOP(C) multiplied by p, where p represents the proportion
of the matrix size of the sampled result matrix to the entire
result matrix. In other words, the relative errors of the sampled
NNZ and sampled FLOP compared to their expectations may
have a positive correlation.

Based on the aforementioned intuition, we propose a novel
sampling-based method, which exploits the potential positive
correlation of the sampled NNZ and the sampled FLOP of
the same sampled result matrix. The proposed method divides
the sampled FLOP by the sampled NNZ to obtain a sampled
compression ratio as the predicted compression ratio of the
result matrix. By doing so, the prediction of the compression
ratio may achieve a certain degree of error neutralization
between the sampled FLOP and sampled NNZ. For example,
suppose the relative errors of the sampled FLOP and the
sampled NNZ are 25% and 30%, respectively. In that case,
the relative error of the predicted compression ratio will be
3.85% (analyzed in Section IV-D). At last, the predicted output
structure is easily computed by dividing the FLOP per output
row by the predicted compression ratio.

As for the computing overheads, the existing sampling-
based method uses the inner-product dataflow [9] to compute
the sampled matrices, which is less efficient than the row-wise
dataflow [16], [17] on both the computing and sampling of
the two input matrices. Therefore, in this work, we implement
the proposed method using the row-wise dataflow. To fairly
compare the prediction accuracy of the proposed method and
the existing method, we also implement a reference design
of the existing sampling-based method using the row-wise
dataflow and the same associated sampling method.

We select 25 representative real-world sparse matrices from
the SuiteSparse [18] dataset and compose 625 test cases by
multiplying them with each other to evaluate the prediction
accuracy of the predicted NNZ(C). The relative prediction
errors of the proposed method and the reference design are
1.56% and 8.12% (smaller is better), respectively, on average,
and 25% and 156%, respectively, in the worst case. We also
conduct experiments to show that the parallel implementation
of the proposed method only takes on average 0.78% execution

time of an entire state-of-the-art SpGEMM library (BRMerge-
Precise) [16].

The main contributions of this work are listed as follows:

• We propose a novel sampling-based method that utilizes
both the sampled FLOP and sampled NNZ to predict the
output structure of SpGEMM.

• We propose a row-wise implementation of the proposed
method and a reference design of the existing sampling-
based method.

• We conduct comprehensive evaluations to show that the
proposed method is much more accurate than the ref-
erence design of the existing method. We also conduct
experiments to show that the parallel implementation
of the proposed method only takes on average 0.78%
execution time of an entire state-of-the-art SpGEMM
library (BRMerge-Precise) [16].

The rest of this paper is organized as follows. Section II
introduces the notations and backgrounds. Section III discusses
the related work. Section IV describes the proposed prediction
method and the reference design of the existing prediction
method. Section V details the efficient parallel implementation
of the proposed method. Section VI shows the evaluation
accuracy of the proposed method and the reference design.
This section also shows the computing overheads of the
proposed method. Section VII concludes this paper.

The source code of this paper is provided in https://github.
com/lorentzbf/Size-Prediction.git.

II. PRELIMINARIES AND BACKGROUNDS

A. Notations

Table I defines the notations used in this paper. The matrix
dimensions of the three matrices A, B, and C are M × K,
K ×N , and M ×N , respectively.

Notation Explanation
A The first input matrix
B The second input matrix
C The result matrix
NNZ(·) Number of nonzero elements
FLOP(·) Number of intermediate products
CR Compression ratio, defined as FLOP/NNZ

TABLE I: Notations used in this paper.

B. CSR Storage Format

CSR (Compressed Sparse Row) storage format stores the
sparse matrix in a compressed way. Fig. 1 illustrates the CSR
storage format, which consists of three arrays named rpt, col,
and val. The val and col arrays record the nonzero elements
and their corresponding column indices in a sorted row-major
and column-major order. The rpt array records the start and
end offsets for each row’s values and column indices in the
val and col arrays.

https://github.com/lorentzbf/Size-Prediction.git
https://github.com/lorentzbf/Size-Prediction.git
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Fig. 1: Illustration of the CSR storage format. Left: dense
storage format. Right: CSR storage format.

C. Row-wise Dataflow

The row-wise dataflow is described by (1), which shows the
computation of the ith output row (Ci∗).

Ci∗ =
∑
k

Aik ·Bk∗, (1)

where Ci∗ and Ai∗ represent all the nonzero elements in the
ith row of C and A, respectively, k belongs to the set of
column indices of Ai∗, and Bk∗ represents all the nonzero
elements in the kth row of B.

III. RELATED WORK

We first describe a highly related prediction method pro-
posed in the database literature. And then, we describe two
sampling-based methods that predict the output structure of
SpGEMM. At last, we describe several SpGEMM libraries
that utilize the output structure for memory allocation and load
balance issues.

Bar-Yossef et al. [19] proposed a method to predict the num-
ber of distinct elements in a data stream. Let a = a1, a2, ...an
be an array with n elements, where ai ∈ [0,m]. Certain
elements in a may have the same value. Let F = F (a)
represent the number of distinct elements in a. To predict F ,
this method first constructs a hash function h : [m] → [0, 1].
And then, the method applies h(·) to all elements in a and
maintain the smallest hashed value as v. At last, the predicted
number of distinct elements in a is computed by F ∗ = 1/v.
The intuition here is that if the hashed values of all the
elements in a are randomly distributed in [0, 1], the smallest
hashed value will be 1/F . This prediction method is utilized
in the following methods that predict the output structure of
SpGEMM [9], [15]. The benefit of this method is minimum
memory space usage when processing the data in a since
it only maintains the smallest element. However, the time
complexity is not necessarily low since all the elements in
a are processed.

Amossen et al. [15] proposed a method to predict the total
NNZ of the result matrix of SpGEMM, which is mainly based
on the idea in [19]. This method constructs a hash function
h : [m,n] → [0, 1] and samples random subsets from the
two input matrices as A′ and B′. It applies all the row and
column indices of the intermediate products when computing
C ′ = A′B′ to the hash function h. The kth smallest element
of the hashed values is maintained as v. After this process,

the predicted NNZ(C ′) is computed by k/v and the predicted
NNZ(C) is computed by k/v/p, where p stands for the matrix
size proportion of C ′ compared to C.

Pham et al. [9] proposed a SpGEMM library BHash
which implements Amossen’s prediction method. Specifically,
Pham’s method randomly samples the rows from A as A′

with the probability p = 1/10 and randomly samples columns
from B as B′ with the same probability. It then use the same
method in [15] to predict NNZ(C ′), where C ′ = A′B′. At
last, the predicted NNZ(C) is calculated by NNZ (C ′)/p2.
The predicted NNZ(C) and the predicted output structure are
used for the load balance of the computing tasks and memory
allocation for the result matrix in BHash [9].

Most of the existing SpGEMM libraries only use the precise
or upper-bound methods to compute/predict the output struc-
ture [7], [8], [10], [11], [13], [14], [20], [21]. For example,
bhsparse [8] computes the FLOP per output row as the upper-
bound output structure and classifies the rows with different
FLOP to different bins. Rows in different bins are computed
by different accumulation methods for better load balance. The
memory allocation of bhsparse is also based on the upper-
bound output structure. The nsparse [10] computes the upper-
bound output structure and uses this information for the load
balance of its symbolic phase, which computes the precise
output structure.

IV. PROPOSED METHOD

This section describes the proposed sampling-based method
and the reference design of the existing sampling-based
method. The proposed method contains three progressive
optimizations compared to the existing method: 1) adopting
the row-wise dataflow with the associated sampling method,
2) calculating the precise NNZ of the sampled result matrix, 3)
predicting the NNZ of the result matrix by using the sampled
FLOP and sampled NNZ. To fairly compare the prediction
accuracy of the proposed method and the existing method,
we implement the reference design of the existing method by
adopting the first two optimizations.

A. Computing Dataflow and Sampling Method

The existing method selects both rows and columns from the
two input matrices [9], [15]. However, the two input matrices
are usually stored in homogeneous storage format [8], [10].
For example, both input matrices may be stored in the CSR
format, which is hard to select the columns from the matrix.
Furthermore, even if the rows and columns can be selected
with a low cost, the following inner-product dataflow may still
be a performance bottleneck [16], [17]. To tackle these two
performance issues, we adopt the row-wise dataflow for the
sampling method and the computation of the samples.

The associated sampling method randomly samples p frac-
tion of rows from the A matrix as A′, where p is usually
a small value for a low cost. The method does not need to
sample the B matrix since B is accessed according to the
selected rows of A (see Section II-C). This can also be seen
as the entire B matrix is sampled.



B. Computing Method for the Samples

The existing method does not compute the precise NNZ
of the samples, but predicts it by utilizing a hash function
h : [m,n] → [0, 1] [9], [15]. The accuracy of the existing
method is highly related to the hash function, which is difficult
to be constructed. Moreover, the computation complexity of
the existing method is similar to that of precisely computing
the NNZ of the samples. The reason is that the bottlenecks of
both methods lie in processing all the intermediate products
of the samples. Therefore, we propose to directly computes
the precise NNZ of the samples, which is automatically
more accurate in computing the NNZ of the samples than
the existing sampling-based method. We describe the parallel
implementation of computing the precise NNZ of the samples
in section V-B.

C. Reference Design

The reference design adopts the two techniques mentioned
above. We then describe how the reference design predicts the
output structure in more detail. We also analyze the relative
error of the reference design.

We denote the computed NNZ of the samples as z∗, the
expected NNZ of the samples as z, the predicted NNZ(C) as
Z∗, and the precise NNZ(C) as Z. Note that throughout this
paper, we use the additional subscript ·1 to denote the variables
computed by the reference design. The expected NNZ of the
samples z is defined as z = pZ, where p means the proportion
of the matrix size of the sampled result matrix compared to the
entire result matrix. For example, if the number of rows of the
A matrix is 1000 and the number of sampled rows from the A
matrix is 3, p will be equal to 0.003. Similar to the previous
work [9], [15], the reference design predicts the NNZ(C) by
z∗1/p. We define the relative error of the z∗1 to the expected z
as ε1. Then the entire prediction method and the error analysis
of the reference design are shown in (2).

Z∗1 =
1

p
z∗1 =

1

p
(1 + ε1)z1 = (1 + ε1)Z. (2)

To predict the output structure of the result matrix, the
reference design (as well as the existing methods [9], [15])
has to compute the FLOP per output row and the total FLOP
of the result matrix (denoted as F ). And then, the predicted
compression ratio is computed by F/Z∗1 , and the output
structure is computed by dividing the FLOP per output row
by the predicted compression ratio.

D. Proposed Predicting Method

The proposed prediction method utilizes the same informa-
tion computed by the reference design, which includes the
computed FLOP per output row and the NNZ of the samples.
In addition, the proposed method also computes the FLOP of
the samples. The cost of computing the FLOP of the samples is
negligible after the FLOP per output row has been computed.

Although the FLOP per output row and the FLOP(C) are
precisely computed, we can still predict the FLOP(C) in
a symmetric way as how the reference design predicts the

NNZ(C) and establish the error analysis of the predicted
FLOP(C). Similar to the notations for the reference design, we
denote the computed FLOP of the samples as f∗, the expected
FLOP of the samples as f , the predicted FLOP(C) as F ∗, and
the actual FLOP(C) as F . The expected FLOP of the samples
f is defined as f = pF , where p means the proportion of
the matrix size of the sampled result matrix compared to the
entire result matrix. We define the relative error of the f∗ to
the expected f as εf . Then the entire prediction method and
the error analysis for F are shown in (3).

F ∗ =
1

p
f∗ =

1

p
(1 + εf )f = (1 + ε1)F. (3)

An intuition is that for the same sampled result matrix, if
the computed z∗ is greater than the expected z, the computed
f∗ will be more likely to be greater than the expected f rather
than smaller than the expected f . In other words, the relative
error of z∗ may have a positive correlation to the relative error
of f∗ for the same samples.

Based on this intuition, we propose a novel prediction
method as (4). The proposed method first computes the precise
FLOP and NNZ of the same samples (denoted as f∗ and
z∗1 , respectively) so that the two variables may keep a certain
degree of positive correlation. And then, the proposed method
computes the predicted compression ratio as r∗ = f∗/z∗1 . At
last, the predicted NNZ(C) is computed by dividing the actual
FLOP(C) by the predicted compression ratio. The output
structure is easily computed by dividing the FLOP per output
row by the predicted compression ratio.

Z∗2 =
F

r∗
=

F

f∗
z∗1 =

F

(1 + εf )f
(1 + ε1)z

=
1 + ε1
1 + εf

z

p
= (1 +

ε1 − εf
1 + εf

)Z,
(4)

where Z∗2 is the predicted NNZ(C) by the proposed method.
The relative error of the proposed method for predicting

NNZ(C) is:

ε2 =
ε1 − εf
1 + εf

. (5)

Based on (5), the relative error of the proposed method is
close to the difference between ε1 and εf since the denom-
inator is usually close to 1. Therefore, the proposed method
may achieve a good error neutralization between ε1 and εf if
the two relative errors are positively correlated and close to
each other. Specifically, if ε1 and εf are both positive values
and εf ∈ [0, 2ε1], the relative error of ε2 will be smaller than
ε1, which is our expectation. Similarly, if ε1 and εf are both
negative values and εf ∈ [2ε1, 0], the relative error of ε2 will
also be “smaller” than ε1; the “smaller” here means more close
to 0. In a special case, if εf approaches ε1, ε2 will approach
0.

V. PARALLEL IMPLEMENTATION

This section describes the implementations of two
performance-critical tasks used by the proposed method and



the reference design. The goal of the parallel implementa-
tions is to achieve low computing overheads. We target the
implementation at the multi-core CPUs instead of GPUs since
these computing tasks are relatively small and irregular, which
may not efficiently utilize the massively parallel computing
resources on GPUs. We implement the parallel algorithms with
the OpenMP framework [22].

A. Computing the FLOP per Output Row

The first performance-critical task is to compute the FLOP
per output row. Algorithm 1 shows the parallel implementation
of this task, where the floprC denotes the actual FLOP per
output row, and the total flop denotes the actual FLOP(C).
The FLOP per output row is the upper bounds of the number of
nonzero elements per output row. The computation complexity
of this algorithm is relatively small since only the row offsets
and column indices of the A matrix and the row offsets of
the B matrix are processed. We parallelize this algorithm by
statically assigning the same number of rows to each CPU
thread. The total flop (Line 8) is computed within a critical
section provided by OpenMP [22].

Algorithm 1 Compute FLOP(C)
Input: A.rpt, A.col, B.rpt, M.
Output: floprC, total flop.

1: total flop = 0
2: for i = 0 to M-1 in parallel do
3: local flop = 0
4: for j = A.rpt[i] to A.rpt[i+1] do
5: local flop += B.rpt[A.col[j]+1] - B.rpt[A.col[j]]
6: end for
7: floprC[i] = local flop
8: total flop += local flop . computed in a critical

section
9: end for

B. Computing the Predicted NNZ(C) by the Proposed Method

The second performance-critical computing task is to com-
pute the NNZ of the sampled result matrix. Since the other
computation steps are straightforward and with a low cost,
Algorithm 2 directly shows the entire computation flow of
how the proposed method computes the predicted NNZ(C),
which includes how the sampled NNZ is computed.

The method to compute the NNZ per output row is the
same as the existing work [7], which utilizes the hash-based
method. Line 12 to Line 28 in Algorithm 2 show the hash-
based method. The memory space of the hash table for each
CPU thread is set as the largest floprC (Line 6). However,
the used memory space of the hash table for each output
row is the FLOP of that row (Line 10). Line 9 selects a
random row from the A matrix, where the random data is
pre-computed and stored in an array named rand (Line 3).
Line 7 is parallelized so that each CPU thread computes the
same number of sampled rows. As a result of the parallelism,
Line 29 and Line 30 are computed in a critical section [22]. In

Algorithm 2 Compute Z∗2
Input: A.rpt, A.col, B.rpt, B.col, floprC, total flop, M
Output: Z∗2

1: sample num = min(0.003 * M, 300)
2: rand = new float [sample num]
3: Generate sample num random data in the range [0,1] and

store them to the rand array
4: Calculate the max floprC as the max hash table size:

max tsize
5: sample flop = 0, sample nnz = 0
6: ht = new int [max tsize] for each CPU thread
7: for r = 0 to sample num - 1 in parallel do
8: local nnz = 0
9: rid = M * rand[r]

10: tsize = floprC[rid]
11: Initialize the front tsize elements in the ht array to −1
12: for i = A.rpt[rid] to A.rpt[rid+1] do
13: B row = B.col[i]
14: for j = B.rpt[B row] to B.rpt[B row + 1] do
15: hash = (B.col[j] * HASH SCALE) % tsize
16: while true do
17: if ht[hash] == B.col[j] then
18: break
19: else if ht[hash] == -1 then
20: local nnz += 1
21: ht[hash] = B.col[j]
22: break
23: else
24: hash = (hash + 1) % tsize
25: end if
26: end while
27: end for
28: end for
29: sample nnz += local nnz . computed in a critical

section
30: sample flop += floprC[rid] . computed in a critical

section
31: end for
32: Z∗2 = total flop / sample flop * sample nnz

the end, the predicted NNZ(C) is easily computed as shown
in Line 32.

In the implementation of both the proposed method and the
reference design, we empirically set the number of the sampled
rows as sample num = min(0.003M, 300), where M is the
number of rows of A. We set the maximum sampled rows as
300 to reduce the computing overheads when M is large. The
accuracy loss is often negligible since the prediction accuracy
is often very high when M is relatively large.

VI. EXPERIMENTS

In this section, we compare the accuracy of the predicted
NNZ(C) of the proposed method and the reference design. We
also show the prediction overheads of the proposed method



TABLE II: Detailed information of 25 matrices from the SuiteSparse datasets. CR represents the compression ratio.

Id Name Rows NNZ NNZ/row Max NNZ/row FLOP of A2 NNZ of A2 CR of A2

1 m133-b3 200,200 800,800 4.0 4 3,203,200 3,182,751 1.01
2 mac econ fwd500 206,500 1,273,389 6.2 44 7,556,897 6,704,899 1.13
3 patents main 240,547 560,943 2.3 206 2,604,790 2,281,308 1.14
4 webbase-1M 1,000,005 3,105,536 3.1 4700 69,524,195 51,111,996 1.36
5 mc2depi 525,825 2,100,225 4.0 4 8,391,680 5,245,952 1.60
6 scircuit 170,998 958,936 5.6 353 8,676,313 5,222,525 1.66
7 delaunay n24 16,777,216 100,663,202 6.0 26 633,914,372 347,322,258 1.83
8 mario002 389,874 2,101,242 5.4 7 12,829,364 6,449,598 1.99
9 cage15 5,154,859 99,199,551 19.2 47 2,078,631,615 929,023,247 2.24
10 cage12 130,228 2,032,536 15.6 33 34,610,826 15,231,874 2.27
11 majorbasis 160,000 1,750,416 10.9 11 19,178,064 8,243,392 2.33
12 offshore 259,789 4,242,673 16.3 31 71,342,515 23,356,245 3.05
13 2cubes sphere 101,492 1,647,264 16.2 31 27,450,606 8,974,526 3.06
14 poisson3Da 13,514 352,762 26.1 110 11,768,678 2,957,530 3.98
15 filter3D 106,437 2,707,179 25.4 112 85,957,185 20,161,619 4.26
16 cop20k A 121,192 2,624,331 21.7 81 79,883,385 18,705,069 4.27
17 mono 500Hz 169,410 5,036,288 29.7 719 204,030,968 41,377,964 4.93
18 conf5 4-8x8-05 49,152 1,916,928 39.0 39 74,760,192 10,911,744 6.85
19 cant 62,451 4,007,383 64.2 78 269,486,473 17,440,029 15.45
20 hood 220,542 10,768,436 48.8 77 562,028,138 34,242,180 16.41
21 consph 83,334 6,010,480 72.1 81 463,845,030 26,539,736 17.48
22 shipsec1 140,874 7,813,404 55.5 102 450,639,288 24,086,412 18.71
23 pwtk 217,918 11,634,424 53.4 180 626,054,402 32,772,236 19.10
24 rma10 46,835 2,374,001 50.7 145 156,480,259 7,900,917 19.81
25 pdb1HYS 36,417 4,344,765 119.3 204 555,322,659 19,594,581 28.34

compared with a state-of-the-art SpGEMM library BRMerge-
Precise [16].

A. Predicting Accuracy

Recall that for both the proposed method and the reference
design, the output structure is computed by dividing the FLOP
per output row by the predicted compression ratio, where the
predicted compression ratio is computed by dividing the total
FLOP by the predicted total NNZ. Since the FLOP per output
row and the total FLOP are precisely computed, the accuracy
of the predicted output structure, the predicted compression
ratio, and the predicted NNZ(C) can be seen as equivalent.
Therefore, we only compare the prediction accuracy of the
predicted NNZ(C).

For the diversity of the evaluation, we select 25 representa-
tive real-world sparse matrices from the SuiteSparse matrix
collection [18]. Table II shows the detailed information of
the 25 sparse matrices. We try to multiply these 25 matrices
with each other to obtain more test cases with various sparse
structures and matrix dimensions. One problem is that the
two input matrices may not be multiplied due to mismatched
matrix dimensions. To tackle this problem, we reshape either
the first or the second input matrix. For example, if the
dimensions of the two input matrices are 10 × 10 and 5 × 5,
we reshape the first matrix to a 10 × 5 matrix by keeping its
left 5 columns. If the dimensions of the two input matrices are

5 × 5 and 10 × 10, we reshape the second matrix to a 5 ×
10 matrix by keeping its top 5 rows. As a result, we construct
625 matrix multiplication test cases to evaluate the accuracy.

We compare the three relative errors: ε1 = (Z∗1 − Z)/Z,
εf = (F ∗−F )/F , and ε2 = (Z∗2−Z)/Z, which are described
in section IV. Recall that F can be precisely computed with
low costs, which means we do not need to predict the total
FLOP(C) in real cases. We show the relative prediction error
of εf compared to ε1 to observe if they have the expected
positive correlation.

Experiments on the 625 test cases show that the average
absolute relative errors of ε1, εf , and ε2 are 8.12%, 8.59%,
and 1.56%, respectively. Whereas the worst absolute relative
errors of ε1, εf , and ε2 are 158%, 155%, and 25%, respectively.
Moreover, the proposed method is more accurate than the
reference design on 81.4% of the 625 test cases. The overall
results show that the proposed method is much more accurate
than the reference design. Considering the difference between
the proposed method and the reference design, we can infer
that the relative errors of the sampled FLOP and sampled
NNZ are positively correlated and close to each other in most
scenarios. Therefore, the proposed method can achieve good
error neutralization by dividing the sampled FLOP by the
sampled NNZ (see section IV-D).

Moreover, the correlation coefficient [23] of ε1 and εf on
the 625 test cases is 97.01%, which statistically shows a strong



TABLE III: The relative errors of 20 representative test cases.

A B smaple num CR NNZ(C) ε1(%) εf (%) ε2(%)
1 2cubes sphere consph 300 1.5 64800734 -2.31 -2.6 0.29
2 cage12 patents main 300 1 4611949 3.61 3.62 -0.01
3 cage15 majorbasis 300 1.1 15990225 16.38 15.73 0.56
4 delaunay n24 mario002 300 1 12553686 -22.49 -22.81 0.42
5 delaunay n24 cop20k A 300 1.01 15604104 -45.88 -46.32 0.81
6 m133-b3 rma10 300 1.14 8336596 4.41 5.57 -1.11
7 majorbasis 2cubes sphere 300 1.08 22688054 -0.49 -0.5 0.01
8 mario002 webbase-1M 300 1.21 6866846 -11.98 -16.68 5.65
9 mc2depi poisson3Da 300 1.02 1366481 66.23 70.54 -2.53
10 pwtk consph 300 5.99 54168970 -11.32 -9.81 -1.68
11 shipsec1 rma10 300 4.67 27713808 -7.48 -5.53 -2.07
12 scircuit poisson3Da 300 1.04 1848459 8.76 8.06 0.65
13 scircuit mac econ fwd500 300 1.11 5313337 1.44 1.36 0.08
14 rma10 pdb1HYS 140 8.3 23240867 -3.07 -2.43 -0.66
15 pwtk shipsec1 300 5.41 77530890 -3.59 -4.29 0.73
16 cage12 hood 300 1.23 83406736 -0.31 0.2 -0.51
17 2cubes sphere cant 300 1.62 40235181 -0.19 -3.47 3.4
18 rma10 offshore 140 1.53 25255211 -0.01 0.28 -0.29
19 filter3D filter3D 300 4.26 20161619 1.74 4.47 -2.62
20 hood poisson3Da 300 1.12 17777942 -0.39 0.98 -1.35

positive correlation between the sampled FLOP and sampled
NNZ of the same randomly selected samples.

To show the better accuracy of the proposed method more
intuitively, we show the relative errors of ε1, εf , and ε2 on
20 representative test cases in Table III. For most test cases,
the prediction accuracy of the proposed method is much more
accurate than the reference design. For example, the fifth test
case in Table III shows that the relative error of predicting the
NNZ(C) and FLOP(C) by only using the NNZ or FLOP of
the samples are -45.88 and -46.32, respectively. In contrast, the
relative error of predicting NNZ(C) by the proposed method is
only 0.81. This test case shows significant error neutralization
between the sampled FLOP and sampled NNZ. Also note that
the relative errors of ε1, εf , and ε2 of all the test cases exactly
meet the equation described by (5).

The last five test cases in Table III show that the signs
of ε1 and εf are different. We observe that when the signs
of ε1 and εf are different, the absolute values of ε1 and εf
are usually close to zero. As a result, the relative error of
predicting NNZ(C) by the proposed method is also relatively
small in such cases.

B. Computing Overhead

Two performance-critical tasks in the proposed method and
the reference design are computing the FLOP per output row
(denoted as computing FLOP) and computing the NNZ of
the samples (see section V-A and section V-B). Since the
computation complexity of computing the sampled NNZ is
similar to predicting the NNZ(C) by the proposed method
after the FLOP per output row has been computed, we directly

show the computing overheads of predicting NNZ(C) by the
proposed method (denoted as predicting Z∗2 ).

We compare the relative execution time of the two tasks
compared to a state-of-the-art SpGEMM library BRMerge-
Precise [16]. The execution time is measured as the average
execution time of ten runs after one warm-up run. Fig. 2 shows
the relative execution time in percentage on the matrix square
benchmark with the 25 sparse matrix in Table II. The average
relative execution time of computing FLOP and predicting Z∗2
compared to BRMerge-Precise are 1.68% (up to 4.12%) and
0.72% (up to 1.89%), respectively, which is a relatively small
computing overhead.

In most SpGEMM algorithms, computing the FLOP per
output row is a necessary task for either the upper-bound
allocation method [7], [8], [13], [14] or the load balance of
the symbolic phase [10], [11]. Therefore, the actual computing
overheads of the proposed prediction method only take an
average of 0.72% (up to 1.89%) execution time compared to
the state-of-the-art SpGEMM library BRMerge-Precise, which
is a negligible cost.

VII. CONCLUSION

Computing or predicting the output structure of SpGEMM
is an important task for efficient memory allocation and
load balance of SpGEMM, which greatly impacts the overall
performance. In this paper, we propose a novel sampling-based
prediction method that utilizes the positive correlation between
the sampled FLOP and sampled NNZ of the same samples to
achieve a certain degree of error neutralization. The proposed
method achieves much more accurate prediction accuracy than
the reference design of the existing sampling-based method.
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Fig. 2: Relative execution time of two performance-critical algorithms compared to BRMerge-Precise.

For low computing overheads, the proposed method adopts the
row-wise dataflow and only samples up to 0.003 of the total
rows of the first input matrix. We also propose the parallel
implementation of the proposed method targeting the multi-
core CPUs. The computing overheads of the proposed method
only take on average 0.72% execution time compared to the
overall execution time of a state-of-the-art SpGEMM library
BRMerge-Precise.
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