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Abstract—Emerging applications in healthcare, autonomous vehi-
cles, and wearable assistance require interactive and low-latency
data analysis services. Unfortunately, cloud-centric architectures
cannot fulfill the low-latency demands of these applications, as
user devices are often distant from cloud data centers. Edge
computing aims to reduce the latency by enabling processing
tasks to be offloaded to resources located at the network’s edge.
However, determining which tasks must be offloaded to edge
servers to reduce the latency of application requests is not
trivial, especially if the tasks present dependencies. This paper
proposes a Deep Reinforcement Learning (DRL) approach called
TPTO, which leverages Transformer Networks and Proximal
Policy Optimization (PPO) to offload dependent tasks of IoT
applications in edge computing. We consider users with various
preferences, where devices can offload computation to an edge
server via wireless channels. Performance evaluation results
demonstrate that under fat application graphs, TPTO is more
effective than state-of-the-art methods, such as Greedy, HEFT,
and MRLCO, by reducing latency by 30.24%, 29.61%, and
12.41%, respectively. In addition, TPTO presents a training time
approximately 2.5 times faster than an existing DRL approach.

Index Terms— Edge computing, reinforcement learning,
Transformers, task offloading

1. Introduction

Edge computing, by complementing the cloud, can enable
an increasing range of IoT applications that produce vast
amounts of time-sensitive data requiring prompt analysis, such
as in autonomous driving, healthcare, online video processing,
and wearable assistance [1], [2]. In autonomous driving, for
instance, latency is a critical factor in ensuring the safety
of passengers and pedestrians. A minor delay in processing
sensor data or making control decisions can not only degrade
the users’ quality of experience but also result in accidents
or compromised safety. Edge computing provides computing
services (e.g., base stations, access points, and edge routers)
that are closer to end-users, contributing to lower the latency
of application requests, their energy consumption, and the
amount of data transferred to the cloud for processing [3].

Reducing the latency of IoT applications requires offload-
ing data processing tasks to edge servers, an activity that

often poses significant challenges. Offloading tasks can free
constrained resources of user devices, but on the other hand,
transferring data between the user devices and remote edge
computing servers can impact the application latency [4].
Moreover, according to research conducted by Alibaba, around
75% of real-world applications have interdependent tasks,
commonly structured as a Directed Acyclic Graph (DAG),
where the vertices represent data sources, data sinks, end-
users, and operators, and the edges represent data streaming
from one operator to another [5], [6]. Trying to devise efficient
offloading decisions for these applications can often result in
NP-hard problems, which require sophisticated algorithms to
address them effectively.

Several heuristics, meta-heuristics, and model-based ap-
proaches exist for offloading in edge computing, most of
which are unsuitable to stochastic environments where re-
source availability is continuously evolving [7], [8]. Edge
computing is also stochastic when considering the number of
applications, the number of tasks in an application, their arrival
rate, their dependencies, and their resource requirements [9].
DRL with policy optimization is a promising approach to
address these challenges and design agents interacting with
the environment to learn an optimal policy, enhanced over
time through trial and error [10]. DRL agents can learn
a stochastic policy without having preliminary information
about the environment, making them suitable for stochastic
and complex systems like edge environments [7], [8], [11],
[12], [13].

We formulate the task offloading decision as a binary op-
timization problem and propose a solution, Transformer-PPO
based Task-Offloading (TPTO), which utilizes a combination
of Markov Decision Process (MDP), Reinforcement Learning
(RL), and Transformers [14]. While RL provides a learning
mechanism to optimize offloading decisions over time, the
Transformer model enhances the solution’s performance by
enabling it to learn from previous tasks and apply the knowl-
edge to future offloading decisions. TPTO trains Transformers
for various edge computing tasks and quickly adapts to new
ones with less training time and shorter latency. Our proposed
approach features Bidirectional Encoder Representations from
Transformers (BERT) architecture incorporating multi-head
attention, layer normalization, and feed-forward fully con-
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nected layers. The predictions made by the Transformer, pro-
vided to a Softmax function, act as the actions that guide the
training process in collaboration with the PPO algorithm. This
results in a more efficient and effective solution. To our knowl-
edge, this paper presents the first work that applies BERT
for offloading decisions in edge environments. To validate
our approach, we carry out simulations using synthetic DAGs
that reflect real-world applications with dependent tasks and
network topologies with multiple wireless transmission rates.
Experimental results demonstrate our approach’s effectiveness
in optimizing the offloading problem.

The main contributions of this work are: A novel latency-
aware task offloading approach, TPTO, that leverages the
Transformer model that quickly adapts to stochastic edge
environments; and a new policy that jointly uses Transformers
and an actor-critic framework to determine the best action for
task offloading – i.e., offloaded to the edge or processed locally
to minimize end-to-end latency.

The paper is structured as follows: Section 2 describes the
problem and presents a formulation. Section 3 presents TPTO,
whereas Section 4 analyzes and compares its efficiency against
state-of-the-art techniques. Section 5 reviews related work, and
Section 6 concludes the paper and discusses future work.

2. Problem Description and Formulation

A real-time object detection system presents a typical ex-
ample of an application that can benefit from computation of-
floading to edge computing servers (Figure 1). In this scenario,
a user device often captures a video stream from a camera
and aims to detect and recognize objects from the video feed
in real-time. This scenario reflects, for instance, applications
in facial recognition [7] and pest bird detection systems
[15]. The user device can carry out data pre-processing and
execute a lightweight object detection model locally (e.g.,
identifying some features), but the type of computations it
can perform will largely depend on the system status, the
available resources, and their constraints. Alternatively, some
of the computations can be offloaded to an edge server.
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Offloading
Decision

Communication
Unit

Source
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TaggingDisplay

Object
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tracking app

Execution time on
edge server: tex EC
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Figure 1. System model with sample application.

An application A is a DAG G = (V,E) where each vertex
vi ∈ V represents a task and each directed edge e(vi, vj) ∈ E
is a dependence constraint in which task vi must complete
before task vj starts. Entry tasks are tasks without parent tasks,

whereas exit tasks or sinks are tasks without children. The
computation of task vi corresponds to the number of CPU
cycles needed for its execution, given by ci. Moreover, we
define as dataupi and datadoi the amount of data required to
upload and download, respectively, task vi to/from an edge
server.

The computing capacity of a resource mj (user device or
edge server), denoted as csj , reflects its clock speed times
the number of cores available in the system. A user device
is associated with a container providing the computing and
network resources that an application requires. We consider
that the containers share the computing resources equally,
such that the capacity of a container on an edge server mj

is csct = csj/k, where k is the number of users in mj . This
approach of equal resource allocation ensures a fair distribu-
tion of the computing capacity to each user, thereby promoting
efficient utilization of the resources within the edge computing
environment. The user device can execute a task locally or of-
fload its computation to an edge server via wireless channels.
A wireless channel’s uplink and downlink transmission rates
are rup and rdo. Three steps are required to offload a task vi to
an edge server mj : first, the user device sends the task to the
edge server via a wireless channel. Second, the edge server
executes the task. Finally, the edge server sends the execution
results back to the user’s device. The overall latency for a task
is influenced by both the task’s requirements and the current
system status. Hence, the total time involved in offloading task
vi to edge server mj encompasses the time to upload the task
(tupi ), the time to execute the task on the edge server (texi ),
and the time to download the resulting data back to the user
device (tdoi ). This can be mathematically expressed as:

tupi = dataup
i /rup, texi = ci/csct, tdoi = datado

i /rdo (1)

When offloaded to an edge server, the overall end-to-end
latency of task vi represents the sum of the above times in (1).
On the other hand, if a user device executes task vi locally,
hence using resource mk (the user device), its latency consists
only of the task execution time (i.e. texi = ci/csk). In addition,
for a task vi scheduled for execution, we establish four task
finish times, namely FTud

i , FTup
i , FT ec

i , and FT do
i , to denote

the task finish time on the user device, on the upload link,
on the edge server and the download link. If task vi runs
locally on the user device, then FTup

i = FT ec
i = FT do

i = 0.
Otherwise, FTud

i = 0 if vi is offloaded to an edge server.
Before scheduling a task vi, all preceding tasks (i.e., its

parent tasks) must have been scheduled. In this way, we denote
RTud

i , RTup
i , RT ec

i , and RT do
i as the ready time, the earliest

time that task vi can be executed on a resource (user device,
upload link, edge server, download link) so that the precedence
constraints are maintained. Hence, for task vi scheduled on the
user device, we can calculate its ready time as:

RTud
i = max

j∈parent(vi)
max

{
FTud

j , FT do
j

}
(2)

where parent(vi) is the set of parent tasks immediately before
task vi. RTud

i is the earliest time at which all the tasks
preceding vi will have completed and produced the results that
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vi requires. When a task vj preceding vi is scheduled locally,
then max{FTud

j , FT do
j } = FTud

j ; otherwise, when offloaded
to the edge server, max{FTud

j , FT do
j } = FT do

j . Task vi can
only start executing once vj has freed the wireless download
channel.

On the other hand, if that task vi is to be offloaded to the
edge server, then its ready time on the upload channel (RTup

i )
is given by:

RTup
i = max

j∈parent(vi)
max

{
FTud

j , FTup
j

}
(3)

where RTup
i is the earliest time when vi can use the upload

channel while meeting precedence constraints. When a task vj
preceding vi is scheduled locally, then max{FTud

j , FTup
j } =

FTud
j ; otherwise, when offloaded to the edge server, then

max{FTud
j , FTup

j } = FTup
j . Task vi can only start execution

once vj has freed the wireless download channel.
The ready time of a task vi on an edge server is:

RT ec
i = max

{
FTup

i , max
j∈parent(vi)

FT ec
j

}
(4)

where RT ec
i is the earliest time vi can execute on the edge

server while respecting precedence constraints. If a task vj
preceding vi is scheduled locally, then FT ec

j = 0. Hence,
maxj∈parent(vi) FT ec

j is the earliest time when all offloaded
tasks preceding vi have finished execution.

The earliest time for sending the results of task vi back to
the user device is:

RT do
i = FT ec

i (5)

The offloading goal is to compute an offloading plan
On = (o1, o2, . . . , on) that minimizes the latency of an ap-
plication DAG G(V,E), where n = |V |. Here, oi denotes
the offloading decision for task vi, where oi can be either 0
for local computation or 1 for remote computation. Before
offloading, tasks are sorted by priority, as discussed later, so
that On−1, for example, represents the partial offloading plan
comprising all tasks from v1 to vn−1. The optimization goal
is, hence, to minimize the overall Application Latency:

ALOn = max
[
maxve∈E(FTud

e , FT do
e )

]
(6)

where E is the set of exit tasks (i.e. tasks with no children). The
equation considers the maximum task latency within a DAG to
compute the overall application latency. This maximum time
represents the duration of the critical path of the DAG, which
is the longest path from a start task to any of the exit tasks.
Table 2 summarizes the main notations used in this paper.

3. Transformer-Based Offloading Solution

This section presents our Transformer-PPO-based task of-
floading solution.

TABLE 1. NOTATION USED IN THIS PAPER.

Notation Description

G(V,E)
Application DAG where V is the set of tasks and E
the task precedence constraints

vi ∈ V Computing task vi

e(vj , vi) ∈ E
Precedence constraint, task vj must execute before
vi can start

dataup
i , datado

i

Number of bytes to upload/download to/from an edge
server when offloading task vi

rup, rdo Transmission rates of wireless uplink and downlink channels

csk , csct Computing capacity of resource mk , and of a container

tup
i , texi , tdoi

Time required for uploading, executing and
downloading task vi to edge server mk

FTud
i , FTup

i ,
FT ec

i , FTdo
i

Finish time of task vi on user device, uplink channel,
edge server, and downlink channel

RTud
i , RTup

i ,
RT ec

i , RTdo
i

Earliest time when task vi can use the user device,
uplink channel, edge server, and downlink channel

3.1. Transformer-PPO based Task Offloading

In RL, an agent interacts with an environment, trying to
learn a policy to take actions that maximize the accumulated
reward. An MDP, commonly used to represent RL problems
[16], consists of a tuple (S,A, P,R, γ), where S represents the
set of possible states; A represents the action space; P (s′|s, a)
denotes the probability of transitioning to state s′ when taking
action a under the current state s; R(s, a, s′) represents the
immediate reward received when transitioning from s to s′ by
taking action a; γ is a discount factor. The goal is to find a
policy π(s) that maximizes the expected cumulative reward
over time. A policy network π(a|s, θ) takes the state s as
input and outputs a probability distribution over the actions a,
where θ represents the neural network parameters. Training
the policy network involves finding the optimal parameters
θ∗ that maximize the expected cumulative reward, a process
typically performed using policy gradient algorithms that seek
to maximize the expected return. TPTO optimizes the policy
network parameters using PPO [17]. During training, PPO
uses a batch of sampled trajectories to update the network
weights. The following describes the main elements of our
MDP:

State S: A state comprises the task profile (CPU cycle
requirements and data sizes), the DAG topologies, the wireless
transmission rates, and the status of edge resources. The status
of an edge resource depends on the offloading decisions for
tasks preceding vi. Hence, we can express the state combining
the encoded DAG and the partial offloading plan as:

S = {si|si = (G(V,E), Oi)} (7)

where i ∈ [1, |V |], G(V,E) represents the sequence of em-
bedding tasks and Oi is the partial offloading plan of task vi.
We use the approach outlined in [7] to convert a DAG into a
sequence of embedding tasks.

For efficient offloading, tasks receive a ”rank” based on
their completion time and dependencies, sequenced from low-
est to highest rank. Each task is embedded with information on
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its attributes and its parent-child relationships. This approach
ensures optimized task scheduling, enhancing efficiency and
reducing latency. Task embeddings use three vectors: one for
the task’s profile, one for parent tasks, and another for child
tasks, with padding if the number of tasks is below the vector’s
length.

Action A: As the scheduling for each task is a binary
choice, executing the task either on the user device or on an
edge server, the action space is A := 0, 1, where 0 represents
execution on the user device and, 1 represents offloading.

Reward function R: The objective is to minimize the total
application latency, defined in Equation 6. Hence, the reward
function estimates the negative increase in latency resulting
from an offloading decision for a particular task: ∆ALOi

=
ALOi

− ALOi−1
, where ALOi

represents the total latency
when taking a given action for task vi and ALOi−1

represents
the total latency of the partial offloading plan for the previous
task.

Assume that π(ai|G(V,E), Oi−1) represents the likeli-
hood of the offloading plan Oi−1 given the graph G(V,E),
we can compute π(On|G(V,E)) by using the chain rule of
probability on each π(ai|Oi−1, G(V,E)) as follows:

π(On|G(V,E)) =

n∏
i=1

π(ai|Oi−1, G(V,E)) (8)

We employ Transformers to devise our policy. Distinct
from traditional Recurrent Neural Networks (RNNs), Trans-
formers use an encoder-decoder structure, effectively address-
ing various RNN limitations. Typically, the encoder inte-
grates features like embedding, multi-head attention, residual
connections with normalization, feed-forward networks, and
softmax. A distinguishing feature of Transformers is the incor-
poration of a self-attention mechanism, enhancing data depen-
dency extraction [14]. In the context of TPTO, a Transformer
processes the task embeddings from a sequence (v1, v2, ..., vn)
of a DAG and formulates a refined representation through
successive Transformer layers. Based on the output, the actor
makes offloading decisions for each task. Meanwhile, the critic
assesses each task’s value function, with fully connected layers
producing these outputs.

3.2. Implementing TPTO

As Figure 2 outlines, TPTO employs the Transformer
model and PPO to update the policy network. First, the
Transformer receives an observation of the environment and
produces two results: the policy logits and the value function.
The policy logits are passed through a softmax function to
obtain a proper probability distribution of the available actions.
Next, the actor network takes the Transformer’s output and
produces the final policy, which provides a probability dis-
tribution for the available actions. Finally, the critic network
takes the Transformer’s output and generates the estimated
value of the current state. The advantage function captures
the difference between the actual and estimated return and
the estimated value of the current state.

Input Embedding

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Application
DAG

Sequence of Tasks
Sorted by Priority

-Task profile: #CPU cycles, data size
-DAG structure

Task and Resource
Vectors

Value Action
Edge Servers

User
Device

-Wireless transmission rate
-Profile of computing resource
-Edge computing state

Figure 2. Overview of TPTO.

We use PPO as the policy optimization method. For a
given learning task T , PPO creates trajectories using a sample
policy πθsam and updates the target policy πθ over multiple
epochs, where θ and θsam are the parameters of the target and
sample policies, respectively. At the initial epoch, θ = θsam.
Then the probability ratio rt(θ) at a time step t is:

rt(θ) =
πθ(at|st)

πθsam(at|st)
(9)

where st = G(V,E), Ot. To update the actor’s policy, PPO
uses a clipped surrogate objective to avoid extensive policy
updates:

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(10)

where Ât is the advantage function at time step t, and Ê is
the average expectation over a set of samples in an algorithm
that alternates between sampling and optimization [17]. As
the policy and value functions share most of their parameters,
facilitating mutual training, we also employ the entropy coef-
ficient to compute the entropy bonus, added to the policy loss,
to encourage exploration in the policy space. The combined
objective is, therefore:

LCLIP+V F+S(θ) = Êt

[
LCLIP

t (θ)− c1L
V F
t (θ) + c2S[πθ](st)

]
(11)

where c1 and c2 are coefficients, S[πθ](st) represents the en-
tropy bonus, and LV F

t (θ) is the squared-error loss: (Vθ(st)−
V targ
t )2, where V is a state-value function.

The advantage function at time step t, denoted by Ât, is
calculated using General Advantage Estimator (GAE) [18].
GAE is a specific type of advantage function estimated as
follows:

Ât =

n−t+1∑
l=0

(γλ)k [rt + γV (st+k+1)− V (st+k)] (12)
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where λ is in the interval (0, 1) and determines the equation’s
balance between bias and variance. We can then use gradient
ascent to maximize LCLIP+V F+S(θ).

Algorithm 1 Transformer-PPO based task offloading
Require: Task distribution r(T ), learning rate α
Ensure: Updated policy parameters θ

1: Randomly initialize the parameters of the policy, θ;
2: for iterations k ∈ {1, 2, . . . ,K} do
3: Sample n learning tasks {T0, T1, . . . , Tn} from r(T );
4: for each task Ti do
5: Initialize θsam ← θ
6: Sample trajectory set S = (τ0, τ1, . . . , τn) from Ti using

policy π(θsam);
7: Calculate the advantage estimates Â1, Â2, .., ÂT ;
8: Compute the policy gradient:
9: LTPTO

τsam (θsam) = ∇θsamL
CLIP+VF+S(θsam)

10: end for
11: Update the policy network parameters θ using Adagrad

optimizer with gradients computed by the TPTO loss function
with trajectory set S for m steps:

12: θ ← θ + αLTPTO
τsam (θsam)

13: end for

Algorithm 1 outlines how TPTO performs the offloading
decision and generates trajectories. First, the algorithm sam-
ples an n sized batch of learning tasks τ and performs the
training loop for each sampled learning task. Following the
completion of the training loop, the algorithm then updates the
policy parameters θ using gradient ascent θ ← θ + αLTPTO

using Adagrad optimizer [19], where α is the learning rate of
training loop.

4. Performance Evaluation

This section presents the experimental setup, the baseline
algorithms, and performance evaluation results.

4.1. Experimental Setup

We evaluated the performance of TPTO by developing
an event-driven simulation environment in Python using the
OpenAIGym [20], similar to [7]. This approach ensured a
controllable and repeatable evaluation process. We consider
a cellular network whose data transmission rate varies based
on the user devices’ position. Also, a user device’s CPU clock
speed is 1GHz, denoted by f1. In contrast, each container in
an edge server has a quota of four cores, each core running
at 2.5GHz, represented by fs. Consequently, offloaded tasks
can simultaneously use all cores, resulting in a combined CPU
clock speed of 10GHz for each container.

We consider latency under multiple scenarios to evaluate
TPTO’s efficiency comprehensively in dynamic environments.
We use a synthetic DAG generator tool1 to create diverse
heterogeneous DAGs that emulate real-world applications.
These DAGs encompass a broad spectrum of topologies and

1. https://github.com/frs69wq/daggen
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Figure 3. Examples of application DAGs with different fats and densities.

transmission rates encountered in practical scenarios. The gen-
erator receives four parameters: n, fat, density, and ccr. The
n represents the number of tasks; fat determines the DAG’s
width and height; density sets the number of edges between
two levels of the DAG; and computation to communication
ratio, ccr, specifies the ratio between tasks’ communication
and computation cost.

TABLE 2. TPTO’S HYPERPARAMETERS.

Hyperparameter Value

Number of Layers 3
Num Attention Head 8
Dimension of Key Vector 1024
Dimension of Value Vector 1024
Dimension of FF network 512
Hidden Size 512
Dropout Rate 0.4
Policy Learning Rate 0.1
Valuefunc Learning Rate 0.01
Batch Size 100
Clip ratio 0.2
Activation Function Relu
Optimization Method Adagrad
Discount Factor 0.99
Entropy coefficient 0.5

To model the mobile network users’ diverse preferences,
we generated 25 DAG datasets, each dataset comprising 100
DAGs with various fat, densities, and ccr – key parameters
impacting the DAG topology. Each DAG has 20 tasks, and fat
and density values for each DAG are selected randomly from
the set {0.4, 0.5, 0.6, 0.7, 0.8}, while ccr is chosen randomly
within the range of 0.3 to 0.5. This range is representative
of the computation sensitivity observed in a majority of IoT
applications. The DAGs simulate diverse application prefer-
ences of a mobile user: for instance, a fatter DAG suggests
a preference for more parallel tasks, while a denser DAG
indicates a higher dependency between tasks, all under varying
data transmission speeds. We randomly select 22 DAG sets as
“training datasets” and the remaining three as “unseen testing
datasets” with different DAG topologies. Figure 3 illustrates
DAGs generated by the synthetic DAG generator with varying
fat and density.

TPTO is implemented using Tensorflow, with 3 layers
of Transformer encoders having 512 hidden units per layer
and layer normalization included. Table 2 summarizes the

5
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hyperparameters for training TPTO. To ensure the robustness
of the TPTO policy, we trained it using a range of transmission
rates between 4Mbps to 22Mbps, with a step size of 3Mbps.
To evaluate its performance on previously unseen transmission
rates and topologies, we tested the trained policy on data
rates of 8.5Mbps and 11.5Mbps, not seen during training,
following a similar methodology as in [7] with sampling 20
trajectories for a DAG on the dataset. In addition, as we aim
to assess how TPTO performs in different dynamic scenarios,
the task data size varies from 5KB to 50KB, while the CPU
cycle requirements range from 107 to 108 cycles per task, as
reported in [21]. Furthermore, the length of the parent/child
task indices vector is 12. By testing TPTO’s performance on
these diverse sets of DAGs, we aim to gain insights into its
ability to effectively provision network resources and meet the
varying needs of mobile users.

4.2. Baseline Algorithms

We assess TPTO’s performance against three state-of-the-
art algorithms:

MRLCO: this algorithm, proposed by Wang et al. [7],
integrates meta reinforcement learning and a Seq2Seq neural
network. The approach focuses on modeling task offloading
using meta-reinforcement learning and an offloading policy
based on a custom Seq2Seq neural network.

HEFT based: this algorithm, based on the work by Lin
et al. [22], involves prioritizing tasks using the HEFT method
and scheduling each task according to its earliest estimated
finish time.

Greedy Heuristic: a greedy approach considers the esti-
mated finish time of each task to decide whether to assign a
task to the user device or an edge server.

4.3. Result Analysis

Figures 4(a) and 4(b) depict the average latency of simula-
tion results during training for TPTO and MRLCO. The results
demonstrate that TPTO converges faster than MRLCO while
being more stable and general, mainly due to TPTO’s ability
to effectively capture the diverse preferences of mobile users
through its training on a wide range of network topologies and
transmission rates. Figure 4(c) and 4(d) show the performance
of HEFT and Greedy algorithms.

Table 3 summarizes the average latency of TPTO and the
baseline algorithms. TPTO outperforms heuristic and meta-
learning algorithms for the various wireless transmission rates.
Overall, the Greedy algorithm has the highest latency, while
TPTO achieves lower latency under various network con-
ditions, indicating its effectiveness in provisioning network
resources to meet the needs of mobile users. Moreover, distinct
topologies reflect the diverse preferences of user requests in
terms of dependency and parallel computing of tasks. Increas-
ing the transmission rate can further reduce latency as of-
floaded tasks traverse the wireless channels faster. Overall, the
results show that TPTO is a promising solution for optimizing
network performance and enhancing user experience in mobile

TABLE 3. COMPARATIVE ANALYSIS OF TPTO AND BASELINE METHODS:
AVERAGE LATENCY (MS) ACROSS DIVERSE TEST DATASETS.

Testing
Topology

Sets
Algorithm

Wireless Transmission Rate
of rup and rdo

8.5Mbps 11.5Mbps

fat = 0.8
density = 0.6

ccr = 0.5

HEFT 1033 835
Greedy 1064 837

MRLCO 846 760
TPTO 741 581

fat = 0.5
density = 0.7

ccr = 0.3

HEFT 1157 849
Greedy 1462 952

MRLCO 989 869
TPTO 1022 811

fat = 0.6
density = 0.8

ccr = 0.4

HEFT 1521 943
Greedy 1009 822

MRLCO 894 810
TPTO 900 719

networks. TPTO achieves a training time 2.5 faster than
MRLCO. The Transformer architecture of TPTO is mainly
responsible for this training time difference. Transformers are
known for their parallel execution and efficient utilization
of self-attention mechanisms, which can exploit the parallel
processing capabilities of modern hardware architectures, re-
sulting in a faster training process. These results underscore
the potential benefits of employing Transformer-based models
for optimizing offloading decisions in the edge computing
environment.

5. Related Work

Approaches for computation offloading to edge computing
are a very active topic. Proposed techniques fall mainly into
machine-learning and optimization-based methods.

Machine-Learning Offloading Approaches: Qu et al.
present a framework for IoT devices to offload computing
tasks to edge servers [23]. They use deep meta-reinforcement
learning to minimize energy consumption, task computation,
and transmission delays by dividing applications into se-
quential workflows. The proposed framework, Deep Meta
Reinforcement learning based Offloading (DMRO), includes
an inner and outer loop. The former relies on Q-learning,
whereas the latter employs a meta-algorithm to learn the
initial parameters and adapt to changing environments, quickly
converging to optimal offloading solutions.

Huang et al. [24] propose MELO, a Meta-Learning-based
computation Offloading algorithm for independent tasks in
edge computing, which consists of one edge server and N
wireless devices, each with a prioritized task to execute. They
apply binary offloading, where tasks run locally on a device or
the edge server. The approach focuses on minimizing latency,
communication, and computation delay.

Yang et al. [28] tackle joint offloading optimization and
bandwidth allocation, modeled as a mixed-integer program-
ming (MIP) problem for independent tasks. They propose the
Deep Supervised Learning-based computational Offloading
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(a) TPTO (b) MRLCO

(c) HEFT (d) Greedy

Figure 4. Influence of wireless transmission rate and network topology on latency.

TABLE 4. SUMMARY OF RELATED WORK AND THEIR COMPARISON WITH TPTO.

Techniques Category Task
Dependency

Task Offloading Engine

Main Approach Task
Priority

Network
Architecture

Nguyen et al. [25]
Optimization

✓ Discrete whale optimization ✗ ✗
Abbas et al. [26] ✗ Ant colony, whale, grey wolf ✗ ✗

Xu et al. [27] ✗ Order-preserving policy, bisection search ✗ ✗

Qu et al. [23]

Machine learning

✓ Deep Meta Learning, Q-learning ✗ DNN
Huang et al. [24] ✗ Meta-Learning ✓ DNN
Yang et al. [28] ✗ Deep Supervised Learning ✓ CNN, DNN

TPTO ✓ PPO, Actor-Critic ✓ Transformer NN

(DSLO) algorithm that considers task delay and energy con-
sumption. Furthermore, incorporating batch normalization into
two classical neural network architectures, CNN and DNN,
enhances the convergence speed of DSLO.

Optimization-based Offloading Techniques: Nguyen et
al. [25] introduce a collaborative scheme for Unmanned Aerial
Vehicless (UAVs) to share workloads. They consider the
task topology, which involves splitting a task into sub-tasks
with dependencies and the power consumption constraints of
the UAVs in edge computing. They use the discrete whale
optimization algorithm and CVXPY’s SCS solver to solve
the optimization problem, modeled as a mixed-integer, non-

linear, and non-convex problem. Abbas et al. [26] present
classical approaches for optimal independent task offloading
in edge computing environments. They use well-known meta-
heuristics such as the ant colony optimization algorithm, whale
optimization algorithm, and Grey wolf optimization algorithm,
adapting these algorithms to their problem. The goal is to
minimize the energy consumption of user devices and IoT
and minimize response time for task computation in edge
computing. A search-based meta-heuristic model, introduced
by Xu et al. [27], also focused on task offloading and time al-
location in edge computing for independent tasks. Considering
computation rate and task execution latency, they formulated
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the problem as a Mixed Integer Programming (MIP) and
divided it into sub-problems: offloading decision and resource
allocation. They proposed an “order-preserving policy gener-
ation method”, which works well in large networks.

Machine learning approaches often demonstrate superior
performance than traditional optimization methods. Still, exist-
ing work generally employs conventional DRL with sequential
neural networks, resulting in less computation efficiency and
extended training time. Moreover, most real-world applica-
tions comprise dependent tasks, which prior work generally
ignores [27], [26], [28], [24]. TPTO tackles these limitations,
exhibiting fast adaptability to new tasks by applying Trans-
formers and effectively minimizing latency – an essential
concern for delay-sensitive applications – by strategically con-
sidering task dependencies. Table 4 summarizes and compares
related works with TPTO.

6. Conclusions and Future Work

This work introduced TPTO, a distributed DRL method
for task offloading optimization in edge computing using
Transformers to reduce latency in DAG-structured applica-
tions. We first introduced a latency model that optimizes the
task execution time, communication, and offloading in an
edge computing environment. This model serves as the basis
for the decision-making process in TPTO. Then, experimen-
tal results demonstrated TPTO’s effectiveness under various
network conditions and topologies. TPTO presents superior
performance compared to three baseline algorithms: MRLCO,
HEFT, and Greedy. In addition, TPTO consistently achieved
the lowest latency, showcasing its ability to make efficient
offloading decisions. Future research will focus on TPTO’s
scalability in larger edge computing setups and explore multi-
criteria optimization, including energy consumption and exe-
cution cost.
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