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Abstract—Traffic flow prediction is an essential task in
constructing smart cities and is a typical Multivariate Time
Series (MTS) Problem. Recent research has abandoned Gated
Recurrent Units (GRU) and utilized dilated convolutions or
temporal slicing for feature extraction, and they have the
following drawbacks: (1) Dilated convolutions fail to capture the
features of adjacent time steps, resulting in the loss of crucial
transitional data. (2) The connections within the same temporal
slice are strong, while the connections between different temporal
slices are too loose. In light of these limitations, we emphasize the
importance of analyzing a complete time series repeatedly and
the crucial role of GRU in MTS. Therefore, we propose SGRU:
Structured Gated Recurrent Units, which involve structured
GRU layers and non-linear units, along with multiple layers
of time embedding to enhance the model’s fitting performance.
We evaluate our approach on four publicly available California
traffic datasets: PeMS03, PeMS04, PeMS07, and PeMS08 for
regression prediction. Experimental results demonstrate that our
model outperforms baseline models with average improvements
of 11.7%, 18.6%, 18.5%, and 12.0% respectively.

Index Terms—Traffic flow prediction, Multivariate time series,
Gated recurrent units, Structured gated recurrent units

I. INTRODUCTION

The scenario of multivariate time series occurs in various
domains of life. Researchers utilize historical weather data
from different regions to predict future rainfall intensity [1].
Taxi data is used to help cities predict travel resources
and reduce traffic congestion [2]. Exception monitoring is
performed on various states in manufacturing systems and
internet services [3]. Since the introduction of Graph Convo-
lutional Networks (GCN) in 2017 [4], this method has been
widely used in the field of Multivariate Time Series (MTS)
for spatial semi-supervised and self-supervised learning. By
interleaving one-dimensional convolution with gated linear
units (GLU) and graph convolution, and appending an output
layer after this ”sandwich” structure [5], accurate prediction
of traffic flow speed can be achieved. The combination of
recurrent neural networks and GCN, with linear layers for
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Fig. 1. Traffic Flow Prediction: a typical MTS problem
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Fig. 2. Traffic waveforms of two adjacent nodes (they are similar with a lag
of about 30 minutes)

output, has made significant contributions to accurate fitting
of multivariate traffic flow data [6]. By incorporating atten-
tion mechanisms into GCN, it is possible to distinguish the
importance of different nodes and utilize Gated Recurrent
Units (GRU) for frequency domain feature extraction on long
time series, leading to a substantial improvement in prediction
accuracy [7]. The aforementioned work demonstrates the
effectiveness of GCN in learning spatial features and its strong
adaptability to non-Euclidean structured data.

A. Problem 1: Dilated convolutions break adjacent time steps

Focusing on the direction of traffic flow prediction (Fig-
ure 1,2), recent Temporal Convolutional Networks [8] and
Graph WaveNet (GWNet) [9] have adopted the mechanism
of GCN. However, in the frequency domain, they use dilated
convolutions to extract sequence features, which leads to
Problem 1: the neglect of the connection between adjacent
time steps. The time series in the dataset are discretely
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sampled, typically every few minutes, and the longer time
interval makes the connection between adjacent time steps
more important. The use of causal convolutions results in a
large number of stacked convolutional layers, increasing the
difficulty of training. Additionally, all the convolutional layers
share the same convolutional kernel parameters, limiting the
features already extracted by the previous layers [10]. Dilated
convolutions are used to expand the global receptive field
without linearly increasing the depth of convolutional layers
and to expedite the convolutional operations. GWNet avoids
the vanishing and exploding gradients caused by recurrent
neural networks by employing dilated convolutions. The ex-
periments [9] select a convolutional kernel size of 2 and
an alternating dilation sequence of 1, 2, 1, 2, 1, 2, 1, 2,
which achieves the best experimental results. This precisely
demonstrates that when applying convolutional operations to
the time domain, larger dilations (greater than or equal to 3)
should not be used because abandoning crucial information
from neighboring time steps leads to a decrease in model
performance. Consequently, the experiment employs 8 layers
of dilated convolutions to extract sequence features of length
13, significantly increasing the training parameters and time.
The traditional dilated convolutions that ignore the connection
between adjacent time steps are not a promising approach.

B. Problem 2: Time slices cause a weak of spatial connectiv-
ity

To enhance the connection between adjacent time steps,
STSGCN [11] utilizes GCN while sampling T time steps
and treating every 3 time steps as a slice. The sliding
window moves only 1 step at a time, generating sequences
of length T − 2. GCN is used to extract spatial features
from each time slice, followed by activation functions and
linear transformations to restore the original dimensionality.
This leads to Problem 2: although the fine-grained time slices
largely aggregate the features of adjacent time steps, the lack
of inter-slice correlation extraction through GCN results in
a weak of spatial connectivity. All the slices are stacked
together after GCN, and due to the high repetition in the
time dimension, the linear layers require a large number of
trainable parameters, extending the model’s training time.
In order to match each group of 3 time slices with their
corresponding adjacency matrix, the trainable parameters of
size N ×N are expanded to 3N × 3N , nearly exponentially
increasing the model size. However, the large number of
training parameters is confined within a single slice containing
only 3 time steps, greatly limiting the model’s temporal
receptive field. Therefore, dividing the sequence into time
slices is not the optimal choice.

C. Our solution

To address the aforementioned issues, we propose a Struc-
tured Gated Recurrent Units (SGRU) network that treats long
time series as a whole. By combining SGRU with Graph Con-
volutional Networks (GCN) and performing multiple feature

extractions on the same sequence, we effectively preserve the
correlation information among adjacent time steps. Compared
to the linear GRU combined with GCN [12], [13], SGRU
utilizes non-linear layers to connect multiple GRUs, thereby
enhancing the model’s feature extraction capability. Addition-
ally, prior to inputting the data into GRU, we apply multi-
layer spatio-temporal embedding. The main contributions of
our work are as follows:
• We propose a structured GRU layer that performs more

comprehensive feature extraction on temporal data. Com-
pared to a simple linearly connected GRU layer, SGRU
has a smaller depth and faster fitting speed.

• We propose a multi-layer spatio-temporal embedding
approach that maps high-dimensional features to low-
dimensional features and embeds them before the recur-
rent network. This method enables effective analysis of
heterogeneity among nodes.

• We conduct regression predictions on four publicly avail-
able California traffic datasets to evaluate the perfor-
mance of our SGRU model compared to other mod-
els. The experimental results demonstrate that our ap-
proach generally outperforms the baselines. Additionally,
we perform thorough ablation experiments on multiple
datasets to verify the effectiveness of the key components
of our model. Our code is publicly available on GitHub:
https://github.com/atxxfs/SGRU

II. RELATED WORKS

Initially, the prediction of multivariate time series (MTS)
was based on statistical methods such as Autoregressive
Integrated Moving Average (ARIMA) [14]. Subsequently,
with the introduction of Support Vector Machines (SVM) [15]
by N. Zhang et al. in 2011 and Support Vector Regression
(SVR) [16] by R. Chen et al. in 2015, traditional machine
learning theories found their way into the realm of MTS. In
recent years, the rapid advancement of deep learning has led
to the emergence of numerous deep models focused on feature
extraction techniques. In deep learning approaches, adjacency
matrices are employed to represent the relationships between
different nodes. Based on whether the adjacency matrix un-
dergoes changes during model updates, it is categorized into
static and dynamic adjacency matrices.

A. Static Adjacency Matrices

Prior to model training, a fixed and unchanging adjacency
matrix is generated based on the distances between pairs of
nodes. ASTGCN [17] integrates three types of attention spans
- ”hourly”, ”daily”, and ”weekly” - to dynamically capture
spatiotemporal features using convolution. STGDN [18] con-
structs a multi-scale attention network, endowing the model
with the capability to capture multi-level temporal dynamics.
HGCN [19] employs dynamically interacting regional node
adjacency matrices to focus on traffic features in the Central
Business District (CBD) of a city. FOGS [20] adopts a first-
order gradient-supervised method, converting dataset labels



from ”flow” to ”trend” before model training. The benefit of
these approaches lies in the interpretability of adjacency ma-
trix values, which align with the fixed geographical distances
between observed nodes.

B. Dynamic Adjacency Matrices

Dynamic adjacency matrices are updated during backprop-
agation, either through random initialization or pre-definition.
In DCRNN [21], Seq2Seq structures are employed to integrate
spatiotemporal features, and recurrent networks are used to
predict traffic data. STNN [22] introduces a novel module
to simultaneously capture features in both temporal and
spatial domains. ASTTN [23] separates different time steps
of distinct nodes, scaling attention spans to a 1-hop spatial
neighborhood to reduce complexity. DSTAGNN [24] calcu-
lates the proportion of traffic flow on a given day relative to
other days using Wasserstein distance, generating spatiotem-
poral correlation graphs. The advantage of these methods lies
in their adaptability to dynamic adjacency changes caused
by congestion or unforeseen traffic incidents, aligning more
closely with real-world scenarios. Therefore, we also utilize
dynamic adjacency matrices.

III. PRELIMINARY

In the original sequence X ∈ RT×N×D where T represents
the temporal duration, N represents the number of nodes, and
D represents the feature dimension, if we denote the current
time step as t and sample X along the temporal dimension, we
obtain a sliced tensor. For example, Xt:t+F ∈ R(F+1)×N×D

where the temporal span is F + 1. Another example is
Xt ∈ RN×D, which represents the D features of N nodes at
the current time step. We define the graph problem of traffic
flow as G = (V , E ,A,Xt−P+1:t), where V represents N
sensor nodes on the traffic network, and |V | = N . E denotes
the edges between the nodes. A represents the adjacency
matrix of G, with A ∈ RN×N . Xt−P+1:t ∈ RP×N×D

describes the historical traffic flow observed by N sensors
over the past P time steps. Our objective is to learn a
prediction function h(·) that predicts the future traffic flow
data Yt+1:t+F ∈ RF×N×Dfor the next F time steps. This
can be expressed as the following formula:

Xt−P+1:t
h(·)→ Yt+1:t+F (1)

IV. METHODOLOGY

A. Preparation & Embedding

1) Adaptive graph convolution.: We adopt a method to
construct the adaptive adjacency matrix using two spatial em-
bedding matrices E1, E2 ∈ RN×d. The vectors are randomly
initialized without any prior knowledge and the parameters are
updated during the learning process. The adjacency features
of nodes are represented by multiplication:

A = SoftMax(ReLU(E1E
T
2 )) (2)

Two different spatial embedding matrices increase the length
of the feature vectors for each node to 2d, in order to

improve the model’s fitting capability. By multiplying the
two embedding matrices, an N × N matrix is obtained. The
ReLU activation function filters out negative values, and the
SoftMax function normalizes the matrix values, resulting in
the adaptive adjacency matrix A.

2) Multilayer spatiotemporal embedding.: The time em-
bedding vector and spatial embedding vector, Espace ∈
RN×d′

and Etime ∈ Rd′×P , are randomly initialized. They
are added to the original sequence using a broadcasting
mechanism and dimension consistency is ensured through
linear layers. We ∈ Rd×d′

and be ∈ Rd′
represent the weight

and bias of the linear layer, respectively. The introduction
of d′ is to flexibly change the dimension of the embedding
matrix, resulting in X̃ ∈ RP×N×d′

X̃ = XWe + be + Espace + ET
time (3)

B. Temporal feature extraction.

To capture the temporal features of the complete time series
and prevent gradient vanishing or exploding, we utilize a
GRU recurrent network with GCN embedded inside. It is
represented as:

LEFT t = A
[
X̃tW

(1)
s + b(1)s , ht−1

]
RIGHT t = I

[
X̃tW

(2)
s + b(2)s , ht−1

]
(4)

Ãt = [LEFT t, RIGHT t ]Wa + ba

First, we obtain X̃tWs + bs ∈ RN×H through a linear trans-
formation, where H represents the hidden layer dimension
of the recurrent network. I is an N × N identity matrix,
Wa ∈ R4H×H , ba ∈ RN×H represent the weights and biases
of the linear transformation, respectively. ht−1 ∈ RN×H is the
output of the previous time step’s hidden layer. After obtaining
the feature matrix with dimension transformation, denoted as
Ãt ∈ RN×H , we then input it into the GRU:

zt = σ(ÃtWz + bz)

rt = σ(ÃtWr + br)

Ct = tanh
([

X̃t, rt ◦ ht−1

]
Wc + bc

)
(5)

ht = (1− zt) ◦ Ct + zt ◦ ht−1

C. Structured GRUs network.

A single GRU has limited regression performance. To
enhance the model’s performance, we adopt a structured
multi-GRUs network. Different GRUs extract temporal fea-
tures of the same sequence, and the hidden layer outputs
are aggregated, linearly transformed, and then outputted. The
model structure is illustrated in Figure 3, and the comparison
between Linear GRUs and SGRU is illustrated in Figure 4.

In SGRU, the output of GRU(a) and GRU(b), h(a)
t and h

(b)
t ,

respectively, pass through three linear units. h(a)
t additionally

undergoes a sigmoid activation and a Hadamard product is
applied to connect the two parts as follows:
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Fig. 3. Model structure of SGRU
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h
(c)
t = σ(h

(a)
t Wac + bac) ◦ (h(b)

t Wbc + bbc)

h
(d)
t = σ(h

(a)
t Wad + bad) ◦ (h(b)

t Wbd + bbd) (6)

h
(e)
t = σ(h

(a)
t Wae + bae) ◦ (h(b)

t Wbe + bbe)

The output results h
(c)
t , h(d)

t , and h
(e)
t initialize the hidden

layers of GRU(c), GRU(d), and GRU(e), respectively.
The widely used linear GRU (shown in Figure 4, right)

operates by feeding the temporal data into the first GRU,
passing the output to the next GRU, and using the output
of the last GRU for making predictions [13]. SGRU improves
upon this structure (shown in Figure 3 and Figure 4, left) by
introducing the Connection Module (CONN), which simulta-
neously preserves the nonlinear features from the output of
GRU(a) and the linear features from the output of GRU(b),
and merges them together. The final prediction includes the
outputs of all three SGRUs, resulting in three times the output
of the linear GRU and better performances.

D. Prediction and loss calculation.

The outputs of the last three GRUs at all time steps, which
are H(c), H(d) and H(e), are concatenated and passed through
a fully connected (FC) layer to obtain the final result.

H = [ht−P+1, ht−P+2, ..., ht]

Ŷ = FC(
[
H(c),H(d),H(e)

]
) (7)

In order to predict the future states of N nodes over a time
horizon of F time steps, The model loss is computed using
the mean absolute error (MAE), and the model parameters
are updated using back propagation with gradient descent.
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Fig. 5. PeMS03 visualization of nodes No.10 and No.20

The Adam optimizer is utilized to minimize the value of L
over multiple iterations.

L(Ŷ , Y ) =
1

F ×N

F∑
f=1

N∑
n=1

∣∣∣Ŷ (n)
f − Y

(n)
f

∣∣∣ (8)

V. EXPERIMENT

In this chapter, we evaluate the performance of SGRU on
publicly available datasets and compare it with other models.
Additionally, we conduct ablation experiments by removing
certain important modules to verify their effectiveness by
comparing the performance with the original model.

A. Datasets

We evaluate our model on four datasets from the Perfor-
mance Measure System (PeMS) of the California highway
network [25]:
• PeMS03: 358 nodes, 26,209 time steps, starting from

September 1, 2018.
• PeMS04: 307 nodes, 16,992 time steps, starting from

January 1, 2018.
• PeMS07: 883 nodes, 28,224 time steps, starting from

May 1, 2017.
• PeMS08: 170 nodes, 17,856 time steps, starting from

July 1, 2016.
The time series data for nodes 1, 10 and 20 of PeMS03 are
visualized, revealing clear periodicity (left side of Figure 5).
Additionally, there are noticeable similarities (before 8 a.m.)
and differences (after 8 a.m.) among different nodes within
the same day (right side of Figure 5).
Each dataset is preprocessed by linear interpolation to fill
missing values, followed by standardization:

X ′ =
X −mean(X)

std(X)
(9)

The data is sampled at 5-minute intervals, resulting in 288
time steps per day. The entire dataset was divided into
training, validation, and testing sets using a ratio of 6:2:2.

B. Model Settings

To demonstrate the superiority of our model, we compare
it with the following baseline models:
• DCRNN [21]: Uses a Seq2Seq structure to integrate

spatial and temporal features and predict traffic data
using recurrent networks.



TABLE I
PERFORMANCE COMPARISON TO OTHER BASELINES ON FOUR PUBLICLY AVAILABLE DATASETS.

Datasets PeMS03 PeMS04 PeMS07 PeMS08
Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Models

DCRNN 18.18 30.31 18.63 24.70 38.12 17.12 28.30 38.58 11.66 17.86 27.83 11.45
STGCN 17.49 30.12 17.15 22.70 35.55 14.59 25.38 38.78 11.08 18.02 27.83 11.40
GWNet 19.85 32.94 19.31 25.45 39.70 17.29 26.85 42.78 12.12 19.13 31.05 12.68
ASTGCN 17.69 29.66 19.40 22.93 35.22 16.56 28.05 42.57 13.92 18.61 28.16 13.08
STSGCN 17.48 29.21 16.78 21.19 33.65 13.90 24.26 39.03 10.21 17.13 26.80 10.96
STFGNN 16.77 26.28 16.30 20.48 32.51 16.77 23.46 36.60 9.21 16.94 26.25 10.60
STID 19.11 31.42 18.98 23.94 37.51 16.12 26.01 40.60 11.63 19.26 29.94 11.99
STGNCDE 19.92 32.53 19.40 26.35 41.57 19.90 29.22 43.79 14.05 19.97 32.23 13.60
STSSL 16.77 26.99 16.28 20.54 33.14 16.28 22.81 34.71 9.95 16.50 26.51 10.38
GMAN 16.21 26.35 15.92 20.23 32.17 14.29 22.12 34.73 9.58 16.04 25.77 10.08
StemGNN 17.31 28.00 17.53 21.06 33.87 15.91 23.10 35.67 10.25 17.00 26.31 11.55
SGRU(Ours) 15.22 26.23 15.64 19.96 31.98 13.22 21.60 34.58 9.16 15.96 25.13 10.22
Imp. 14.9% 10.9% 11.7% 12.0% 10.5% 18.6% 15.0% 11.1% 18.5% 10.6% 10.4% 12.0%

• STGCN [5]: Applies graph convolution in the spatial
domain and two 1D convolutions in the temporal domain
in a sandwich structure.

• GWNet [9]: Utilizes spatially adaptive matrix learning
for adjacency transformation and applies dilated convo-
lutions in the temporal domain.

• ASTGCN [17]: Incorporates multiple spatio-temporal
attention mechanisms and captures spatio-temporal fea-
tures using convolution operations.

• STSGCN [11]: Slices long sequences into smaller seg-
ments using a sliding time window and enhances local
spatial perception on each segment.

• STFGNN [26]: Generates ”time graphs” to complement
the limitations of ”spatial graphs” and learns hidden
spatio-temporal dependencies.

• STID [6]: Applies spatio-temporal embedding to the
original sequence, concatenates the embedding results,
and outputs them using fully connected layers.

• STGNCDE [27]: The spatiotemporal data is pro-
cessed using two neural controlled differential equations
(NCDEs), and the results are then combined together.

• STSSL [10]: Learns spatio-temporal heterogeneity
through self-supervised mechanisms and combines
”heterogeneity-aware enhancement” to improve the
model’s robustness.

• GMAN [28]: Uses an encoder-decoder structure with
attention mechanisms and incorporates GRU for spatio-
temporal feature fusion.

• StemGNN [29]: Transforms the time domain to the fre-
quency domain using discrete Fourier transform (DFT)
and graph Fourier transform (GFT) to capture spatio-
temporal dependencies simultaneously.

We set the number of historical time steps (P) to 12, the num-
ber of predicted time steps (F) to 12, the spatial embedding
dimension (d) to 2, the GRU hidden dimension (H) to 64,
and the batch size to 64. The experiments were conducted on
an Intel(R) Xeon(R) Gold 6226R CPU and NVIDIA GeForce
RTX 3090 GPU, and multiple experiments were performed
with random seeds ranging from 1 to 10, with the average

results being reported.

C. Performance Evaluation

We selected three evaluation metrics: Mean Absolute Er-
ror (MAE), Root Mean Square Error (RMSE), and Mean
Absolute Percentage Error (MAPE). Lower values indicate
better model performance. The experimental results are pre-
sented in Table 1, where we calculated the average values
of 11 baseline models across the three evaluation metrics.
SGRU consistently achieved improvements of over 10%, with
a particularly significant increase of 18.6% in MAPE on
the PeMS04 dataset. Apart from the MAPE metric on the
PeMS08 dataset, where SGRU performed slightly worse than
GMAN, SGRU outperformed all other models in terms of all
evaluation metrics.

GMAN demonstrated the second-best performance among
the models. GMAN incorporates a mechanism of spatial-
temporal attention with GRU, and its output results are
combined with L ST-Attention blocks. However, each block
considers the correlation between tj and t time steps, resulting
in excessive granularity in the temporal dimension and leading
to time step repetition. As a result, the experimental results
of GMAN were not as good as those of SGRU.

D. Ablation Study

To validate the effectiveness of the important modules in
SGRU, we introduce the following variants:
• simple: The original model with 5 linear GRUs and no

multi-layer spatiotemporal embedding.
• w/ st-emb: Adding multi-layer spatiotemporal embed-

ding to the simple model.
• w/ struct: Replacing the 5 linear GRUs in the simple

model with structured GRUs.
Due to the large size of the PeMS07 dataset, we con-

ducted experiments sequentially on the PeMS03, PeMS04,
and PeMS08 datasets. The evaluation metric was MAE. We
varied the value of the future prediction time steps, denoted
as F, which corresponded to F=3,6,9,12 (corresponding to 15
minutes, 30 minutes, 45 minutes, and 60 minutes, respec-
tively). The results are shown in Figure 6 and Table 2.
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TABLE II
MAE OF SGRU AND ITS 3 VARIANTS

15min 30min 45min 60min

PeMS03

simple 14.14 15.04 15.73 16.36
w/ st-emb 13.73 14.43 15.00 15.51
w/ struct 13.96 14.18 14.86 15.48
sgru 13.30 14.05 14.67 15.22

PeMS04

simple 18.74 19.45 20.08 20.72
w/ st-emb 18.34 19.02 19.56 20.08
w/ struct 18.10 18.93 19.63 20.29
sgru 18.00 18.73 19.35 19.96

PeMS08

simple 15.07 15.81 16.40 17.13
w/ st-emb 14.49 15.14 15.71 16.23
w/ struct 14.13 14.93 15.61 16.27
sgru 14.07 14.77 15.38 15.96

The simple model performs the worst, the addition of multi-
layer spatiotemporal embedding improves its performance,
and the use of structured GRUs significantly enhances the
performance. SGRU achieves the best performance overall,
confirming the contribution of both important modules to the
final model.

VI. CONCLUSION

In order to achieve a better fitting performance on traffic
datasets and avoid the loss of adjacent data caused by di-
lated convolutions or the loose connections between temporal
slices, as well as the excessive bulkiness within each slice,
we propose a Structured Gated Recurrent Units (SGRU)
network. After completing the spatio-temporal embedding,
SGRU employs two parallel GRUs to extract features from
the same time series. These features are then transformed by
non-linear layers and fed into three GRUs. Finally, the hidden
layer outputs are concatenated, passed through fully connected
layers, and used for regression prediction. We conducted
comparative experiments on four publicly available datasets:
PeMS03, PeMS04, PeMS07, and PeMS08. Compared to
the average performance of baseline models, our approach
achieved improvements of 11.7%, 18.6%, 18.5%, and 12.0%
respectively. Furthermore, ablation experiments demonstrated
a clear advantage of SGRU over linear GRU.
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