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Abstract—Graph anomaly detection plays a crucial role in
identifying exceptional instances in graph data that deviate
significantly from the majority. It has gained substantial at-
tention in various domains of information security, including
network intrusion, financial fraud, and malicious comments, et
al. Existing methods are primarily developed in an unsupervised
manner due to the challenge in obtaining labeled data. For lack
of guidance from prior knowledge in unsupervised manner, the
identified anomalies may prove to be data noise or individual
data instances. In real-world scenarios, a limited batch of labeled
anomalies can be captured, making it crucial to investigate the
few-shot problem in graph anomaly detection. Taking advantage
of this potential, we propose a novel few-shot Graph Anomaly
Detection model called FMGAD (Few-shot Message-Enhanced
Contrastive-based Graph Anomaly Detector). FMGAD leverages
a self-supervised contrastive learning strategy within and across
views to capture intrinsic and transferable structural repre-
sentations. Furthermore, we propose the Deep-GNN message-
enhanced reconstruction module, which extensively exploits the
few-shot label information and enables long-range propagation
to disseminate supervision signals to deeper unlabeled nodes.
This module in turn assists in the training of self-supervised
contrastive learning. Comprehensive experimental results on six
real-world datasets demonstrate that FMGAD can achieve better
performance than other state-of-the-art methods, regardless of
artificially injected anomalies or domain-organic anomalies.

Index Terms—graph anomaly detection, few-shot, Deep-GNN

I. INTRODUCTION

Graph serves as a versatile representation of structured data,
facilitating systematic modeling of complex dependencies
among instances. It has been widely used in diverse domains
like social networks, finance, biology, and transportation [1]–
[3]. The rapid progress of industrial and internet technologies
has led to a surge in the frequency of anomalous instances,
encompassing fraudulent activities within social networks and
the unauthorized disclosure of sensitive corporate information.

∗Nan Wang and Xibin Zhao are the corresponding authors

Consequently, graph anomaly detection has garnered substan-
tial attention from both industrial and academic communities.

Graph neural networks (GNNs) [4] have made significant
advancements in graph representation learning by extending
deep learning methods to graph-structured data, and they
have found wide applications in graph anomaly detection.
Unlike traditional anomaly detection methods that focus on
vector data, graph anomaly detection requires the simultane-
ous exploration of both node attribute information and graph
structure information, which is challenging for conventional
approaches [5]. While, leveraging GNNs for modeling com-
plex graph-structured data allows for the joint encoding of
intricate interactions among instances and their respective
attribute features, thereby facilitating the identification of
anomalous nodes.

Due to the labor-intensive and time-consuming nature of
acquiring labeled anomaly data, most existing models in graph
anomaly detection are developed in an unsupervised manner.
For instance, DOMINANT [6] proposed a deep autoencoder
that utilizes graph convolutional networks (GCNs) to recon-
struct attributes and structure, thereby enhancing detection
performance. GAAN [7] employs generative adversarial net-
works and generates pseudo-anomalies by utilizing Gaussian
noise for discriminative training. Furthermore, with the rise
of self-supervised learning, graph anomaly detection methods
based on contrastive learning have gained popularity. For
example, CoLA [8] employs random walks for graph aug-
mentation, constructs positive and negative pairs, and designs
proxy tasks for contrastive learning. Research findings have
demonstrated that contrastive learning-based graph anomaly
detection methods have achieved state-of-the-art performance
in unsupervised settings.

However, due to the complexity and diversity of anomalies,
as well as the lack of guided supervision from prior knowl-
edge, unsupervised methods may suffer from local optima or
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exhibit biased anomaly detection performance. Nowadays, do-
main experts have provided feedback indicating that obtaining
a limited number of labeled anomalies is feasible [9]. These
labeled anomalies can serve as prior knowledge to guide
model training and have great potential for improving graph
anomaly detection performance. However, detecting anoma-
lies in a few-shot setting remains a significant challenge. Ex-
isting semi-supervised and positive-unlabeled (PU) learning
methods [10] have not yielded satisfactory results in this task.
They rely on a sufficient number of labeled anomaly samples,
making it difficult to effectively utilize supervised information
in few-shot scenarios. Recently, some methods utilize meta-
learning [11] and cross-domain transfer learning approaches
[12] to address the few-shot setting. For instance, GDN [13]
incorporates a meta-learning algorithm across networks to
transfer meta-knowledge from multiple auxiliary networks for
few-shot network anomaly detection. However, these methods
have requirements for auxiliary networks or datasets, which
are often difficult to obtain in real-world scenarios.

To address the aforementioned challenges, we pro-
pose a Few-shot Message-enhanced Contrastive-based Graph
Anomaly Detector (FMGAD) that combines the rational uti-
lization of few-shot labels with self-supervised contrastive
learning. FMGAD consists of two main modules: (i)Multi-
view contrastive learning module adopts the core idea of
multi-view contrastive learning to facilitate both intra-view
and cross-view contrastive learning. (ii)Deep-GNN message-
enhanced reconstruction module leverages spectral high-pass
filtering to design a deep message-passing network, effectively
utilizing the few-shot label information. This module assists
the Multi-view Contrastive Learning Module in learning tai-
lored representations for the anomaly detector. The framework
of our approach is illustrated in Fig 1. To summarize, our main
contributions are summarized as follows:

• To ensure that the self-supervised module can learn an
optimal representation, we employ graph augmentation
to obtain multiple views, enabling contrastive learning
within and across views.

• To effectively utilize the few-shot label information
and leverage it to assist the training of contrastive
learning, we propose a Deep-GNN Message-Enhanced
Reconstruction Module that provides a sufficiently large
receptive field for the few-shot labeled nodes.

• We conduct extensive experiments on six real-world
datasets with synthetically injected anomalies and or-
ganic anomalies. The experimental results demonstrate
the effectiveness of our approach in few-shot graph
anomaly detection.

II. RELATED WORK

In this section, we briefly describe the related work on (1)
Graph Anomaly Detection; (2) Few-shot Graph Learning and
(3) Graph Augmentation.

A. Graph Anomaly Detection

Like other graph-based methods, semi-supervised learning
is the most common graph representation learning mode
and is also used in the field of graph anomaly detection.
SemiGNN [14] utilizes a hierarchical attention mechanism
to better associate different neighbors and different views.
BWGNN [15] designs a band-pass filter kernel function sat-
isfying Hammond’s Graph Wavelet, transmitting information
in corresponding frequency bands separately. Since anomalies
are difficult to obtain, most existing methods are based on
unsupervised modes and are mainly divided into two types:
graph autoencoder and self-supervised contrastive learning.
GAE (Graph Autoencoder) [16] reconstructs node features
using an Encoder-Decoder architecture and defines nodes with
high reconstruction loss as anomalous. DOMINANT [6] si-
multaneously reconstructs both structural information, such as
the adjacency matrix, and node attributes to calculate anomaly
scores. In recent years, with the rise of self-supervised learn-
ing and proxy tasks, various contrastive learning strategies
have been widely applied. CoLA [8] utilizes random walk
sampling to perform graph augmentation and subsequently
constructs positive and negative node-subgraph pairs for con-
trastive learning. GraphCAD [17] employs a global clustering
algorithm to partition the entire graph into multiple parts,
where nodes injected from other parts are regarded as pseudo-
anomalies, forming negative pairs. GRADATE [18] adopts
edge modification graph augmentation technique and incorpo-
rates three types of contrastive learning strategies: node-node,
node-subgraph, and subgraph-subgraph.

B. Few-shot Graph Learning

In most real-world scenarios, only very limited labeled
samples are often available due to expensive labeling costs.
In view of this, graph few-shot learning and cross-network
meta learning are proposed to solve the problem of perfor-
mance degradation when facing limited labeled data to a
certain extent. For instance, GDN [13] is equipped with a
cross-network meta-learning algorithm that utilizes a small
number of labeled anomalies to enhance statistically signifi-
cant deviations between abnormal nodes and normal nodes
on the network. Meta-PN [19] infers high-quality pseudo-
labels on unlabeled nodes via a meta-learning label propa-
gation strategy while achieving a large receptive field during
training. However, cross-domain auxiliary datasets are not
always available, thus many non-meta-learning strategies have
been explored. ANEMONE-FS [20] contains two multi-scale
comparison networks, where the consistencies between nodes
and contextual embeddings are maximized for unlabeled node
while minimized for labeled anomalies in a mini-batch.

C. Graph Augmentation

Similar to the vision domain, there are numerous augmen-
tation methods in the field of graph representation learning.
Specifically, graph augmentation techniques alter the attribute
and structural characteristics of graph datasets within a certain
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Fig. 1. The above image presents an overview of our model FMGAD, where the architecture demonstrates the details of the multi-view contrastive learning
module(Right) and Deep-GNN few-shot message-enhanced module(Left) respectively.

range, providing convenience for self-supervised learning. The
majority of existing methods focus on manipulating nodes or
edges within the graph. These methods include: (i) enhancing
by modifying or masking node features [21], (ii) adapting
the adjacency matrix or adjusting edge weights [22], and (iii)
utilizing Restarted Random Walk (RoSA) [23] to generate
augmented local views.

III. PROBLEM DEFINITION

In this section, we first introduce the notations mentioned
in this paper, and then give the formal problem definition.
Given an attributed graph G = (X,A), we denote its node
attribute (i.e., feature) and adjacency matrices as X ∈ Rn×d

and A ∈ Rn×n, where n and d are respectively the number
of nodes and feature dimensions. It can also be defined
as G = (V,E,X), where V = {v1, v2, . . . , vn} and E =
{e1, e2, . . . , en} represent node and edge sets respectively.

The definition of Few-shot GAD is to use the attribute and
structure information of the graph to detect anomalies when a
few-shot abnormal labeled nodes are known. We have a small
set of labeled anomalies VL and the rest set of unlabeled
nodes VU , where |VL| << |VU |, since the labeled anomaly
nodes are difficult to obtain and few of them can be actually
used. Then, our goal is to learn a model F(·) : RN×D →
RN×1 on VL ∪ VU , which measures node abnormalities by
calculating their anomaly scores y.

IV. METHODOLOGY

In this section, we present the details of our proposed
approach FMGAD for detecting graph node anomalies in
few-shot scenarios. As shown in Fig 1, our approach mainly

consists of two modules, including multi-view contrastive
learning module and Deep-GNN message-enhanced recon-
struction module. Graph anomalies are typically categorized
as attribute-context anomalies and structural anomalies, and
our method addresses both aspects. Firstly, we employ suit-
able graph augmentation techniques to construct different
views and perform subgraph sampling for each target node.
Next, to fully explore structural anomalies, we utilize proxy
tasks and design a multi-view contrastive learning framework.
Subsequently, to investigate features at the attribute-context
level and leverage existing few-shot labels, we build a deep
information augmentation reconstruction module. In all, our
model starts from the essence of graph anomalies, designs
self-supervised learning objectives, and incorporates super-
vised constraints using few-shot labels. In the rest of this
section, we demonstrate the details of the whole framework
respectively.

A. Graph Augmentation

The self-supervised strategy based on contrastive learning
enables not only differentiation learning within the same
scale, such as ”node vs. node,” but also discrimination across
different scales, such as ”node vs. subgraph.” As discussed
in related work, to ensure that the self-supervised learning
module can extract rich attribute and structural information,
it is necessary to design augmentation strategies and proxy
tasks tailored to the current task. For graph anomaly detection,
according to [reference], anomalies in graph nodes often
manifest as a mismatch with their surrounding environment.

For several popular graph augmentation strategies in current
graph representation learning, such as node feature pertur-



bation or masking and edge modification. Including Graph
Diffusion, it essentially involves perturbing the adjacency
matrix and modifying the target edges. We argue that these
strategies are not suitable for graph anomaly detection because
they may alter the underlying logic or semantic features of
the data. This could particularly have negative effects on
detecting naturally occurring anomalies rather than artificially
injected anomalies. Hence, we utilize random walks with
restart (RWR) to obtain augmented views. Specifically, for
each selected target node, we sample subgraphs of fixed size
p. Unlike standard random walks, RWR introduces a restart
probability, where there is a certain probability of restarting
from the initial node at each step. Therefore, using RWR to
sample subgraphs does not introduce additional anomalies.

B. Multi-view Contrastive Learning Module

Furthermore, we constructed a multi-view contrastive learn-
ing module. This module utilizes GNN encoders and decoders
to perform contrastive learning between the target node and
two views, simultaneously learning discriminative attribute
and structural topological information. It consists of two parts:
Node-Subgraph and Subgraph-Subgraph, capturing features
within each view and across different views respectively.
Node-Subgraph Contrast. In each view, a target node vi
forms a positive pair with its located subgraph and forms a
negative pair with a random subgraph where another node
vj is located. We first adopt a GCN encoder that maps the
features of nodes in the subgraph to the embedding space.
The hidden-layer representation can be defined as:

Hℓ+1
ω = GNN(Aω, H

ℓ
ω) = σ(D

− 1
2

ω AωD
− 1

2
ω Hℓ

ωW
ℓ), (1)

where Hℓ+1
ω and Hℓ

ω denote the (ℓ + 1)-th and ℓ-th layer
hidden representation in view ω, D̃− 1

2
ω ÃωD̃

− 1
2

ω is the nor-
malization of the adjacency matrix in view ωi and W ℓ is
the network parameters. It is noteworthy that the networks
operating under two views employ identical architecture and
parameter sharing. Then we take the average pooling function
as the readout module to obtain the subgraph-level embedding
vector eω:

eω = READOUT (Hω) =
1

K

K∑
j=1

(Hω)K , (2)

where K denotes the number of remaining nodes in the
subgraph. Given that the target node is masked within the
subgraph, we utilize the weight matrix of the GCN encoder
to project the features onto a shared embedding space. Math-
ematically, this can be formulated as follows:

hℓ+1
ω = σ(hℓωW

ℓ). (3)

In each view, the anomalous degree of a target node
depends on its similarity to the paired subgraph embedding.
Therefore, we choose a Bilinear model to quantify the rela-
tionship:

sω = sigmoid(eωWs h
T
ω ), (4)

where Ws is a learnable matrix. We employ the binary cross-
entropy loss to measure the contrastive loss in a single view
that can be demonstrated as:

Lω
NS = −

N∑
i=1

(yi log (sωi) + (1− yi) log (1− sωi)) , (5)

where yi is equal to 1 when sωi denotes a positive pair, and
is equal to 0 when sωi denotes a negative pair. The same
operations and model architecture are used on the second
view, and both views share model parameters. Thus the final
node-subgraph contrast loss is:

LNS = αL1
NS + (1− α)L2

NS , (6)

where α ∈ (0, 1) is a trade-off parameter to balance the
importance between two views.
Subgraph-Subgraph Contrast. Instead of intra-view con-
trast, subgraph-subgraph contrast implements cross-view con-
trastive learning. It aims to learn more representative subgraph
embeddings, thereby enhancing the neighborhood representa-
tions of target nodes. Specifically, a subgraph establishes a
positive pair with the subgraph formed by its target node vi in
another view, while it forms negative pairs with two subgraphs
where another node vj is located in both views. Inspired by
[], we employ a loss function to optimize the contrast:

LSS = −
n∑

i=1

log
exp (e1i · e2i)

exp (e1i · e1j) + exp (e1i · e2j)
, (7)

where e1i and e1i denote the embeddings of the subgraphs
that the target node vi belongs to in two views, e1j and e1j
represent the embeddings of the subgraphs of another node
vj separately. Then the final multi-view contrastive loss is:

Lcon = γLNS + (1− γ)LSS , (8)

where γ ∈ (0, 1) balances the influence of two contrastive
learning modes.

C. Deep-GNN Message-Enhanced Reconstruction Module

In the context of few-shot scenarios, the availability of
anomaly label information is severely limited. Conventional
semi-supervised graph anomaly detection methods suffer from
the issue of over-smoothing, making it challenging to extend
the receptive field and effectively propagate label informa-
tion to deeper neighborhoods. To address this challenge,
we propose leveraging the concept of AutoEncoder from
unsupervised methods to reconstruct attributes. Additionally,
we introduce a scalable deep graph neural network (GNN)
architecture to enhance the utilization of few-shot labels and
their associated features, thereby improving the performance
of anomaly detection in graph data.



Initially, we extract a few-shot environmental subgraph
from the original graph, comprising a subgraph originating
from the few-shot labeled node and encompassing its M-
order neighbors. To facilitate the sparse message enhanced
feature reconstruction process, distinct graph neural network
(GNN) architectures are employed for encoding the original
graph and the few-shot environment subgraph. In particular,
for the original view, GNN encoder is with low-pass filter-
ing characteristics, such as GCN, GAT, GIN. These GNN
models effectively capture and propagate information within
the graph, enabling accurate attribute reconstruction and sub-
sequent anomaly detection. The transform of corresponding
GNN encoder is as follows:

Hℓ+1
r = σ(D−1/2AD−1/2Hℓ

rWr). (9)

To leverage the specific attributes of sparse anomaly sam-
ples within the few-shot environment subgraph and their high-
order correlation with the surrounding context, we propose a
scalable deep graph neural network (Deep-GNN) [24] archi-
tecture that enables long-range propagation. This approach
allows for the consideration of a broader range of context
nodes, thereby expanding the receptive field of sparse anomaly
samples. To address the challenge of over-smoothing that
arises when increasing the propagation step size in GNN, we
introduce a high-pass filtering GNN [25] that operates in the
spectral domain:

FH = εI −D−1/2AD−1/2 = (ε− 1)I + L, (10)

Hℓ+1
f = σ(FHH

ℓ
fWf ). (11)

According to [25], high-pass filtering GNN can overcome
the over-smoothing problem to a certain extent, and therefore
can be extended to more layers. Then we concatenate the node
embeddings obtained from the original graph and the few-shot
environmental subgraph:

H = CONCAT (Hr, Hf ), (12)

for nodes that do not appear in the few-shot environment
subgraph, their hf is padded with 0. Then a layer of MLP is
applied to obtain the reconstructed node embeddings:

X̂ =MLP (H). (13)

The reconstruction loss of the original graph is calculated
by MSE loss:

Lrec =
1

N

N∑
i=1

(x̂i − xi)
2. (14)

D. Anomaly Detector

To jointly train the multi-view contrastive learning module
and the Deep-GNN message-enhanced reconstruction module,
we optimize the following objective function:

L = Lcon + ψLrec, (15)

where ψ is a controlling parameter which balances the impor-
tance of the two modules. By minimizing the above objective
function, we can compute the anomaly score of each node.

V. EXPERIMENTS

In this section, we conduct empirical evaluations to show-
case the efficacy of the proposed framework. Our primary
objective is to address the following research inquiries:

• RQ1. Can our method perform well in extreme few-shot
scenarios?

• RQ2. How our model behave when changing the degree
of label availability and the number of Deep-GNN lay-
ers?

• RQ3. How do the key designs and components influence
the performance of our method?

A. Experimental Settings

Dataset. To thoroughly evaluate our method’s performance
in identifying both naturally occurring organic anomalies and
artificially injected anomalies, we selected two categories of
datasets. The first category consists of two authentic datasets:
Cora [26] and Citeseer [27], that do not inherently contain
organic anomalies but require manual injection of anomalies.
The second category comprises three authentic datasets: Wiki
[28], Reddit [29] and YelpChi [30], that inherently contain
organic anomalies. For anomaly injection, we followed the
same approach as DOMINANT by injecting the same number
of feature and structural anomalies into the three datasets that
previously did not have any organic anomalies.

TABLE I
STATISTICS OF DATASETS

Dataset Nodes Edges Features Anomaly Ratio(%)

Cora 2,708 5,429 1433 150 5.54
CiteSeer 3327 10,154 3703 150 4.51

Wiki 9,227 18,257 64 217 2.35
Reddit 15,860 136,781 602 796 5.02

YelpChi 23,831 98,630 32 1,217 5.11

Compared Methods. We compare our proposed method
FMGAD with other three categories of methods. (i) Conven-
tional semi-supervised GNN models: GCN [4], GAT [31],
and semi-supervised methods designed for GAD: SemiGNN
[14], BWGNN [15]. (ii) Unsupervised GNN-based graph
anomaly detection methods: DOMINANT [6], CoLA [8],
GraphCAD [17] and GRADATE [18]. (iii) Few-shot methods
on graph anomaly detection: GDN [13], Meta-PN [19] and
ANEMONE-FS [20].



TABLE II
PERFORMANCE COMPARISON RESULTS (10-SHOT) W.R.T. AUC-ROC AND AUC-PR ON FIVE DATASETS.

Methods Cora Citeseer Wiki Reddit YelpChi
AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR AUC-ROC AUC-PR

GCN 0.5239 0.0427 0.4128 0.055 0.4324 0.0239 0.4975 0.0826 0.3371 0.0725
GAT 0.5473 0.0495 0.4645 0.062 0.4373 0.0284 0.5184 0.1225 0.3564 0.0834

SemiGNN 0.6637 0.1293 0.5322 0.074 0.4785 0.0332 0.6249 0.1953 0.4146 0.1378
BWGNN 0.6855 0.1876 0.5421 0.081 0.4668 0.0295 0.5863 0.1634 0.5473 0.2161

DOMINANT 0.7483 0.2741 0.8279 0.2415 0.4488 0.0227 0.7429 0.3185 0.4872 0.1652
CoLA 0.7515 0.2398 0.8738 0.2942 0.5373 0.0319 0.7257 0.2474 0.3985 0.1579

GraphCAD 0.7674 0.2892 0.8521 0.2787 0.5282 0.0249 0.7536 0.2643 0.4238 0.1843
GRADATE 0.7786 0.2973 0.8872 0.3471 0.5471 0.0322 0.7472 0.2879 0.4994 0.2164

GDN 0.7736 0.1965 0.7963 0.1826 0.5248 0.0326 0.8136 0.3084 0.7281 0.2785
Meta-PN 0.8537 0.2817 0.8127 0.2273 0.4663 0.0276 0.8064 0.3126 0.7549 0.2698

ANEMONE-FS 0.8836 0.3062 0.9028 0.3294 0.5317 0.0348 0.8123 0.3352 0.7729 0.2977
FMGAD 0.8928 0.3187 0.9193 0.3981 0.6133 0.0438 0.8326 0.3561 0.8052 0.3338

Evaluation Metrics. We employ two popular and effective
metrics for evaluation, the Area Under Receiver Operat-
ing Characteristic Curve (AUC-ROC) and the Area Under
Precision-Recall Curve (AUC-PR) [32]. AUC-ROC quantifies
the ability of a binary classifier by measuring the area under
the receiver operating characteristic curve. AUC-PR captures
the trade-off between the two metrics and is particularly useful
when the dataset is imbalanced or when the focus is on
positive instances.
Implementation Details.

All our experiments are conducted with a 24 GB 3090 GPU,
and the proposed FMGAD is mainly implemented through
pyg library. In our implementation, the size K of subgraph of
each target node and the dimension of hidden layer are fixed to
8 and 128, respectively. In the contrastive learning module,
the GNN network is set to 2 layers; in the reconstruction
module, the low-pass and high-pass GNN Encoder are set to
2 and 5 layers. For each dataset, we set the number of few-
shot labeled anomalies as 10, and the trade-off parameters
α, γ1, γ2, ψ are chosen as 0.7, 0.6, 0.4, and 0.5 separately.

B. Experimental Results (RQ1)

In this subsection, we consider semi-supervised, unsuper-
vised and other few-shot baseline methods for comparing
with our methods in terms of AUC-ROC and AUC-PR. To
ensure few-shot scenarios, for all few-shot GAD methods,
we use 10 annotated anomalies during model training. Tab II
shows the overall performance comparison on both artificially
injected anomaly and organic anomaly datasets. FMGAD
consistently outperforms all baseline methods on all six
real-world datasets, thereby validating the effectiveness of
our approach in addressing anomaly detection in few-shot
scenarios. Based on the experimental results, we have the
following observations:

• Conventional semi-supervised graph anomaly detection
methods (i.e., GCN, GAT, SemiGNN, and BWGNN)
generally do not exhibit competitive performance, indi-
cating their limited ability to exploit label information.
It performs even worse than unsupervised methods on

almost all datasets. This discrepancy can be attributed
to the reliance of conventional semi-supervised methods
on sufficient label information for message propagation,
which exacerbates the over-smoothing issue in few-shot
scenarios and hinders the learning of abnormal features.
However, unsupervised methods leverage AutoEncoder
or contrastive learning strategies to uncover deep data
distributions based on local features and structures. Thus,
they can achieve strong discrimination capabilities when
it comes to identifying artificially injected anomalies.

• On datasets with artificially injected anomalies, the un-
supervised methods achieve performance that matches
existing few-shot graph anomaly detection methods.
However, on organic anomaly datasets, unsupervised
methods generally underperformed compared to few-shot
methods. In particular, compared to the GRADATE, on
YelpChi dataset, our FMGAD has 60.35% and 54.25%
improvement w.r.t. AUC-ROC and AUC-PR, respec-
tively. This is most likely because real data often pos-
sesses numerous expert priors, and unsupervised methods
tend to blindly map and partition features.

• In comparison to existing few-shot graph anomaly detec-
tion methods, our approach has demonstrated notable ad-
vancements. To be specific, on Wiki dataset, our method
FMGAD outperforms GDN by 16.86% and 34.36% in
terms of AUC-ROC and AUC-PR, respectively. The three
methods we compared are all founded on meta-learning
principles, and the efficacy of meta-learning methods
relies heavily on the quality of the auxiliary network or
dataset. However, in many real-world scenarios, datasets
often do not meet such stringent requirements.

C. Sensitivity & Robustness Analysis (RQ2)

In order to verify the effectiveness of FMGAD in different
few-shot anomaly detection settings, we change the number
k of anomalous samples for model training to form k-
shot learning settings for evaluation. Specifically, we perform
experiments on all five datasets and select k from {1, 3, 5, 10,
15, 20}. The experimental results are summarized in Tab III.



TABLE III
FEW-SHOT PERFORMANCE ANALYSIS OF FMGAD.

Setting Cora Citeseer Wiki Reddit YelpChi

1-shot 0.8681 0.9039 0.5854 0.8216 0.7667
3-shot 0.8843 0.9126 0.6003 0.8244 0.7786
5-shot 0.8906 0.9177 0.6078 0.8263 0.7928

10-shot 0.8946 0.9193 0.6133 0.8326 0.8052
15-shot 0.8921 0.9225 0.6158 0.8367 0.8127

As observed, even in scenarios where only 1-shot anomalies
are provided, FMGAD can still outperform other baseline
methods, demonstrating its superior performance. For in-
stance, on Reddit dataset, the FMGAD with 1-shot anomaly
outperforms GraphCAD by 9.02% in terms of AUC-ROC.
When compared with ANEMONE-FS, it achieves improve-
ments of 6.52% in terms of AUC-ROC with 5-shot anomalies.
This demonstrates the effectiveness of the FMGAD method
for extremely limited anomalous labels. Furthermore, we
also observe that as the number of few-shot anomaly labels
increases, FMGAD’s performance generally improves, which
further confirms the effectiveness of our method.

Subsequently, we investigated the effects of varying the
number of Deep-GNN layers in the reconstruction module and
adjusting the number of nodes through RWR sampling in the
enhanced subgraph sampling of the contrastive learning mod-
ule on model performance. The corresponding experimental
results are shown in Fig 2.

Fig. 2. Performance with different number of Deep-GNN layers and the size
of subgraph sampled by RWR.

Analyzing the image on the left, we observe a trend where
the model performance initially improves with an increasing
number of sampling subgraph nodes. However, beyond a
certain threshold, further increments in the number of nodes
lead to a diminishing effect on the model’s performance.
This is because insufficient sampling of the target node
subgraph makes it challenging for the model to capture the
local structural characteristics of the data, leading to subpar
performance. Conversely, if the sampled subgraph is exces-
sively large, it may contain redundant information, thereby
adversely affecting model performance. Observing the graph
on the right, we note that with an increase in the number of
Deep-GNN layers, the model performance exhibits a slight
improvement initially, followed by a subsequent decline. We
attribute the performance improvement to the Deep-GNN

network effectively propagating label information to more
distant neighbors within the graph. However, an excessive
number of layers will inevitably introduce the challenge of
over-smoothing, which can negatively impact the model’s
performance. Hence, finding an optimal balance in the size of
the sampled subgraph and the number of Deep-GNN layers
is crucial for achieving optimal results.

D. Ablation Study (RQ3)

In order to verify the effectiveness of each key com-
ponent of FMGAD, we conduct an ablation study on the
variants of the proposed approach. Concretely, we introduce
three variants of our approach: FMGAD-ns and FMGAD-ss,
which individually exclude the node-subgraph and subgraph-
subgraph contrastive learning sub-modules, and FMGAD-
re, which omits the Deep-GNN few-shot message-enhanced
module. The detailed results are shown in Fig 3.

Fig. 3. Ablation Performance on different variants.

As observed above, for each variant that excludes a specific
module, there has been a noticeable degradation in the model’s
performance. Among these variants, FMGAD-ns stands out
as the most significantly impacted, as it eliminates the node-
subgraph contrastive sub-module. Specifically, it drops by
8.62% and 13.17% on YelpCHi datasets in terms of AUC-
ROC and AUC-PR. In summary, through ablation studies, we
affirm the robustness and efficacy of our proposed technique in
addressing graph anomaly detection under few-shot scenarios.

VI. CONCLUSION

In this paper, we investigate the problem of graph anomaly
detection in few-shot scenarios. Through a comprehensive
analysis of existing semi-supervised, unsupervised, and cus-
tomized few-shot methods, we propose FMGAD, a novel
anomaly detector that combines few-shot message enhance-
ment with multi-view self-supervised contrastive learning.
Our model effectively utilizes the self-supervised contrastive
learning strategy to capture local structures and features
within the graph. Additionally, we introduce a deep message-
passing mechanism that incorporates high-pass convolutional
filtering functions to enable deep propagation of few-shot
node information. Extensive experiments conducted on mul-
tiple real-world datasets demonstrate the outstanding perfor-
mance of FMGAD.
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