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Abstract—With continuous advances in deep learning, dis-
tributed training is becoming common in GPU clusters. Specifi-
cally, for emerging workloads with diverse amounts, ratios, and
patterns of communication, we observe that network contention
can significantly degrade training throughput. However, widely
used scheduling policies often face limitations as they are
agnostic to network contention between jobs. In this paper,
we present a new approach to mitigate network contention
in GPU clusters using reinforcement learning. We formulate
GPU cluster scheduling as a reinforcement learning problem
and opt to learn a network contention-aware scheduling policy
that efficiently captures contention sensitivities and dynamically
adapts scheduling decisions through continuous evaluation and
improvement. We show that compared to widely used scheduling
policies, our approach reduces average job completion time by
up to 18.2% and effectively cuts the tail job completion time
by up to 20.7% while allowing a preferable trade-off between
average job completion time and resource utilization.

Index Terms—Scheduling, Machine learning, Reinforcement
learning, Heterogeneous (hybrid) systems

I. INTRODUCTION

Distributed deep learning (DL) training is becoming in-
creasingly prevalent in GPU clusters. A recent analysis pub-
lished by Alibaba [1] has reported that over 80% of the total
submitted DL training jobs1 run on multiple GPUs spanning
over multiple nodes. This rate corresponds to approximately
5× increase in five years from the previous report from
Microsoft [2]. Also, emerging DL training workloads present
diverse amounts, ratios, and patterns of communication. For
instance, Fully Sharded Data-Parallel training (FSDP) [3],
[4] features heavy communication, with at least 50% in-
creased communication cost compared to conventional data-
parallel training [5]. Mixture of Experts (MoE) [6] train-
ing implements a gating network-based routing mechanism
between distributed experts using AllToAll pattern that
has higher communication cost than traditional AllReduce
pattern. Eventually, previous studies have shown that GPU
clusters can suffer significant performance degradation due to
conflicts in network communication when distributed training
and emerging workloads with diverse communication are
common [1], [7], [8]. Ultimately, this trend raises a new

1Combination of DL model to train, GPU demand, and scheduled nodes.

challenge to GPU cluster scheduling: mitigating performance
slowdown due to network contention.

Notwithstanding the new challenge, we notice that widely
used scheduling policies (e.g., LAS [9], [10] and SRTF [11])
are often agnostic to network contention between jobs, hence
are prone to significant degradation in jobs’ training through-
put. For example, when FSDP and MoE training share
networks, they suffer up to 49.1% and 66.7% throughput
degradation compared to isolated cluster, respectively. Un-
fortunately, such unfavorable scheduling decisions cannot be
avoided under contention-agnostic policies. Yet, we observe
that a job experiences varying degrees of network contention
based on the model and the placement of the co-located2

jobs. Accordingly, the throughput degradation of the afore-
mentioned example can be improved up to 21.6% and 19.5%,
respectively, depending on how they are co-located. Building
upon this insight, we define contention sensitivity (CS) of
a job as the ratio of its ideal throughput to the degraded
throughput when co-located with another job (1).

CS =
Throughputideal

Throughputcontention
(1)

In this paper, we propose a method for scheduling dis-
tributed DL jobs in GPU clusters that minimizes network
contention. Two notable challenges are as follows: 1. effi-
ciently capturing contention sensitivities, and 2. dynamically
adapting to diverse distributions of jobs and their contention
sensitivities. To address these challenges, we devise a rein-
forcement learning (RL)-based approach to swiftly learn an
effective scheduling policy by continuous evaluation and im-
provement of scheduling decisions across diverse distributions
of jobs. Specifically, we make the following contributions:

• We propose a novel design that translates the network
contention problem in cluster scheduling into an RL
problem. We show that our design can efficiently capture
contention sensitivities of jobs and dynamically adapt
scheduling decisions across diverse distributions of jobs.

2Scheduling jobs such that they become each other’s node-sharing neigh-
bors, sharing all or part of the allocated nodes, and thus bandwidth of intra
and inter-node networks.
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• We present an end-to-end system for training scheduling
policies with RL to its deployment on GPU clusters. We
provide two initial scheduling policies, RL-base and
RL-Hybrid, and implement mechanisms that execute
the decisions of the scheduling policy.

• We evaluate our scheduling policies with a variety of
DL training job traces on a GPU cluster. RL-base
outperforms LAS and SRTF by reducing average JCT
by up to 18.2% and effectively cutting tail JCT by up to
20.7%, while RL-Hybrid achieves a preferable trade-off
between average JCT and resource utilization.

• We open our work at (https://github.com/gajagajago/
deepshare) as a community asset for future research in
RL-based GPU cluster scheduling.

II. BACKGROUND

DL training in GPU clusters. Deep learning is a process to
train a deep neural network (DNN) with the purpose of ana-
lyzing and deriving valuable knowledge from data [12]. The
DNN is constructed with numerous layers and parameters.
During training, the DNN is tasked with making predictions
and updating its parameters based on the computation of
errors in relation to actual outcomes. Given its inherent com-
putational intensity, training is usually performed on high-
capacity accelerators like GPUs. Due to extremely high price
(e.g., NVIDIA A100 costs about $10k), organizations often
build GPU clusters to be shared by users and production
groups [13]. Consequently, GPU clusters usually employ a
scheduler for the efficient allocation of cluster resources.
These schedulers predominantly operate under two key ob-
jectives: reducing Job Completion Time (JCT) [7], [9], [14]–
[17] and enhancing resource utilization [9], [13], [18], [19].
Thus, these two performance metrics form the foundation of
our RL formulation’s reward (Section IV).
RL for cluster scheduling. Reinforcement learning involves
an agent that learns to make better decisions directly from
experience interacting with the environment [20]. The agent
learns by reinforcement, wherein it receives rewards contin-
gent on the quality of its decisions [21]. RL has recently be-
come an active area of research in machine learning [22]–[26],
and RL-based approaches have demonstrated great potential
in various domains including congestion control [27], video
streaming [28]–[30], real-time communication [31]–[35], and
resource management [21], [36]–[38]. RL approaches are
known to be especially well-suited to resource management
systems due to the followings:

• Decisions made by the systems are highly repetitive,
leaving abound of training data (e.g., scheduling deci-
sions and corresponding effects) to the RL algorithm.

• Reward can reflect complex objectives (e.g., JCT and
utilization) which are difficult to model analytically.

• Agent are highly adaptive to constantly shifting or even
previously unseen circumstances.

DeepRM [21] and DeepPlace [37], [38] are two notable
works that apply RL in resource management. DeepRM

represents the system state as a combination of cluster
resources and resource demands of jobs. In this scheme,
cluster resources are equipped with available time slots for
job allocation, while jobs demand distinct quantities of time
slots for different resource types. The action step revolves
around matching jobs’ time slots with those of resources,
and the reward is designed to mirror the objective of min-
imizing average slowdown. DeepPlace builds upon DeepRM
and introduces a more intricate reward that incorporates a
blend of purpose-oriented cues, including factors like resource
contention penalty and under-utilization penalty.

Nevertheless, there exists a limitation when attempting to
employ these methodologies in scheduling distributed DL
jobs in GPU clusters. First, since these approaches primarily
focus on host resources (such as CPU and DRAM) and
address small containerized microservices as their target
jobs, their state representation is inadequate for capturing
distributed GPU jobs. Second, their action scope remains
limited to within a single node, making it impractical to
schedule distributed jobs spanning multiple nodes. Finally,
due to the absence of consideration for network contention
between jobs, their reward structure fails to encompass the
performance impact of network contention. Therefore, our
main objective is to introduce an efficient RL-based solution
for GPU cluster scheduling that efficiently handles network
contention problem (Section III).

III. MOTIVATION

In this section, we introduce emerging DL training work-
loads encompassing diverse communication characteristics.
Then, we analyze their contention sensitivities to draw in-
sights for effective network contention-aware cluster schedul-
ing. We use these workloads (and their variations) to consti-
tute the jobs traces for evaluation (Section VI).
Communication characteristics of emerging DL training
workloads (Table I). FSDP [3], [4] and MoE [6] exhibit
high network bandwidth consumption and communication-to-
computation ratio. Specifically, FSDP and MoE demonstrate
respectively 3.01× and 5.67× higher communication-to-
computation ratio and 12.65× and 4.40× larger average band-
width consumption compared to a traditional image model
training such as MobileNetV3 [40]. These characteristics stem
from their communication pattern, designed to achieve GPU
memory efficiency at the cost of increased communication.
Concretely, FSDP adds per-layer AllGather at forward pass,
and per-layer AllGather and ReduceScatter at backward
pass compared to conventional data-parallel training [3], [4].
MoE adds gated network-based AllToAll communication
between distributed experts [6].

DLRM [41] and Transformer-XL [42] display either a
high communication-to-computation ratio or high network
bandwidth consumption. Especially, DLRM exhibits a 5.49×
higher communication-to-computation ratio but 19.3% lower
bandwidth consumption compared to MobileNetV3. Collec-
tive communications account for a significant fraction of time

https://github.com/gajagajago/deepshare
https://github.com/gajagajago/deepshare


Task Model (Abbreviation) Dataset Trainable
Parameters

Average Bandwidth
Consumption (MB/s)

Comm
Comp

Communication Patterns

Graph GraphSage (GNN) [39] Reddit 0.33M 24.63 0.57 AllReduce

Image MobileNetV3 (IMG) [40] ImageNet 2.04M 211.25 2.43 AllReduce

Recommendation DLRM (DLRM) [41] Criteo 333.32M 170.28 13.36 AllReduce

Language

Transformer-XL (LM) [42] Wikitext-103 202.44M 854.82 1.87 AllReduce

GPT-2 (FSDP) [43] Wikitext-2 184.89M 2672.40 7.32 ReduceScatter, AllGather

GPT-2 (MoE) [43] Wikitext-2 268.92M 929.48 13.79 AllToAll

Table I: Models used in this work. Comm
Comp denotes communication-to-computation ratio. Average bandwidth consumption and

Comm
Comp is profiled in our evaluation environment (Section VI).

Figure 1: Contention sensitivity heat map. Darker value
indicates higher contention sensitivity, which signifies larger
throughput degradation of the target job according to the net-
work contention from the co-located job. Numbers behind the
model name denote nodes and GPUs per node, respectively.

in training DLRM at scale [44]. This is because recommenda-
tion tasks such as DLRM spend around 80% of total training
time on host resources [1] as sparse computation of element-
wise operators dominates. On the other hand, Transformer-
XL exhibits a 23.04% lower communication-to-computation
ratio but 4.04× higher bandwidth consumption compared to
MobileNetV3. This is because the Transformer [45] blocks
employ the attention mechanism that requires larger amounts
of computation compared to the convolution-based mecha-
nism of image models.

GraphSage [39] exhibits the lowest network bandwidth
consumption and communication-to-computation ratio, with
76.85% less communication-to-computation ratio and 88.34%
lower average bandwidth consumption compared to Mo-
bileNetV3. This is because GraphSage training partitions the
input graph among nodes, where per-node graph preprocess-
ing takes 30-90% of the training time with involving only a
little communication [1].

Contention sensitivity of a job varies by its co-located job.
In Figure 1, each pixel value depicts the contention sensitivity
of the target job according to the network contention from
the co-located job. A pair of a target model and a co-
located model is represented as a 6 × 6 grid (e.g. the black
boxes in Figure 1 shows the varying contention sensitivities
of FSDP and MoE, with respect to diverse GPU demands
and node assignments). We observe that some jobs (GNN
and IMG) show consistent contention sensitivities regardless
of co-located jobs, whereas the others (DLRM, LM, FSDP,
and MoE) show high variability with regard to the model,
GPU demands, and node assignment of the co-located job.
For example, when FSDP and MoE training are co-located,
they experience contention sensitivities of up to 1.96 and
3.00, respectively, with varying degrees according to their
co-location (the black boxes in Figure 1). In contrast, when
FSDP and MobileNetV3 training are co-located, they exhibit
moderate degrees of contention sensitivities with at most 1.35
and 1.43, respectively (the white boxes in Figure 1).

We summarize our findings from this section as follows:
• Jobs exhibit a variety of communication characteristics,

which contribute to their varying contention sensitivities
when co-located with other jobs.

• In this regard, scheduling based on efficiently captured
contention sensitivities and aimed at reducing expected
contention will effectively alleviate network contention.

IV. RL FORMULATION

Requirements. Summarizing the key insights from previ-
ous sections, the main requirements of an ideal network
contention-aware GPU cluster scheduling includes:

• R1. Fast adaptation of its decisions to reflect the con-
stantly changing distribution of contention sensitivities
as scheduled jobs change.

• R2. Minimizing cluster-wide performance degradation
due to contention, achieving low average and tail JCT
while maintaining high resource utilization.

To satisfy the requirements, we propose our design for
a network contention-aware scheduling with RL. We ex-
plain our formulation of state, action, reward, and training
algorithm. We also present two initial scheduling policies
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Figure 2: State representation. (Example for 4 nodes each
with 8 GPUs, 3 scheduled jobs and 3 candidate jobs with
varying in GPU demands)

(agents in RL term) trained with RL, namely RL-base
and RL-Hybrid. These policies serve as benchmarks for
evaluation (Section VI).
State. To adapt the agent’s decisions such that it reflects
the constantly changing contention sensitivities (R1), we
develop a state representation that captures the cluster-wide
co-location of jobs. Figure 2 illustrates an example of our state
design. We represent the cluster state as a two-dimensional
tensor of shape <Nodes, 2×GPUs per node>. This fixed state
design satisfies a desirable attribute to be applied as input to
neural network-based RL training algorithms. The left half
encodes the physical placement of scheduled jobs. Each slot
contains the profile of a job, if any job is scheduled on the
GPU corresponding to the slot. Conversely, the right half
captures the resource demands of candidate jobs in the waiting
queue. For example, if a candidate job is encoded in sloti,j of
the right half, it signifies that one feasible placement option
for the job is distributing its total j ∗ 2i demands across 2i

nodes with j GPUs each. Since there are various ways to
partition a job’s demand, jobs with multiple GPU demands
can be encoded in multiple slots of the right half.
Action. Choosing an arbitrary set of candidate jobs from
the waiting queue can lead to a large action space of up to
2Q when the queue length is Q. To reduce the size of the
action space for faster convergence of the training algorithm,
K candidate jobs with different GPU demands are picked
starting from the head of the waiting queue (forming the right
half of the state representation). Besides, to keep an action
space of constant size without invalid actions, our action space
for the candidate jobs is a set of lists of nodes to schedule the
targets. ∅ denotes that the agent decided not to schedule any
jobs in the current round. For example, if the agent returns
[Node1, Node2] as an action for job type 1 (Figure 2), it is
assigning the job to Node1 and Node2 with two GPUs each
as job type 1 is encoded in slot2,2 on the right half of the state
representation. One possibly beneficial extension of the action
space can be to migrate a job if there is a better placement
option or preempt if the current co-location is detrimental.
But for the current prototype, we only support preemption
based on a predefined threshold on contention sensitivity and
plan to incorporate this feature in the action space soon.

Algorithm 1: RL Training Algorithm
Input : Trace: job trace, Alg: RL algorithm
Parameter: W1,W2: weights, T : scheduling interval,

F : policy checkpoint path
1 C ← Init empty cluster environment
2 Q← Waiting jobs in Trace
3 Policy ← Init policy with Alg
4 while !C.empty or !Q.empty do
5 Train(C, Q, Policy)
6 end
7 Save Policy to F
8

9 Function Round(C, Q, Policy):
10 State← Get state from C and Q
11 Actions← Policy computes action from State
12 for job, nodes ∈ Actions do
13 Schedule job to nodes
14 end
15 Sleep for T
16 Reward← ComputeReward(C)
17 Update Policy with Reward
18

19 Function ComputeReward(C):
20 CS, Util← 0
21 for job ∈ C.jobs do
22 CSjob ← Profile contention sensitivity of job
23 Update CS with CSjob
24 end
25 for node ∈ C.nodes do
26 for GPU ∈ node do
27 UtilGPU ← Profile utilization of GPU
28 Update Util with UtilGPU
29 end
30 end
31 return −W1 ∗ CS +W2 ∗ Util

Reward. To minimize cluster-wide performance degradation
due to contention (R2), our reward penalizes an increase in
cluster-wide average contention sensitivity of scheduled jobs
and provides incentives on higher cluster-wide average GPU
utilization (2). The two terms articulate the reward because
reduced average job contention sensitivity is positively related
to reduced JCT, and high GPU utilization corresponds to
enhanced resource utilization, which are the two pivotal
performance metrics of GPU cluster schedulers (Section II).
Weights W1 and W2 = 1 −W1 are imposed on contention
sensitivity (CS) and utilization (Util) term. Its values can
be tailored to reflect the relative preference between average
contention sensitivity and utilization, as the two terms typi-
cally have a trade-off relationship. For instance, co-locating as
many jobs as possible to maximize resource utilization may
exacerbate average contention sensitivity, leading to more



network contention experienced by the co-located jobs.

Reward = −W1 ∗ CS +W2 ∗ Util (2)

Training algorithm. Algorithm 1 illustrates the training
algorithm. The agent (Policy) is trained with a neural
network-based RL algorithm (Alg) using job traces (Trace)
on a simulated GPU cluster environment. The agent makes
scheduling decisions until all jobs have finished (Lines 4-
6). For every scheduling round, the agent is given the state
representation (Line 10) and chooses an action (Line 11).
Jobs are scheduled as depicted in the action (Lines 12-
14). After waiting for the scheduling interval (Line 15),
reward is computed with respect to contention sensitivities
of the scheduled jobs and resource utilization of the cluster
(Line 16) and is returned to the agent to adapt its policy
using the neural network-based RL algorithm (Alg) (Line
17). By iterating through numerous scheduling rounds in the
training process, the agent continuously explores diverse job
co-location options and adapts its scheduling decisions to
effectively mitigate cluster-wide network contention. When
the training finishes, the agent is saved into a file as a trained
scheduling policy (Line 7).
Benchmark policies. We present two initial scheduling poli-
cies trained with RL, namely RL-base and RL-Hybrid.
These policies serve as benchmarks for evaluation (Section
VI).

• RL-base makes scheduling decisions only based on the
action of the trained policy. It may decide not to schedule
jobs even when the cluster has enough resources to
avoid an increase in performance degradation due to
contention.

• RL-Hybrid performs decision-level multiplexing of the
trained policy and a simple rule-based policy. 3 It usually
follows the decisions of the trained policy, but when it
faces an ∅, i.e. decision not to schedule, it follows a
safety rule of trying greedy scheduling to prevent low
utilization.

V. SYSTEM

A. Framework Overview

We build an end-to-end system from training a scheduling
policy with RL on a simulated cluster environment to its
deployment on GPU clusters. Figure 3 illustrates the overall
system architecture. The system is composed of two parts:
Trainer and Scheduler. Trainer implements a simulated
cluster environment and the training algorithm to train a
scheduling policy with RL (Section IV). Scheduler deploys
the trained policy on GPU clusters and provides mechanisms
to execute the scheduling decisions.

3Such hybrid design is in line with the recent trend of incorporating the
decisions of rule-based policies to guide or aid the RL-based policy to achieve
both the RL-based one’s high adaptivity and the rule-based one’s stability
and interpretability [33]–[35], [46].

Simulated
Cluster Env.

Job Traces

Action

State, Reward

Trainer

Scheduler

Controller
State

Action

Client

Job Submission

Agent
Scheduling Policy
(Under Training)
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Scheduling Policy

(Trained)

GPU
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GPU
Node

GPU
Node

GPU
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Profile Job Schedule

Distributed FS-based Checkpoint Store

Model GPU 
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to Train
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Throughput

Arrival
Time

Checkpoint Store/Load

Plug-in 
Trained Policy

Figure 3: System overview. The policy is trained on a trace-
driven simulated GPU cluster environment using RL and
deployed on the actual GPU cluster.

B. Trainer

Trainer provides OpenAI gym [47]-based simulated clus-
ter environment of nodes and GPUs. It also provides a
common interface for a set of off-the-shelf RL algorithms
in widely used stable-baselines3 [48]. Hence, researchers can
easily customize the RL formulation and train their own
policies. Trainer requires only job trace (e.g., Microsoft’s
Philly trace [2] and Alibaba’s PAI trace [1]) to start training
on simulated cluster environment. Training an agent on an
episode of 256 jobs completes in less than a minute.

C. Scheduler

Scheduler is implemented on top of Slurm [49], an
open-sourced Linux cluster manager, and uses HDFS [50]
as the checkpoint store. Controller is implemented on
top of Slurm control daemon (slurmctld) by adding
global data structures for cluster state and waiting queues,
an interface for communicating with the scheduler and
the node agents (ComputeObs() and Schedule()), and
PreemptionManager to support checkpointing through
asynchronous preemption protocol. Scheduler provides an
interface to load the checkpoint of the trained policy. It also
supports a set of widely used scheduling policies, where users
can configure one via script. NodeAgent is implemented on
top of Slurm daemon (slurmd) with CheckpointManager,
Profiler built on top of PyTorch profiler [51], and
ProcessManager for initializing a node process group used
for synchronization in distributed DL training.
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Figure 4 illustrates the in-depth workflow of Scheduler.
The trained policy is plugged into Core and deployed
on the GPU cluster. Core executes round-based schedul-
ing with a predefined round duration knob. For every
round, ComputeObs() encodes the cluster and the waiting
queue state as a state and sends it to Core( 1 ). Follow-
ing the scheduling decision produced by the policy ( 2 ),
Controller dequeues the target jobs to schedule from the
waiting queue ( 3 ). Then Schedule() spawns NodeAgent
for the job (one per each node allocated to the job), and
submits the job training script ( 4 ). NodeAgent builds the
process group for the job and delivers the profiled job stats
to Controller after executing an online profiling for pre-
defined iterations ( 5 ). Monitoring the contention sensitivity
of jobs from the profiles, Controller sends a preemp-
tion signal to node agents with jobs with higher contention
sensitivity than a predefined knob. NodeAgent waits for
CheckpointManager to save the checkpoint of the job to
distributed file system (DFS)-based job checkpoint store and
returns its status to PreemptionManager asynchronously
( 6 ). To support re-scheduling, PreemptionManager main-
tains a preemption lookup table. Thus, whether a job has been
preempted can be identified by querying the job identifier on
the lookup table, and the scheduler loads from the checkpoint
store to resume from the latest checkpoint ( 7 ).

VI. EVALUATION

We evaluate the performance of our approach using the two
benchmark policies, RL-base and RL-Hybrid (Section IV).
Environment. Experiment conducts on a homogeneous clus-
ter of four nodes, each equipped with eight NVIDIA TITAN
XP GPUs connected over 16GBps PCIe Gen3. Each node
has one Mellanox MT27700 family ConnectX-4 NIC and is
interconnected with 10Gbps Ethernet and 40Gbps InfiniBand.

We believe our evaluation environment of 32 GPUs covers
a large section of important use cases: Microsoft reports
that 93.7% of all jobs submitted to their internal DGX-2
clusters required at most 32 GPUs in the second half of
2021 [52]. Also, despite the moderate scale of the evaluation
environment, we note that our design can be applied to large-
scale clusters without any limitation.
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Traces. To evaluate different scenarios with varying degrees
of communication intensities, we generate four traces with
different communication intensities according to the catego-
rization in Section III. 4 Each trace contains ten job sets
each with 256 randomly shuffled jobs. Each job is randomly
assigned a GPU demand of up to 32, and given a total
number of samples to train, which is configured to set its
expected training time in an isolated cluster as one hour. The
jobs’ configurations (e.g., batch size, parameter size, number
of layers, and gradient accumulation steps) are initialized
randomly to evaluate extensibility to unseen cases.
Branches of RL-base and RL-Hybrid. We use five branches
of RL-base and RL-Hybrid each by sweeping the range
of the weights in the reward (W1, W2) (Section IV) to
demonstrate trade-off relationship between average contention
sensitivity and utilization. 5 In Figure 5 to Figure 8, A, B, C,
D, and E correspond the branch with (0.3, 0.7), (0.4, 0.6), (0.5,
0.5), (0.6, 0.4), and (0.7, 0.3) of the weights, respectively.

4Normal, heavy, medium, and low communication intensive traces follow
the model distribution of GNN:IMG:DLRM:LM:FSDP:MoE=1:1:1:1:1:1,
1:1:1:1:4:4, 1:1:4:4:1:1, and 4:4:1:1:1:1, respectively.

5We train each branch for 10 sets of jobs, each with 20 episodes that each
contains 256 jobs.
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Results. Figure 5 shows the cumulative distribution function
(CDF) of JCT. Comparing average JCT to SRTF and LAS,
RL-base (RL-Hybrid) achieves 15.4% (12.1%) and 18.2%
(15.1%) reduction, respectively. The large improvement in
average JCT is the result of reduced cluster-wide contention
sensitivity. Figure 6 shows the proportion of average con-
tention sensitivity (i.e., average of contention sensitivities that
jobs experience during training). RL-base and RL-Hybrid
show a concentration of average contention sensitivity at
a lower degree than SRTF and LAS. Clearly, this demon-
strates that scheduling decisions of RL-base and RL-Hybrid
successfully reduce cluster-wide average contention sensitiv-
ity which leads to an eventual large reduction in cluster-
wide average JCT. For p90 JCT, RL-base and RL-Hybrid
equally achieve 16.4% and 20.7% reduction compared to
SRTF and LAS, respectively. Even though RL-Hybrid shows
the smaller degree of average JCT reduction (≈ 3%) than
RL-base, RL-Hybrid trades such cost to a large improve-
ment in cluster-wide utilization. Figure 7 shows the kernel
density estimation (KDE) of utilization. RL-Hybrid displays
the highest utilization, emphasizing the preferable trade-off
between average JCT and utilization. The difference mainly
stems from their policy discrepancies; when the trained policy
decides ∅, i.e., not to schedule, RL-Hybrid tries to improve
utilization by multiplexing to greedy scheduling.

The reduced tail JCT demonstrates that scheduling with RL
effectively curbs scheduling decisions that trigger the worst
contention situations.

Figure 8 shows the results according to traces with vary-
ing degrees of communication intensities. In normal, high,
and medium communication traces, we observe a trade-
off relationship between average JCT and utilization among
RL-base, SRTF, and LAS (blue dashed lines). RL-base’s A
and B trained with average contention sensitivity term weight
(w1) 0.3 and 0.4 achieve relatively balanced average JCT
and utilization. On the other hand, RL-base’s C and D fail
to reach the preferable trade-off. RL-base’s E trained with
the highest penalization of the average contention sensitivity
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Figure 8: Performance comparison for varying traces. The
light red and red colored dots are different branches of
RL-base and RL-Hybrid, respectively. Utilization denotes
the ratio of used GPUs to total GPUs in the cluster.

achieves the best average JCT at the cost of much lower
utilization compared with SRTF and LAS which opt for max-
imizing utilization while not taking contention into account.
RL-Hybrid moves the original dots of RL-base to the higher
right end of the graph. This means that when cluster job
distribution follows normal, high, or medium communication
intensity conditions, adhering to the action of the trained RL
policy in common cases while conforming to the decisions
produced by the rule-based safety condition to prevent low
utilization in rare cases leads to a large improvement in
utilization at the expense of a relatively small increase in
average JCT. Conversely, in low communication traces, we
observe that SRTF and LAS perform similarly to RL-Hybrid
because the relatively low level of contention sensitivities of
jobs makes the impact of network contention negligible.

VII. RELATED WORK

GPU cluster schedulers for DL. GPU clusters employ a
scheduler for efficient allocation of cluster resources. The
common goals of the schedulers include reducing average
JCT [7], [9], [14]–[17], improving utilization [9], [13], [18],
[19], or providing fairness [53], [54]. Optimus [14] esti-
mates training speed and assigns more resources to jobs
with higher marginal gain. Gandiva [18] employs job time-
slicing to provide early feedback and executes a greedy ap-
proach for job migration and packing. Tiresias [9] introduces
least attained service metric to prevent starvation of late
arriving jobs. Themis [53] introduces finish time fairness
and promotes fairness between jobs. Gandivafair guarantees



fairness between users through allocating proportional re-
source shares. Antman [19] segments jobs into prioritized
and opportunistic jobs to apply different scheduling policies.
Gavel [15] proposes a policy-agnostic scheduling mechanism
and schedules based on throughput metric that is comparable
across heterogeneous accelerator types. AFS [16] opts for
balance between the shortest job first policy and resource
efficiency when allocating idle resources to jobs. Pollux [17]
co-optimizes system throughput and job-level performance
metrics. Synergy [13] allocates host resources (e.g., CPU and
DRAM) disproportionately according to jobs’ sensitivity to
resources. Muri [7] enables multiple jobs to be packed on
the same set of resources by interleaving different stages of
different jobs. However, our work presents the first approach
that identifies the network contention sensitivity of jobs
and optimizes the cluster objectives by efficiently mitigating
network contention.
RL for systems. Using RL for cluster scheduling allows
rapid adaptation by learning to schedule DL training jobs that
experience different levels of network contention sensitivities,
where the distribution of jobs with different model, GPU
demand, and placement combinations changes constantly. The
potential of the RL-based approach in high adaptivity to con-
stantly changing or even unseen conditions has been already
shown in various domains. In TCP congestion control (CC),
PCC-RL [27] shows that RL-based TCP CC algorithm can
successfully learn to distinguish different types of network
losses that hand-optimized TCP CUBIC [55] cannot capture.
In adaptive video streaming, Pensieve [28] demonstrates that
RL-based adaptive bitrate selection for video streaming can
improve quality-of-experience (QoE) such as reduced frame
stalling while improving bandwidth utilization. Merina [30]
shows that using meta-RL allows fast adaptation in unseen
throughput dynamics, further improving QoE across a wide
range of network throughput patterns. Our work applies RL in
resource management system, and present the first approach
to propose network contention-aware GPU cluster sheduling
with RL.

VIII. CONCLUSION

We present a novel design that translates the network
contention problem in GPU cluster scheduling into an RL
problem. Our RL formulation trains the scheduling policies
to efficiently tackle the challenge of continuously changing
contention sensitivities of jobs in GPU clusters. We build
an end-to-end system that can train scheduling policies with
RL and deploy on GPU clusters. Our evaluation show that
RL-based scheduling policies achieve reduced average and
tail JCT by up to 18.2% and 20.7% compared to the
widely used LAS and SRTF scheduling policies, and allows
preferable trade-off of large improvement of utilization with
small cost in average JCT. Our work is open-sourced at
https://github.com/gajagajago/deepshare for future research in
RL-based GPU cluster scheduling.
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