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Abstract—Smart agriculture is one of the most promising
areas where IoT-enabled technologies have the potential to
substantially improve the quality and quantity of the crops
and reduce the associated operational cost. However, building a
smart agriculture system presents several challenges, including
high latency and bandwidth consumption associated with cloud
computing, frequent Internet disconnections in rural areas, and
the need to keep costs low for farmers. This paper presents
an end-to-end, fog-based smart agriculture infrastructure that
incorporates edge computing and LoRa-based communication to
address these challenges. Our system is deployed to transform
traditional agriculture land of rural areas into smart agriculture.
We address the top concern of farmers - animals intruding - by
proposing a solution that detects animal intrusion using low-
cost PIR sensors, cameras, and computer vision. In particular,
we propose three different sensor layouts and a novel algorithm
for predicting animals’ future locations. Our system can detect
animals before they intrude into the field, identify them, predict
their future locations, and alert farmers in a timely manner. Our
experiments show that the system can effectively and quickly
detect animal intrusions while maintaining a much lower cost
than current state-of-the-art systems.

Index Terms—smart agriculture, animal intrusion detection,
LoRa, fog computing1

I. INTRODUCTION

Smart agriculture applies modern information technology,
integrates big data, mobile Internet, cloud computing and
IoT technologies relying on various sensing nodes to achieve
precise tracking, monitoring, automating and analyzing op-
erations. At present, cloud-based infrastructures are being
utilized to support various smart agriculture applications and
data processing. Data from smart sensors in the agricultural
field is transmitted to the cloud over the Internet, and then
stored and processed in the cloud for decision making.
While cloud-based infrastructures certainly offer enormous
processing power and storage capacity, there are two key
limitations that need to be addressed when used in the
context of smart agriculture [1]: (i) Sensor data transmitted
over the Internet requires continuous Internet connectivity,
consumes high bandwidth and incurs delays. (ii) Since IoT
devices must transmit large volumes of data to the cloud for
storage and processing, the energy of battery-powered IoT
devices is quickly drained. These limitations make cloud-
based infrastructure ill-suited for smart agriculture. To address
these limitations, we propose a LoRa-enabled, fog-based
smart agriculture infrastructure that reduces the quantity of

1We use the term ‘fog computing’ and ‘edge computing’ interchangeably
throughout the paper, same as ‘fog server’ and ‘edge server’.

data transferred to the cloud and enable latency-sensitive
services delivered just in time.

After conducting a survey with the farmers to understand
the key issues they are facing that could be addressed by
smart agriculture, animal intrusion in the field becomes the
most concerning one. Farms are usually located in rural areas,
close to nature. This makes animal intrusion a major issue for
farm owners who must deal with the mess and damage these
animals can cause. Compared to some other smart services
such as smart irrigation, crop quality monitoring and pest
extermination, animal intrusion detection is more difficult
because of its uncertainty, uncontrollability, unpredictability.
Animals may eat crops and stroll around the field at any time,
resulting in a significant production loss. This necessitates
more time costs to recover from the damage as well as greater
financial security to cover the costs associated with damages.

In this paper, we propose an end-to-end, LoRa (Long
Range)-enabled, fog-based infrastructure for smart agriculture
along with a new strategy to detect animal intrusion. We
are committed to helping farmers detect and locate animal
invasions as quickly as possible. We firstly introduce how
the low-power, low-bandwidth and long-range features of
LoRa are utilized to transform traditional agriculture lands
in rural areas into smart agriculture system. We then present
the design and implementation of a microservice-based edge
server that provides important, latency-sensitive services to
the farmers and enables operation in a disconnected Inter-
net environment. To enable the fastest detection of animal
intrusion, we explore several sensor placement strategies
and design an algorithm which is able to locate invasive
animals and predict future locations. Finally, we evaluate the
performance of our proposed system and compare with the
existing, state-of-the-arts frameworks in terms of cost, latency
and distance.

This paper makes the following contributions:
• Adoption of LoRa protocol effectively addresses the

limitations of intermittent Internet connectivity and high
latency of cloud-based infrastructure.

• A microservice-based architecture at the edge to enable
latency-sensitive services delivered just in time.

• Propose three sensor layouts and an algorithm that
accurately predicts the future locations of animals.

• Comprehensive analysis and comparison of the layouts
through experiments.

• Rigorous evaluation and discussion on the accuracy of
the algorithm and the practicality of the system.
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II. BACKGROUND

A. LoRa and LoRaWAN Protocol

LoRa is an ultra-long-distance wireless transmission tech-
nology based on spread spectrum technology [24], [25].
LoRaWAN is a set of communication protocol and system
architecture designed for long-distance communication net-
work [23], [25]. Lora has a great advantage in handling
co-channel interference. It solves the problem of not being
able to take into account long distance, anti-interference and
low power consumption at the same time. Compared with
other communication technologies, LoRa’s ultra-low cost,
high sensitivity, ultra-low power consumption, strong anti-
interference ability, low bandwidth consumption, and long
transmission distance make it ideal for this project.

B. IoT Devices

1) Arduino: a microcontroller-based open source hardware
platform. Arduino Mega is Arduino development board based
on the ATmega. It is cheap and easy-to-use features make it
widely used in practical IoT projects.

2) Multi-channel LoRaWAN GPS concentrator: a high-
performance multi-channel transmitter/receiver designed to
receive multiple LoRa packets simultaneously. It is intended
to provide a robust connection between a central wireless data
concentrator and a large number of wireless endpoints over a
considerable range of distances.

3) Passive infrared (PIR) sensor: an electronic sensor that
measures infrared (IR) light radiating from objects in its field
of view. The characteristics of this sensor include the angle of
detection (α) and the maximum detectable distance (d) with
the detection range calculated as a cone with h as the diameter
of the circle as the base. It is small, cheap, power efficient,
easy to use and durable. Therefore, they are typically used
for security and automatic lighting related purposes.

4) All-day camera: a camera that is able to detect invasive
animals both day and night, which requires a built-in motor-
ized IR-cut filter so that it can switch in and out automatically
based on light condition. The filter will be turned off with
the purpose that only visible light during the daylight, and IR
sensitivity during the night with IR LEDs on.

C. Fog Computing

1) Containerization: is a software deployment process that
bundles the application’s code with all the files and libraries
the application needs to run on any infrastructure [22].
By virtualizing the operating system kernel, this technology
enables user-space software instances to be divided into
multiple independent units that run in the kernel as opposed
to a single instance. This particular software instance is
referred to as a container, a software package that provides
the complete runtime environment for an application. With
containerization, people can create individual packages or
containers that can run on all types of devices and operating
systems. Containerization is lightweight, portable, scalable,
fault-tolerant, agile, and saves hardware resources.

2) Microservices: is a type of software architecture that
builds complicated programs using modularity and small
functional units that are each focused on a particular re-
sponsibility and function. Microservices architecture makes
applications easier to scale and faster to develop. Compared
to monolithic architecture, microservices architecture is agile,
scalable, easy to deploy, technically free, code-reusable, and
resilient [21].

III. PROPOSED SYSTEM

A. System Architecture

The architecture of the proposed microservice-based fog
enabled infrastructure for smart agriculture is shown in Fig-
ure 1. It consists of two layers: sensing layer and fog com-
puting layer, which are linked by cross-layer upstream and
downstream communication for data and control information
flows [28].

Fig. 1: Proposed system architecture.

The sensing layer is comprised of the sensors and actuators
deployed across the agricultural field to periodically sense
the physical parameters of interest such as air temperature,
air humidity, soil temperature and moisture at various depths,
wind speed and rainfall. To address the challenge of poor
Internet connectivity, we have adopted a LoRa and LoRaWAN
enabled communication system due to their support for low
power, wide area networking designed to wirelessly connect
limited energy operated IoT devices to an edge server at a
distance of 1-2 km. The fog layer is comprised of one or more
servers, and provides an administrative control of the entire
IoT infrastructure of the agricultural field. It addresses the
limitations of intermittent Internet connectivity, high latency
and high network bandwidth consumption of cloud-based in-
frastructure. The fog nodes execute latency sensitive services,
such as animal intrusion detection. To facilitate a flexible
architecture that may utilize existing container-based support
for various ML/AI services, we have structured the fog
layer as a microservice architecture. In this architecture, an
application is composed from a collection of loosely-coupled
microservices, where each microservice is fine-grained and
the associated protocols are lightweight.

B. Animal Intrusion Detection

In view of the serious problems caused by animal intrusion
to farmers, our goal is to automatically detect animal intru-
sions, identify animals, and inform the farmer(s) in a timely
manner about the intrusion. This work is performed using



two types of sensors: a PIR sensor for detecting any motion
in its field of view and an all-day camera sensor attached to
the Raspberry Pi for capturing images that will be processed
to identify animals. To meet the low-latency requirement,
the scheduling mechanism and the prediction algorithm are
implemented in the fog layer, while the object detection is
done on the Raspberry Pi. This is because the low bandwidth
of LoRa cannot support the transmission of large-sized im-
ages. As shown in Figure 2, there are three microservices: 1)
The Security module passes the sensor data it receives from
authenticated sensors to the appropriate Prediction container;
2) The Prediction container runs localization and prediction
algorithms on this data as well as recorded data, and then
sends the predicted position at a future time to the camera;
3) The Notification module notifies the farmer via messages
once animals are detected.

Fig. 2: System architecture for animal intrusion detection.

Corresponding to the process marked with capital letters in
Figure 2, the steps are described as follows:

A: Animal movement is detected by PIR sensors and the
data is transmitted to the server using LoRa.

B: A container on the edge server predicts the location of
the animal at a future time based on input from multiple
sensors and sends this location to the Raspberry Pi that
operates a camera on the field.

C: The edge server sends a “possible animal invasion” alert
to the farmer.

D: The Raspberry Pi instructs the camera to rotate in the
direction of the predicted position and take a picture. The
Raspberry Pi then runs an animal detection algorithm on
this image and sends the results to the edge server.

E: The edge server sends a reliable alert to the farmer, who
can then decide an actuation.

C. Sensor Layouts

In this section we introduce three different sensor layouts
which could yield different localization and prediction accu-
racy. There will be some independent coverage areas between
the sensors as well as overlapping areas. We establish a virtual
coordinate system upon the farm field (as shown in Figure 3)
and use the center coordinates of a small area to represent
this area. In other words, when sensors detect an animal, the
animal’s location is regarded as a point (marked with R1, R2,
. . . in Figures 4 to 6) rather than a range, which is convenient
for us to design algorithms to predict animals’ position. In
order to describe the specific location of the animal to the

farmer, we define four corners and four sides. Below we
describe the three sensor layouts in detail.

Fig. 3: Virtual coordinate systems built upon the farm.
1) Layout A - Vertical: We place all sensors at a height

of d meters above the ground and project them vertically
downward, with the coverage area of each sensor being a
circle of diameter h. This produces a coverage area consisting
of many circles. As shown in Figure 4, we put two rows of
interlocking and overlapping sensors at the boundary of the
field. This not only increases the coverage, but the overlapping
areas allow for relatively fine-grained segmentation of the
area to improve the accuracy of localization and prediction.
The increase in budget associated with an additional row of
sensors is well worth it compared to more accurately catching
animal intrusions and thus preventing damage to the farm. But
the shortcoming of this layout is that the farthest detectable
location is too close to the farm boundary, only h/2, which
leads to a greater chance of animal damage to the farm.

Fig. 4: Layout A: Vertical Placement

2) Layout B - Horizontal: In contrast to Layout A, all
sensors are placed on the ground and horizontally projecting
towards the farm’s exterior, with each sensor covering an
isosceles triangle with h as the base and d as the height,
resulting in a coverage area of many triangles. As shown in
Figure 5, we put one row of interlocking and overlapping
sensors at the boundary. This also has the same advantages
as Layout A, i.e., increased coverage and fine-grained area
segmentation to improve localization and prediction accuracy.
Moreover, it overcomes the limitations of Layout A by
extending the farthest detectable distance, thus improving
protection.



Fig. 5: Layout B: Horizontal Placement

3) Layout C - Hybrid: With vertical and horizontal place-
ment, it was natural to explore a hybrid placement. We still
place two rows of sensors, one vertically along the boundary
and the other projected horizontally outward at the same
location, as shown in Figure 6. This layout provides good
coverage, fine-grained area segmentation, and a far-reaching
detectable location. However, uncovered middle areas can
lead to inaccurate or even outrageous predictions. Addition-
ally, this layout has a calculated minimal coverage area.

Fig. 6: Layout C: Hybrid Placement

In addition to these three layouts, we also considered other
layouts that required fewer sensors. However, they were ruled
out due to their limited coverage, which limits their prediction
accuracy, and their short sensing distance to the boundary,
which make them unsuitable for fast-moving animals.

D. Proposed Algorithm

We propose and deploy an algorithm (as shown in Algo-
rithm 1) on the fog server to predict the future location of
intrusive animals based on the previous readings returned by
the sensors. Whenever a sensor detects an animal, it sends
the data back to the container running the algorithm on the
fog server in the format of “#side-#sensor-timestamp”. Each
set of data received by the container is combined with the
previous record to make a prediction. The “set of data” here
may have two scenarios: one is the data read back from a
non-overlapping coverage area; the other is the animal is
in the overlapping area covered by multiple sensors. In this
case there will be multiple sensors with similar timestamps
to send back data and the server needs to make the final
prediction after receiving data from all these sensors. We
use a 0.1 second “tolerance time difference” to define this
similar timestamp. In addition, we define another threshold
of 120 seconds as the minimum time interval between animal

intrusions, i.e., if the server does not receive new data within
120 seconds, the next data received is considered to be a new
animal intrusion.

We define a mapping of sensor numbers and position
coordinates in the algorithm. The server first converts the
sensor number in the received data into a coordinate and
combines the previous set of coordinates to calculate the
distance and direction, and then to calculate the average speed
of the animal’s movement with the timestamp difference. With
the direction and speed, the next position of the animal can be
predicted under the assumption that the animal will move in
the same direction with the same speed for a short period of
time. This period is the sum of the time it takes for the sensor
to return data, the time it takes for the algorithm to make the
prediction, the time it takes for the instruction to be passed
from the server to the Raspberry Pi, and the time it takes for
the camera to rotate to point to the predicted position.

The direction and speed of animal movement are not
stable, but the constant detection and updating of position
information by the sensors, the fast transmission of LoRa,
and the high speed calculation of the system can make the
predicted deviation be calibrated quickly and continuously.
The field of view of the camera can also provide a certain
degree of tolerance. Taken together, our proposed algorithm
is expected to effectively and accurately locate and predict
the location of animals. Next, we evaluate and verify the
adequacy of the algorithm through experiments.

IV. EVALUATION

All experiments presented in this paper using the parame-
ters shown in Table I. To evaluate our work, we constructed
an end-to-end LoRa communication system, deployed the
three sensor layouts proposed in Section III-C, and gathered
sensing data by moving along various trajectories. We then
implemented our proposed algorithm to analyze the collected
data.

TABLE I: System Configuration

Component Name Specifications

Arduino Mega 256 KB Flash Memory, 8KB SRAM,
4KB EEPROM, 16 MHz Clock Speed

Raspberry Pi Quad core Cortex-A72 (ARM v8) 64-bit
8GB RAM, 1.5GHz Clock Speed

PIR Sensor Detection range d is 7 meters;
Detection distance h is 5 meters

Camera Resolution 2592×1944, Optical Size 6.35mm,
Focal Length 2.25mm, FOV 130°(D) 105°(H)

Edge Server 3.1 GHz Dual-Core Intel Core i5,
8 GB RAM, 256GB Disk

A. Experiments and Results

1) Lora Transmission: We build an end node which con-
sists of PIR sensors, one Arduino Mega microcontroller, LoRa
Hat with Antenna. LoRa hat is built using LoRa SX1276
IC. To experiment the scheduling capability of fog node, we
connected three end nodes with one LoRa enabled gateway



Algorithm 1 Algorithm to predict animal locations

Input: side number side, sensor number sensor, and
timestamp tcur
Output: A coordinate of predicted animal position
{xpredict, ypredict}

1: xprev ▷ x value of previous location
2: yprev ▷ y value of previous location
3: tprev ▷ Timestamp of previous reading
4: time threshold← 120
5: time tolerance← 0.1
6: latency ▷ Time required from detection to camera

pointing to the predicted position
7: pos mapping ← {sensor : {x : y}}
8: function PREDICT(side, sensor, tcur)
9: xcur ← pos mapping[sensor][x]

10: ycur ← pos mapping[sensor][y]
11: if tcur − tprev > timing threshold then
12: Do nothing
13: else if tcur − tprev < time tolerance then
14: Wait until all data received
15: else
16: dist←

√
(xcur − xprev)2 + (ycur − yprev)2

17: speed← dist/(tcur − tprev)
18: θ ← arctangent(ycur − yprev, xcur − xprev)
19: d← latency ∗ speed
20: xpredict ← xcur + d ∗math.cos(θ)
21: ypredict ← ycur + d ∗math.sin(θ)
22: return xpredict, ypredict
23: end if
24: xprev ← xcur

25: yprev ← ycur
26: tprev ← tcur
27: end function
28: while true do
29: PREDICT(side, sensor, tcur)
30: end while

(Raspberry Pi with PG1302 LoRaWAN Concentrator) as
shown in Figure 7. The end nodes are scheduled in a round
robin fashion by fog node to avoid interference of data during
simultaneous communication by the three end nodes.

Fig. 7: LoRa communication using multiple end nodes.

Table II shows the experimental results obtained while
communicating data from end node to the fog gateway. We

(a) Placement 1 (b) Placement 2 (c) Placement 3

(d) Layout A (e) Layout B (f) Layout C

Fig. 8: Sensor Placement

varied the heights of sender and receiver and also the distance
between them and checked the delay in LoRa communication.
We performed these experiments in an environment where
various objects and building were present (these obstacles
cause channel attenuation and thus affect the received signal
strength). Data that is communicated between sender and
receiver is 16 bytes. It can be observed that as we increase
distance between sender and receiver, latency increases. La-
tency can be reduced further by placing receiver (fog node)
at proper height.

TABLE II: LoRa experiment result

Sender / Receiver Node (Height, Distance) Latency(s)
Sender: 4ft, Receiver: 4ft, Sender Receiver: 500m 4.0

Sender: 4ft, Receiver: 35ft, Sender Receiver: 350m 0.7
Sender: 35ft, Receiver: 200ft, Sender Receiver: 500m 1.1
Sender: 4ft, Receiver: 200ft, Sender Receiver: 2000m 0.9

2) Sensor Placement: To detect animal presence in a 25 by
25 meters field, we utilize PIR sensors, whose specifications
are detailed in Table I. Figure 8 shows the specific experimen-
tal deployment for the sensor layouts. The PIR sensors were
fixed to a strip and placed around the perimeter of the field to
ensure complete coverage. Vcc and GND common wires were
connected to each sensor, while the output pin was connected
separately with a different wire for each sensor to the Arduino
board. We used an Arduino ATMega2560 along with a LoRa
hat using LoRa SX1276 IC powered by a lithium-ion battery
to send data to the Gateway for processing and decision-
making.

For layout A, the distance between two sensors was set
to 5 meters, and the strip was placed 5 meters above the
ground, facing towards the ground to allow for detecting
activity in the area immediately below the strip, within a 5
meter radius around each sensor. In layout B, PIR sensors
were horizontally oriented and placed on a strip, with a
uniform distance of 2.5 meters between each sensor, providing
consistent coverage across the field. The strip was placed at
a height of 1.5 meters above the ground and faced outward
towards the field. Layout C utilized a hybrid approach, with
sensors arranged in two strips: one positioned horizontally 1.5



meters above ground level and the other arranged vertically
towards the ground at a height of 5 meters. The sensors
were spaced evenly at 5 meter intervals on each strip. We
changed different speeds, directions, and trajectories to sim-
ulate 18 different movements (M1 - M18 in Figure 9) of
animals to evaluate the accuracy and effectiveness of our
tracking algorithm. For each of these 18 movements, our
system sensed and transmitted PIR sensor values to the edge
server for multiple locations depending on which sensors
detected movements. For example, Table III shows the the
location values received for Movement M2. This location data
collected from 18 different movements forms the ground truth
for our evaluation.

TABLE III: M2 location values: side – coordinate(x, y)

Layout A Layout B Layout C
1 A - (20.00, 1.5) A - (20.00, 3.5) A - (20.00, 5.50)
2 A - (15.00, 1.5) A - (15.00, 3.5) A - (15.00, 5.50)
3 A - (15.00, 1.5) A - (15.00, 3.5) A - (15.00, 5.50)
4 A - (10.00, 1.5) A - (10.00, 3.5) A - (10.00, 5.50)
5 A - (5.00, 1.5) A - (5.00, 3.5) A - (5.00, 5.50)

Fig. 9: Movement Trajectories

3) Position Prediction: We use a laptop computer as fog
server in our experiments. The laptop was placed high so as to
increase the transmission speed with end nodes according to
Table II. The prediction algorithm runs continuously waiting
for data. To evaluate our algorithm, we make use of our
ground truth data, wherein the container extracts three sets
of location data from a movement, uses the first two sets
of data to predict the location for the time corresponding
to the third set of data, and then compares this predicted
location with the actual location to assess the accuracy of the
prediction. One measure of accuracy we use is the distance
offset, which is the distance between the predicted location
and the actual location. We measured distance offsets for all
movements for which we have at least three location values.
For movements such as M2 (Table III) for which we have
more than three location values, we measured distance offset
for each triplet of location values resulting in 10 distance
offsets measured. Figure 10 shows the average distance offset
of each movement.

As we can see, the average distance offset is relatively
low (less than 5 meters) for most movements and layouts.
We observe that Layout B shows relatively small distance
offsets in most of the movement tests, although in M1, it

has a higher offset in prediction than the other two layouts.
However, in M8, Layout B does not have sufficient readings
for the algorithm to make predictions due to the presence
of some blind triangles near the boundary where the sensor
cannot detect the animal once it moves there. Layout C
produces the largest distance offsets in most of the tests due
to the presence of many blind areas inside the coverage area,
which prevented the animal from being detected quickly and
continuously, resulting in more inaccurate predictions. Layout
A performs moderately and without data loss, which is due
to its continuous and extensive coverage area. Based on our
experiments and the analysis in Section 2, we recommend
Layout B as the optimal sensor deployment method.

4) Animal Detection: To identify the intrusive animals, we
connect a camera to a Raspberry Pi to take pictures of the
animals (area where the predicted location is) and identify
them using computer vision algorithms. The specifications
of the Raspberry Pi are shown in Table I. We experimented
with several popular CNN pre-trained models to test their
speed of processing images. We first train these models on
top of a laptop and then imported the trained models into
the Raspberry Pi. These event-driven models are continuously
running on the Raspberry Pi waiting for images to be taken.
The average detection time (based on 20 runs for each image)
is summarized in Table IV. As we can see, these models take
2 to 5 seconds to identify an animal, with MobileNet having
the best performance with an average time of 1.64 seconds.

TABLE IV: Animal Detection Experiment Results

CNN Pre-Trained Model Latency(s)
VGG16 2.27

ResNet50 3.75
ResNet50V2 3.34
InceptionV3 4.75
MobileNet 1.64

MobileNetV2 2.74
EfficientNetB0 5.07

B. Prediction Accuracy

The goal of predicting location is to be able to rotate the
camera in a direction where the animal is expected to be.
Using the distance offset statistics, we can determine the
accuracy of the algorithm by combining the distance between
the predicted animal position and the camera placement. As
illustrated in Figure 11, the predicted location is represented
by point P , and the camera (point C) is positioned within
the boundary to point towards the predicted position. The
camera has a horizontal field of view of 105 degrees, as
shown in Table I, and the red shading indicates the current
range that the camera can cover. If the actual animal position
falls within the red shading, represented by point Q, the
prediction is considered accurate. Conversely, if the actual
animal position falls outside the red shading, represented by
point R, the prediction is considered incorrect. Since we
only have the distance between the predicted location and
the actual location, without knowing their relative positions
with respect to the camera, Q could be any place on the red



Fig. 10: Average distance offset between predicted and actual positions for different types of movements in the three layouts.

circle which is centered at point P . We make the assumption
that the angle formed by the edge PQ and the edge CP at
point P is a right angle, so that angle β is the maximum
value. In this way, the accuracy of the prediction is the most
conservative value.

Fig. 11: Camera placement

Based on this validation method, we calculate the pre-
diction accuracy of the three layouts at different distances
between the predicted animal position and the camera place-
ment, as shown in the Table V. The table shows again that
layout B is the best layout solution. For layout B, a placement
distance of 5 meters can achieve a very accurate prediction.
The farther the distance, the wider the coverage, and the
higher the accuracy. Nevertheless, we must also consider that
increasing the distance results in lower image quality of the
animal, which makes animal identification more difficult. We
will discuss this further in Section V.

TABLE V: Camera placement and prediction accuracy.

Distance between
camera and animal(m)

Accuracy(%)
Layout A Layout B Layout C

5 66.67% 94.44% 38.89%
10 100% 94.44% 94.44%
15 100% 94.44% 100%

C. System Performance and Cost

1) System Performance: Based on our experiments, we
estimate the total time required to achieve animal intrusion
detection with the current system configuration (as shown
in Table I), which is summarized in Table VI. It takes
about 19.11 to 28.61 seconds for the farmer to get clear
information about the intrusion, including the location and
type of the animal. Furthermore, the farmer will receive

successive messages to calibrate the animal’s location until
the danger is removed.

TABLE VI: System Latency

Step Latency(s)
Transmission of 3 sets of data via Lora 3 ∼ 9

Latency between 3 readings 10
Prediction with proposed algorithm 0.01
Instruction sent to camera via LoRa 1

Camera rotation, image capture and processing 4 ∼ 7
Results sent back to fog server via LoRa 1

Alert sent to farmer via LTE 0.1 ∼ 0.6 [27]
In total 19.11 ∼ 28.61

2) System Cost: To illustrate the expenses incurred during
our experiment in the 25 × 25 m2 field, we have compiled
a detailed cost analysis of all the devices used, which is
presented in Table VII. With a total cost of 823 US dollars,
our system is a cost-effective solution for monitoring animal
intrusions. As the size of the farm increases, the cost will
inevitably rise, but the advantage is that additional expensive
equipment, such as fog server, is not required.

TABLE VII: System Cost
Device Name Cost(US Dollars)

Arduino Shield for LoRa 28$/each x 2 = 56$
Raspberry Pi 4 95$

GPS Concentrator 120$
PIR Sensor 0.75$/each x 36 = 27$

Camera 25$
Laptop 500$
In Total 823$

V. DISCUSSION

In Section IV-B, we assessed the accuracy of prediction
based on the presence or absence of animals in the picture
taken. However, to fully evaluate the performance of the
system, we must also consider the ability to identify the
pictured animals. If the animal image is not clear in the
picture, it will be difficult to identify. This depends on two
factors: the number of pixels that the animal occupies in
the image and the pixel requirements of animal recognition
algorithms listed in Table IX [26]. Assuming the animal size
is approximately 2 meters long and 1.5 meters high, we
calculate the number of pixels occupied by the animal at
different distances between the camera and the animal based



TABLE VIII: Pixels an animal occupies at different distances
Distance(m) 10 20 30 40 50 60 70 80

Pixels 199x151 99x76 66x50 50x38 40x30 33x25 28x22 25x19

TABLE IX: Minimum pixel requirement for CNN models
Model GoogLeNet SqueezeNet1 1 DenseNet201 VGG16/19 MobileNet

Minimum Pixels 15x15 17x17 29x29 32x32 32x32

on the camera parameters (as shown in Table I) and present
the results in Table VIII.

By comparing these two tables, we can confirm that these
widely used models listed can successfully identify animals
when the distance between the animal and the camera is 40
meters, and we can still use the very effective GoogLeNet and
SqueezeNet1 1 when the distance is 80 meters. Therefore, to
ensure both a large camera coverage to improve the quality
of animal imaging and the tolerance of prediction errors,
we need to control the camera placement and maximum
rotation angle. Specifically, we must ensure that the maximum
distance between the camera and the intersection of the
coverage boundary and the sensing boundary (i.e., D in
Figure 11) does not exceed 80 meters, with 40 meters being
the optimal distance. This allows us to adopt MobileNet,
which has been shown to achieve the best performance in
Table IV.

VI. RELATED WORK

With the proliferation of smart agriculture, many related
systems have been proposed. However, most suffer from
safety hazards, excessive cost and resource consumption,
reliance on Internet connectivity, or poor performance. Given
the number of systems in the literature, we focus on the latest
intelligent agricultural systems and animal intrusion detection
strategies.

Devaraj et.al. suggest using traditional electric fence, which
shock animals that cross the boundary [2]. While effective
and easy to install, it needs constant power supply and
regular maintenance. It becomes ineffective during power
outages, whereas our system remains operational. Notably,
non-intelligent electric fences may harm animals and people.
In [6], authors analyze why traditional methods such as
electric fencing are futile in some scenarios and high cost.

Cameras and computer vision are effective at identifying
intruding animals. Some researchers [3]–[5] use deep learning
algorithms to recognize animals captured by the camera at
regular intervals. However, fixed interval detection wastes
resources and may miss some animals. Yadahalli et.al. [6]
instead send images to a TFT display and use a flash light for
better night images, which are more expensive and consume
more power. Compared to computer vision, it is also harder
for humans to accurately identify animals in images where
they make up a small percentage.

Cloud-based infrastructures [10]–[12] are popular in smart
agriculture for their powerful computing capabilities. In these
systems, data from smart sensors is transmitted over the
Internet to the cloud, where the data is stored and processed

for decision making. However, these systems rely on Internet
connectivity, which may be unavailable in rural areas, and can
result in high latency due to data transmission to the cloud.

Many works [14]–[20] that use infrared sensors lack
specifics on sensor placement and algorithms. Some works
either present their approach in a very generic way without
details about the algorithm and adequate evaluation, or they
fail to achieve better performance [3]. Some works can not
support large service coverage at a low cost [2], [7]–[9].

VII. CONCLUSION

This paper outlines the design of a fog-based smart agri-
culture system that aims to transform traditional agriculture
into a smart agriculture system. The system overcomes the
challenges of high communication latency and Internet con-
nectivity issues by incorporating fog computing and LoRa
communication. It addresses the top concern of farmers,
animal intrusion, by detecting and predicting the location of
animals using low-cost PIR sensors and cameras. The paper
also proposes three different sensor layouts and an algorithm.
Finally, the three layouts are experimentally compared, and
the effectiveness and accuracy of the algorithm are verified.
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