Aspect Mining in Procedural Object-Oriented Code

Muhammad Usman BHATTI! Stéphane DUCASSE? Awais RASHID?
LCRI, Université de Paris 1 Sorbonne, France
2INRIA - Lille Nord Europe, France
3Computing Department, Lancaster University, UK
muhammad.bhatti @ malix.univ-paris1.fr, stephane.ducasse @inria.fr, awais @ comp.lancs.ac.uk

Abstract

Although object-oriented programming promotes
reusable and well factored entity decomposition, industrial
software often shows traces of lack of object-oriented
design and procedural thinking. This results in domain
entity scattered and tangled code. This is often true in data
intensive applications. Aspect mining techniques search for
various patterns of scattered and tangled code pertaining
to crosscutting concerns. However, in the presence of
non-abstracted domain logic, the crosscutting concerns
identified are inaccurately related to aspects since lack
of OO abstraction introduces false positives. This paper
identifies the difficulty of identifying crosscutting concerns
in systems lacking elementary object-oriented structure.
It presents an approach classifying various crosscutting
concerns. We report our experience on an industrial
software system.

1 Introduction

The problem of scattered code has principally been
treated in the domain of aspect mining [9, 12]. The un-
derlying assumption in most of the existing work in this do-
main is that scattered and tangled code in object-oriented
systems only originates from the tyranny of dominant de-
composition [10], while other system artifacts have been
adequately encapsulated in their associated abstractions
(namely classes) resulting from an object-oriented analy-
sis. Unfortunately, this is not always the case in existing
industrial software systems as most of them are developed
under budget limitation and time to market, therefore the
design quality is often deteriorated [5]. This is often the
case in data intensive applications. Often there are missing
object-oriented abstractions for domain entities, which end
up as crosscutting concerns scattered and tangled in other
classes of the system. Therefore, traditional aspect mining
techniques are inadequate in presence of non-abstracted do-

main logic as they wrongly associate lack of object-oriented
structure with aspects. This occurs because, in such sys-
tems, scattered code is often not a sign of missing aspects
but missing object-oriented abstractions. Thus this situation
introduces noise during aspect mining. Therefore, there is
a need to complement the existing works on aspect mining
with approaches identifying abstractions in object-oriented
code.

We coined the term procedural object-oriented code
for the code which lacks an overall object-oriented design
but nonetheless has been developed using state of the art
object-oriented languages. Henceforth, we introduce an ap-
proach for the identification of diverse crosscutting con-
cerns present in procedural object-oriented code. The ap-
proach presented in this paper identifies different cross-
cutting concerns present in a software system: aspects as
well as non-abstracted domain logic. Crosscutting concerns
pertaining to non-abstracted domain entities are identified
based on their data application usage.

This paper is organized as follow: Section 2 describes
the context and gives an overview of the case study that is
used in the paper. Section 3 describes the technique used
to mine crosscutting aspects and its limits in presence of
procedural object-oriented code. Section 4 presents our ap-
proach for the identification and classification of concerns.
It presents the results obtained on the case study presented
before. Section 6 talks about the related work and Section 7
concludes the paper.

2 A Case Study : Blood Analysis Application

To illustrate the shortcomings of aspect mining tech-
niques in presence of procedural object-oriented code and
our approach to classify crosscutting concerns, we use an
industrial case study: a software system driving machines
performing blood disease analyses.

For the sake of precision and clarity, we shall only be
talking about the software subsystem that manages the func-
tional entities and processes, and operates with the database

layer to manage the relevant data. Certain core function-
alities, such as blood analysis data, reagents used by the
machines, results and patient data are the key features im-
plemented at this layer. Every test is performed on patient
data and the results of the tests are then stored in persis-
tent storage system. The persistent storage system is ex-
tensively used to record all the business objects, machines
activities, test traceability information, machine products,
and machine maintenance information. Quality control is
performed on the machines with plasma samples for which
the results are known beforehand, to determine the reliabil-
ity of machine components. In addition to quality control, a
machine is calibrated with the predetermined plasma sam-
ples so that raw results can be interpreted in different units
according to the needs of the biologist or doctor for easy
interpretation.

Table 1 below shows some of the software quality met-
rics for our case study business entity subsystem. Lines
Of Code (LOC) tallies all lines of executable code in the
system. Number Of Methods (NOM) and number Of At-
tributes (NOA) metrics indicate respectively the total level
of functionality supported and the amount of data main-
tained by the class. Depth Of Inheritance (DIT) indicates
the level of inheritance a class has. And finally, Lack of Co-
hesion Of Methods (LCOM) indicates the cohesion of class
constituents by examining the number of disjoint sets of the
methods accessing similar instance variables; lower values
indicates better cohesiveness [8].

Table 1. Case Study Metrics

Class Name LOC NOM | NOA | DIT | LCOM
CPatient 11,462 260 9 1 0.85
CTest 2792 81 13 1 0.72
CProduct 2552 77 6 1 0.72
CResults 1652 52 13 1 0.85
CPersistency 1325 67 29 2 0.97
CGlossary 1010 121 5 1 0.80

Table 1 communicates some facts about the business en-
tity layer: There is a clear lack of hierarchical structure and
presence of huge service component classes lacking cohe-
sion, with large number of methods. It can also be noted that
certain domain entities such as quality control, calibration,
and raw results do not have associated classes in the code
(CResult class in the table contains the functionality to cal-
culate interpreted results). These are signs of as procedu-
ral object-oriented code. Procedural object-oriented code
results in crosscutting concerns both due to absence of do-
main abstractions and limitation of OOP mechanisms to en-
capsulate certain concerns cleanly. The presence of such a
procedural object-oriented code raises the problem of the
distinction of aspects which are identified by aspect mining
techniques. In the following we employ one aspect mining

technique to examine the crosscutting concerns identified in
procedural OO code.

3 Evaluating the FAN-in Aspect Mining
Technique

Aspect mining techniques automate the identification of
scattered code in software systems by producing a list of
crosscutting concern candidates. These can be identifiers
and redundant lines of code, code clones, metrics, etc. [9].
We employed FAN-in technique for mining crosscutting
concerns in our case study software [12]. The principle of
FAN:-in for concern identification is to discover all methods
which are called frequently because crosscutting concerns
may reside in calls to methods that address a different con-
cern than that of the caller [3].

Since there were no tools computing FAN-in in C#, we
developed our own tool based on the bytecode analysis.
This tool looks for method calls to all the methods defined
in the application classes and lists those with values higher
than the filtering threshold given by the user for the degree
of their scattering i.e., FAN-in metric. Table 2 shows the
crosscutting candidate methods for FAN-in > 10 (threshold
for crosscutting candidates as described in [3]).

Table 2. Application methods and associated
FAN-in values

Method FAN-in
UpdatePhysicalMeasures 10
CreateResultCalibration 10
NewMeasureCalibration 10
SearchProductIndex 10
SearchCalib 13
SearchPatient 17
PublishException 19
ReadMesureCalib 22
Trace 24
SearchProduct 26
SearchTestData 29
DecryptData 35
ReadRawResults 41
PublishEvent 96
ValidateTransaction 89
GetGlossary Value 127
Getlnstance 101

Although, crosscutting concerns indicated the presence
of scattered code, a good amount of the results is related
to methods pointing to domain entities because of the non-
abstracted domain logic (See Table 2).

Hence, it shows that the FAN-in metric can identify dif-
ferent types of crosscutting concerns, at the same time due

to the absence of aspects and lack of object-oriented ab-
stractions, but without distinguishing them. This is because
there is no inherent way while analyzing method calls to
ascertain the origin of crosscutting concerns. The FAN-in
metric provides us a hint about scattering and tangling but
this information needs to be complemented as we present
with our approach in the next section.

4 Concern Classification

Our approach to classify crosscutting concerns incorpo-
rates information extracted from the use of variables rep-
resenting domain entities. With the use of application data
we distinguish the type of behavior being invoked and the
type of logic the invoked method provides to its caller. This
section describes the approach illustrated in Figure 1, and
is organized as follows: Section 4.1 describes data and be-
havioral scattering and Section 4.2 defines a model for our
concern classification approach. Section 4.3 describes the
assignment of various methods to domain entities related
concerns, and Section 4.4 describes the algorithm for the
classification of concerns.

Scatiered Concern Classify Domain QEZ
miningusing | = —> Entity Concerns E ¥
Fan IN Metric
O Aspects
T Crosscutting Concerns

==
=
=
e

Application Code Non-Abstracted

Domain Entities

Figure 1. Concern Classification Approach

4.1 Data and Behavioral Scattering

As we show in the previous section, FAN-in aspect min-
ing technique identifies candidates that are only due to a
simple lack of object-oriented abstraction. To be able to
identify such false positives, we make the hypothesis that
data is placed far from its corresponding behavior due to
absence of associated domain classes [5]. Therefore, we
need to identify the data and its associated behavior. Once
this identified, we will be able to remove noise from aspect
mining candidates. Let us analyze two forms of code scat-
tering.

Data Scattering. The absence of domain entity abstrac-
tions causes two types of data components to appear: en-
tities representing database tables and global enumerated

types. The access to this data is performed through their ac-
cessors from the methods implementing their behavior (See
the pattern Move Behavior close to Data [5]). Hence, code
accessing such data causes crosscutting concerns to appear:

e Global enumerated type accesses. Dispersed ac-
cesses to global enumerated types representing the
states and object types of various entities (such as pa-
tient, test, tube types, etc.) in diverse methods of
classes present in the system.

e Direct access to persistent data. Reading and writ-
ing of persistent storage entities stored in the database
without any particular classes associated to them. For
example, there is no class encapsulating the operations
performed on patient tubes.

Behavioral Scattering. Behavioral scattering means that
multiple distinct behaviors are composed together in a sin-
gle abstraction. This usually happens in the form of method
calls, hence indicated by abnormal high FAN-in. In our case
study this situation was frequent. Following are the scenar-
ios for behavioral scattering occurrence:

e Since the required data is away from its behavior,
therefore one behavior perpetually calls the other one
to get its particular data. This results in high FAN-in
value for data providers.

e Lack of a proper encapsulation for a behavior related
to an entity and the behavior is spread into several
client of the entity. This causes the client classes to fre-
quently call the provider-logic, causing a high FAN-in
value for logic-provider methods.

e Lastly, behavioral scattering occurs because a partic-
ular concern is impossible to be encapsulated in a
particular abstraction using traditional OO techniques
hence resulting in scattered behavioral composition of
the crosscutting calls in the client locations such as
caching and logging operations in our software system.

4.2 Model for Concern Classification

To identify crosscutting concerns appearing due to miss-
ing domain entity abstractions, we define a model based on
data usage representation and identification of associated
behavior. This model takes into account all the methods
and data components present in the application. We define
M as a set of all methods in components under analysis. T'
is defined as a set of all entities representing persistent stor-
age units, in our case database tables, and V' is defined as
a set of all global state variables representing the states and
various types associated to domain entities in 7.

Domain Entity Model. For the domain entity we repre-
sent the state: global variables and database accesses. In the
case of the case study the state mainly consists of the repre-
sentation of various domain entities in the form of persistent
storage (i.e., a database) and global state and type variables.
In the case of direct access to database elements, we use the
mapping between domain entities and the database data to
determine the methods accessing the states. The key point
is that at the end of this step we have a clear identification
of which methods access each state and this independently
of the way the application is developed.

In the case study, database tables had a clear one-to-one
association with the domain entities. Moreover, the sys-
tem states and entity types represented by global enumer-
ated types also have a clear one-to-one association with the
domain entities. The one-to-one association between the
domain entities and the above-mentioned data components
i.e., variables and database tables, is utilized to determine
the methods related to each domain entity.

We define E as the set of all domain entities that are im-
plemented by the application subsystem. Entity e € E con-
sists of table ¢(e) and variable v(e) related to the associated
domain entity e ie., entity(e) = t(e) V v(e).

Hence, all methods in M accessing directly or indirectly
domain entity-related data e are classified as implementing
the concern related to the domain entity it accesses. In the
example of Figure 2, methods of class A and class B ac-
cess data “D” of class C either directly or through accessors
hence they are identified as implementing concern relating
to the entity “D”.

Module A

Module C

Behavior for, <"
Domain ~ w
Entity D' ¢

\/Ta;ggﬁ,
Db/

ModuIeB.."" f

Getter Methods

Figure 2. Domain Entity Concern Identifica-
tion

Aspect Model. As defined earlier, it is assumed that
crosscutting concerns also appear due to the absence of ap-
propriate OOP mechanisms to interleave two intersecting
behaviors in a non-recurrent way. Hence, we base our cross-
cutting identification model on the FAN-in metric [12] (i.e.,
the higher the number of calls to a method, the more the

chances are for it being a crosscutting concern). This hy-
pothesis is reasonable since there is a consequent amount
of aspect mining techniques that search for the occurrences
of scattered and tangled method calls to detect crosscutting
behavior [9]. But we only consider those methods which do
not directly or indirectly relate to domain entities. In gen-
eral, such methods are invoked by those methods which are
associated to domain entities as depicted in Figure 3. In the
following, we introduce a model to ascertain that methods
implementing domain entity related concerns are identified.

Module A
Module C
Source Crosscutting Behavior
Behavior
Crosscutting Behavior
Module B

Figure 3. Aspect Identification

4.3 Domain Entity Concern Assignment

To classify methods related to domain entities, we define
following primary properties:

e m reads t means that m directly reads from the object
representation of table ¢t € T’

e m writes t means that m directly writes to the object
representation of table ¢t € T’

e m reads v means that m directly reads from the vari-
ablev e V

e m calls n means that m calls another method n

e m accesses t means that m directly reads from or
writes to the object representation of table ¢t € T (i.e.,
accesses = reads U writes)

From these properties, we define the following derived
properties for a concern c:

e m implements c related to domain entity e if m ac-
cesses t(e) or m reads v(e) ie.,

implements(m,c) = {m C M|Ve € E : m accesses
t(e) V- m reads v(e)}

e Method n implements a concern c if n calls another
method m and m implements c pertaining to domain
entity e

implement(n,c) = {n C M|¥Ym € M : n calls

m A implements(m,c)}

We do not consider the classes during the concern identi-
fication because they do not mean much in term of coherent
abstraction: As stated earlier, these are half-baked objects
without clearly identified abstraction.

4.4 Algorithm for Concern Classification

We now define a simple algorithm to sort the various
crosscutting concerns candidates identified using the FAN-
in. The algorithm works as follow: All the crosscutting
methods having a threshold value higher than f are added
to the set crosscutting seeds. Each method is then examined
to implement concerns related to the domain entities. Once
the domain entity related methods have been marked, all the
methods which are marked as crosscutting seeds and have
not been marked as related to domain entities are crosscut-
ting concerns.

{M} <« ¥ Methods
Test all m in { M} for a FAN-in metric f
if fanin(m) > f
{CCSeeds} —m
Vm € {M} = Iterate over Instructions of m
if implements(m, c)
concern «— m
M «— M/m {Remove m from M}
ifn € {M NCCSeeds}
{Aspects} —n

4.5 Results for Classification Approach

Using the algorithm described above, we implemented
a tool to classify concerns related to domain entities and
aspects. The results for the crosscutting concern classifica-
tion are presented in Table 3. First two columns are those
methods discovered as crosscutting candidates by the FAN-
in tool and their corresponding FAN-in metric. In addition,
the last column indicates concern classification performed
by our tool.

We checked manually the results in the code and we
found that the results produced are close to the classifica-
tion that we have produced manually. Glossary concern ap-
peared due to the absence of hierarchal structure and can
be removed by the introduction of types of sub-types for
various domain entities. In addition, identified aspects cor-
responds well with the established aspect candidates de-
scribed in literature such as tracing, exception handling and
transactions. Therefore, we conclude that the use of domain
data is useful for the classification of crosscutting concerns.

Table 3. Algorithm Results

Method FAN-in Classification
UpdatePhysicalMeasures 10 Domain Entity
CreateResultCalibration 10 Domain Entity
NewMeasureCalibration 10 Domain Entity

SearchProductIndex 10 Domain Entity
SearchCalib 13 Domain Entity
SearchPatient 17 Domain Entity
PublishException 19 Aspect
ReadMesureCalib 22 Domain Entity
Trace 24 Aspect
SearchProduct 26 Domain Entity
SearchTestData 29 Domain Entity
DecryptData 35 Aspect
ReadRawResults 41 Domain Entity
PublishEvent 96 Aspect
ValidateTransaction 89 Aspect
GetGlossary Value 127 Domain Entity
Getlnstance 101 Aspect

5 Discussion

For the concern extraction activity, we do not consider it
necessary to include statement-level local information (tem-
porary variable accesses) because they are not directly rep-
resenting main state accesses: A higher level abstraction of
the program is more useful [13]. However, in our case study,
classes were non-cohesive units that do not represent useful
information for concern extraction. Thus, we include only
methods and global variables.

One of the limitation of our work is the fact that it
bases on the model of method invocation and FAN-in metric
which assumes that there is a minimum of behavioral encap-
sulation in the form of methods and these methods represent
a well-defined, crisp functionality. In situations where there
is a haphazard, extensive scattering (i.e., methods do not
have sharp focus and data components do not have acces-
sors) this approach will not produce any meaningful cross-
cutting candidates. Crosscutting can also occur in the form
of code idioms to give rise to code clones [2], which fan-in
wouldn’t detect and hence possible combination of clones
classes and domain entity data has to be combined to adapt
the approach. We also suppose that programs generally rep-
resent domain entities through well defined, succinct global
variables, which help to relate methods to concerns. In the
absence of such variables, a manual effort is required to as-
sociate methods with concerns.

The validation that we performed is encouraging. How-
ever, we are aware that our case study while using indus-
trial code was a data intensive software system. We plan
to validate our approach on other kind of software show-
ing clear lack of object-oriented design. We believe that our
approach is suitable for software systems other than data
intensive ones as soon as they show signs of poor object-

oriented design. But this will have to be proved.

6 Related Work

Aspect mining techniques automate the process of as-
pect discovery and propose to their user one or more as-
pect candidates based on code lexical information, static
or dynamic analysis of an application [9]. FAN-in analy-
sis determines the scattering of a concerns in program code
by identifying methods that are called too frequently within
program code [12]. Lexical analysis provides a hint about
crosscutting concerns by the analysis of program tokens —
either through aggregation of tokens, types or through For-
mal Concept Analysis of the tokens [7, 3]. Clone detection
technique has been applied to an industrial C application
in order to evaluate their effectiveness in finding the cross-
cutting concerns present in legacy software [2]. An aspect
mining technique named DynAMiT (Dynamic Aspect Min-
ing Tool) [1] has been proposed which analyzes program
traces reflecting the run-time behavior of a system in search
of recurring execution patterns. Tonella and Ceccato ap-
ply concept analysis [3] to analyze how execution traces
are related to class methods and identify related methods as
crosscutting concerns. All of the above mentioned aspect
mining techniques do not take into account the crosscutting
concerns originating from the absence of object-oriented
design. Hence, our algorithm can be used to improve the
existing techniques to distinguish diverse crosscutting con-
cerns.

Concern identification and interaction through manual
feature selection tool has been presented in [11]. Eaddy
et al. [6] have presented a manual approach for concern
identification and concern assignment. Features are lo-
cated in procedural code by interactively searching for ar-
tifacts contributing to the implementation of a feature [4].
FEAT allows the user to interactively build Concern Graphs
for object oriented programs [13]. These approaches re-
main nonetheless concern exploration tools and require
their users to classify various identified concerns.

7 Conclusion and Future Work

Crosscutting concerns may appear due to non-abstracted
domain logic as well as due to the shortcomings of object-
oriented mechanisms to capture inherent crosscutting of
concerns. Aspect mining techniques are capable of iden-
tifying diverse crosscutting concerns but are not capable to
distinguish between them. In this paper, crosscutting con-
cerns are originating from non-abstracted domain logic are
identified according to their association to domain entities.
The outcome of the approach is quite promising for auto-
matic concern identification and their classification. To the

best of our knowledge, the approach presented in the paper
is the first one towards the distinction of diverse crosscut-
ting concerns present in a software subsystem originating
from the lack of elementary object-oriented design and ab-
sence of aspects. We validated our approach on an industrial
application. However this approach has only been validated
on a data-intensive system. This approach needs to be tested
with further case studies, preferably involving processing-
intensive systems, in order to better evaluate the results and
refine the presented model.

References

[1] S.Breu and J. Krinke. Aspect mining using event traces. In ASE "04:
Proceedings of the 19th IEEE international conference on Automated
software engineering, pages 310-315, Washington, DC, USA, 2004.
IEEE Computer Society.

[2] M. Bruntink, A. van Deursen, T. Tourwe, and R. van Engelen. An
evaluation of clone detection techniques for identifying crosscutting
concerns. In ICSM ’04: Proceedings of the 20th IEEE International
Conference on Software Maintenance, pages 200-209, Washington,
DC, USA, 2004. IEEE Computer Society.

[3] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and
T. Tourwe. A qualitative comparison of three aspect mining tech-
niques. In 13th International Workshop on Program Comprehension
(IWPC), pages 13-22. IEEE CS, 2005.

[4] K. Chen and V. Rajlich. Case study of feature location using de-
pendence graph. In Proceedings IEEE International Conference on
Software Maintenance (ICSM), pages 241-249. IEEE Computer So-
ciety Press, 2000.

[5] S.Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented Reengi-
neering Patterns. Morgan Kaufmann, 2002.

[6] M. Eaddy, A. Aho, and G. C. Murphy. Identifying, assigning, and
quantifying crosscutting concerns. In ACoM ’07: Proceedings of the
First International Workshop on Assessment of Contemporary Mod-
ularization Techniques, page 2, Washington, DC, USA, 2007. IEEE
Computer Society.

[71 W. G. Griswold, Y. Kato, and J. J. Yuan. Aspectbrowser: Tool
support for managing dispersed aspects. Technical Report CS1999-
0640, 3, 2000.

[8] B. Henderson-Sellers. Object-Oriented Metrics: Measures of Com-
plexity. Prentice-Hall, 1996.

[9] A. Kellens, K. Mens, and P. Tonella. A survey of automated code-
level aspect mining techniques. Transactions on Aspect-Oriented
Software Development, 4(4640):143-162, 2007.

[10] G. Kiczales. Aspect-oriented programming. ACM Computing Sur-
vey, 28(4es):154, 1996.

[11] A. Lai and G. Murphy. The structure of features in java code: An
exploratory investigation, 1999.

[12] M. Marin, L. Moonen, and A. van Deursen. Fint: Tool support for as-
pect mining. In WCRE "06: Proceedings of the 13th Working Confer-
ence on Reverse Engineering (WCRE 2006), pages 299-300, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[13] M. P. Robillard and G. C. Murphy. Concern graphs: finding and
describing concerns using structural program dependencies. In
ICSE’02: Proceedings of the 24th International Conference on Soft-
ware Engineering, pages 406-416, New York, NY, USA, 2002. ACM
Press.

