

An Exploratory Study on Assessing Feature Location Techniques

Meghan Revelle and Denys Poshyvanyk

Department of Computer Science
The College of William and Mary

Williamsburg, VA 23185
meghan@cs.wm.edu, denys@cs.wm.edu

Abstract

This paper presents an exploratory study of ten feature
location techniques that use various combinations of
textual, dynamic, and static analyses. Unlike previous
studies, the approaches are evaluated in terms of finding
multiple relevant methods, not just a single starting point
of a feature’s implementation. Additionally, a new way of
applying textual analysis is introduced by which queries
are automatically composed of the identifiers of a method
known to be relevant to a feature. Our results show that
this new type of query is just as effective as a query
formulated by a human. We also provide insights into
situations when certain feature location approaches work
well and fall short. Our results and observations can be
used to guide future research on feature location.

1. Introduction

Software maintenance and evolution tasks require
programmers to understand specific parts of an existing
software system [12] which necessitates locating the source
code that implements functionality, an activity known as
concept assignment [2] or feature location [21]. Most
existing feature location techniques are effective at finding a
starting point of a feature’s implementation, i.e., one method
that is relevant to a feature [13, 15, 16]. However, a single
method is rarely the sole contributor to a feature. For feature
location approaches to be truly effective, they need to find
near-complete implementations of features. We define the
term near-complete to mean a partial but close to total set of
methods that implement a feature since knowing all the
methods that implement a feature is rather subjective [18].

This paper presents an exploratory study of ten feature
location techniques that use various combinations of textual,
dynamic, and static analyses. The approaches are evaluated
in terms of how well they locate near-complete
implementations of several features in jEdit and Eclipse. As
part of the assessment, we designed easy-to-follow
evaluation guidelines. We also explored a new mechanism
for automatically formulating queries for textual analysis.

Our results highlight the challenge of feature location
since no single technique was universally successful. We
provide observations of situations when the approaches

work well and when they fall short. One promising result is
that our new automatically created queries for textual
analysis perform comparably to queries formed by a human.
Overall, the results of this exploratory study can be used to
improve the development of feature location to find near-
complete implementations of features.

2. Feature location techniques

A feature is a functional requirement that produces an
observable behavior which users can trigger [8]. Examples
include spell checking in a word processor or drawing a
shape in a paint program. The term feature is intentionally
defined weakly in the literature so it is suitable in many
situations [1, 7]. Feature location is the activity of
identifying the source code elements (i.e., methods) that
implement a feature [21]. We investigate several approaches
to locate a feature’s source code using textual, dynamic, and
static analyses as well as their combinations.

2.1. Core techniques

Textual analysis. One approach to locate features is to
determine textual similarities among a query and source
code elements (e.g., methods) using an information retrieval
technique known as Latent Semantic Indexing (LSI) [5].
Users can formulate queries in natural language (nl-queries)
or from the identifiers and comments of a known relevant
method (method-queries). LSI returns a list of all the
methods in the software ranked by similarity to the query.

Dynamic Analysis. Another approach to feature
location uses dynamic analysis [21]. To collect dynamic
information, users execute scenarios that trigger a feature.
A scenario is a sequence of user inputs to a system. As
scenarios are being run, traces are collected. A trace is a list
of events that occurred during execution. We focus only on
method invocation events. There are two types of traces we
consider. Full traces [21] capture all events from a system’s
start-up to shutdown. Marked traces [13, 19] only capture
events during part of a system’s execution such that users
can start and stop tracing at will.

Static Analysis. Static analysis provides information on
different types of dependencies in a system. We use light-
weight static analysis focusing on method invocations in a
static program dependency graph (PDG) [4, 10, 17]. Using

 2

JRipples1[3], we obtain a PDG in which nodes are methods
and edges are method invocations. Starting at a seed method
that is relevant to a feature, other methods pertinent to that
feature can be found by traversing the PDG.

2.2. Combined techniques

Textual Analysis. We consider textual analysis to be
our baseline approach and evaluate it under two
configurations: using nl-queries as in [13] and using our
new method-queries. We call these approaches IRquery and
IRseed, referring to the fact that the textual analysis used is a
form of information retrieval. The IRquery approach was
introduced in [14], whereas IRseed is new.

Textual Analysis plus Dynamic Analysis. To combine
textual and dynamic information, methods that are not
executed are removed from the ranked list provided by
textual analysis. We investigate all configurations of
queries and traces: IRquery + Dynmarked, IRquery + Dynfull, IRseed +

Dynmarked, and IRseed + Dynfull, where “Dyn” stands for
dynamic analysis and subscripts denote the type of trace.
IRquery + Dynmarked is like [13], while IRquery + Dynfull is similar
to [15]. The two other combinations are novel.

Textual, Dynamic, and Static Analyses. The final
feature location techniques we evaluate incorporate all three
types of information: IRquery + Dynmarked + Static, IRquery +

Dynfull + Static, IRseed + Dynfull + Static, and IRseed + Dynfull +

Static. The IRquery + Dynfull + Static approach is conceptually
similar to Cerberus [6], but instead of using prune-
dependency analysis, it uses light-weight static analysis.
The other three combinations are new.

Unlike when combining textual and dynamic analysis,
static analysis does not involve pruning a ranked list.
Instead, it entails exploring a PDG to find relevant methods
and then ranking them. Searching begins at a seed method
and expands to its static neighbors (parents and children). If
its neighbors have a textual similarity above a threshold and
were executed in a given scenario, exploration continues
with the neighbors’ neighbors. Once no more methods can
be found that meet the criteria, searching stops and the list of
results is sorted by textual similarity values.

In total, we investigate ten feature location techniques,
many of which are novel because they involve method-
queries. There are other combinations of textual, dynamic,
and static analysis that we did not study. We decided
against including these approaches since they do not
produce a ranked list and the results of using standalone
static and dynamic analyses are available elsewhere [4, 7].

3. Exploratory study

We performed an exploratory study to evaluate these ten
feature location techniques. This section outlines our
research goals, subject systems, and methodology.

1 http://jripples.sourceforge.net/ (verified on 01/18/09)

3.1. Research questions

We set out to answer a number of research questions in
this study. These research questions (RQ) are:
 RQ1: What is the best combination of textual, dynamic,

and static analyses for feature location? Specifically,
which techniques are most effective at finding multiple
feature-relevant methods?

 RQ2: Which type of IR query produces better results in
terms of finding multiple methods associated with a
feature, an nl-query provided by a user (e.g., requires
human effort in formulating a query) or a method-query
using the text of a seed method (completely automatic)?

 RQ3: Which type of execution trace, marked or full,
discovers more methods that implement a feature?

3.2. Subject software systems

For our study, we chose two open-source Java systems
of different sizes and from different domains. jEdit2 is a
highly configurable and customizable text editor. We used
version 4.3pre16 which has approximately 105KLOC in
910 classes and 5,530 methods. We studied four features
from jEdit chosen from fulfilled feature requests in the
“Patches” section of its online tracking system.
 Patch #1608486, Support for “Thick” Caret adds a

configurable option to make the cursor two pixels wide
instead of one so it is easier to see (6 methods in patch).

 Patch #1818140, Edit History Text adds the ability to
edit the history text of searches (5 methods in patch).

 Patch #1923613, Reverse Regex Search, adds the
ability to search backwards with regular expressions (2
methods in patch).

 Patch #1849215, Bracket Matching Enhancements,
adds the ability to match angle brackets (2 methods in
patch).

Eclipse3 is an integrated development environment.
Version 2.1 consists of approximately 2.3MLOC in over 7K
classes and 89K methods. With Eclipse, we chose to study
fixed bugs corresponding to misbehaving features.
 Bug #51384 – Double-click-drag to select multiple

words is broken (6 methods in patch).
 Bug #317795 – UnifiedTree should ensure file/folder

exists (3 methods in patch).
 Bug #198196 – Add support for Emacs-style

incremental search (19 methods in patch).
 Bug #327127 – Repeated error message when deleting

and file is in use (6 methods in patch).

2 http://www.jedit.org/ (verified on 09/18/08)
3 http://www.eclipse.org/ (verified on 09/18/08)
4 https://bugs.eclipse.org/bugs/show_bug.cgi?id=5138
5 https://bugs.eclipse.org/bugs/show_bug.cgi?id=31779
6 https://bugs.eclipse.org/bugs/show_bug.cgi?id=19819
7 https://bugs.eclipse.org/bugs/show_bug.cgi?id=32712

 3

3.3. Methodology

We briefly describe our methodology. Interested
readers can find more details in an online appendix8.

Textual Analysis. We formulated nl-queries by
reviewing the description and comments in the thread for a
patch/bug in jEdit and Eclipse’s issue tracking systems.
Methods from the patches were randomly chosen to form
method-queries for each feature.

Dynamic Analysis. We created one scenario per feature
to collect traces. We devised jEdit’s scenarios from the
description and comments for the patch. For Eclipse, two
bug reports had steps to reproduce the errors which were
used as the scenarios for those features. The scenario for
bug #31779 is reused from [13]. For bug #19819, a
scenario was created in which the behaviors of the feature,
as described in the bug report, were exercised.

Static Analysis. The seed methods were the same
methods used for constructing method-queries. As
explained in Section 2.2, static analysis relies on a textual
similarity threshold. We set the threshold using an adapted
gap threshold technique [14, 22]. We
incorporated a relaxation strategy: if the size of a ranked list
did not reach our minimum of ten methods, we decreased
the threshold by 0.05 and repeated the procedure again.

3.4. Relevancy assessment

We restrict our evaluation to the top ten methods
generated by a feature location technique because other
researchers have shown that users are generally unlikely to
look at more than ten list elements [23]. If most of an
approach’s top ten methods are false positives, examining
results lower in the list is unlikely to be worth the cost.

In reviewing the top ten methods of a technique, well-
defined criteria are needed for judging whether they are
relevant to a feature. While we knew the methods modified
in the feature’s patches, we did not use them as evaluation
criteria because a bug may pertain to a subset of a feature’s
relevant methods. Instead, we adapted an approach used by
Robillard et al. [18]. We presented programmers with lists
of methods and asked them to determine the relevance of
each method to a feature. The programmers were given
source code, an executable, a description of a feature and
how to invoke it, and the following guidelines on how to
determine if a method is relevant to a feature or not.
1. Method names that are similar to the words in the

feature's description are good indicators of relevant
code, but the method's source code should be inspected
to ensure the method is actually relevant to the feature.

2. Determine if the method is relevant to the feature by
asking "Would it be useful to know that this method is
associated with the feature if I had to modify the feature
in the future?"

3. If most of the code in the method seems relevant to the
feature, classify the method as Relevant. If some code

within the method seems relevant but other code in the
method is irrelevant to the feature, classify the method
as Somewhat Relevant. If no code within the method
seems relevant to the feature, classify it as Not Relevant.

4. If unable to classify the method by reviewing its code,
explore the method's structural dependencies. If the
method's dependencies seem relevant, the method
probably is also relevant.

Having multiple programmers follow these guidelines and
evaluating based on the agreement among them eliminates
any one individual’s bias.

4. Results

To evaluate the ten feature location techniques, one
author classified every method in the ranked lists of all eight
features without knowing which approach produced each
list. To give support to the categorizations, we solicited
volunteers to do the same for one feature (jEdit’s thick
caret) and compared the results to the author’s. The author’s
and the volunteers’ results agreed over 90% of the time on
the classification of relevant methods. The details of how
agreement was computed, plus, additional results, are
available in an online appendix8. The average percentage of
relevant, somewhat relevant, and not relevant methods
found in the top ten lists of each feature location technique
are in Table 1. A discussion of the results is below.

4.1. Research question 1

For jEdit, the techniques that found the most relevant
methods on average were IRquery + Dynmarked and IRquery +

Dynmarked + Static. For Eclipse, there were three approaches
that performed the best: IRquery + Dynmarked + Static, IRquery +

Dynfull + Static, and IRseed + Dynmarked + Static. Different
programmers may consider the somewhat relevant methods
as part of a feature. If these methods are considered
important, then IRquery + Dynmarked is the best performing
technique in the jEdit study and IRseed + Dynmarked + Static for
Eclipse.

Since IRquery + Dynmarked and IRquery + Dynmarked + Static
performed the same for jEdit, these results suggest that
adding static analysis provides no additional benefits over a
combination of only textual and dynamic analysis.
Combining textual and dynamic analysis involves
eliminating unexecuted methods from a ranked list, but
using static analysis entails building a new list from scratch.
Only methods with a static dependency to the seed are
included. Therefore, methods that are located by a
combined textual-dynamic approach may not be found by
static analysis. However, the Eclipse results suggest that
static analysis does aid feature location. In static analysis, if
a method did not meet the textual similarity threshold, then
exploration down that path of the PDG would halt. LSI

8 http://www.cs.wm.edu/~denys/data/icpc09

 4

generated better results for Eclipse, therefore, it is possible
that static analysis was able to explore the PDG more fully
and find more relevant methods in Eclipse than jEdit.

The purpose of this exploratory study was to learn how
effective feature location techniques are at finding multiple
methods relevant to a feature. If we had set out to find only
a single method associated with a feature, the techniques we
evaluated performed with effectiveness comparable to that
reported in previous studies [13, 15]. On average in jEdit, at
least one relevant method was found in the top ten for each
feature by every technique. In Eclipse, all but one approach
had at least 20% of its top ten methods categorized as
relevant. Most approaches found closer to 30%. These
results are more encouraging than those for jEdit, but they
still allow room for improvement.

4.2. Research question 2

Based on the data from both systems, there is no
consensus on whether an nl-query or a method-query is
better. This result suggests that using an automatically
generated query of identifiers from a seed method performs
just as well as a query constructed by a human, which could
eliminate much of the subjectivity inherent in formulating
queries for feature location. Even though there is no clear
winner, some interesting observations can still be drawn.
The nl-queries consisted of a few words, while the method-
queries were comprised of many identifiers. The larger the
seed methods, the more identifiers there generally were. In
jEdit, the seed methods varied in size from 9LOC and fewer
than 20 identifiers to 147LOC and over 100 identifiers. The
wealth of identifiers in larger methods may aid textual
analysis by providing more query terms, but this trend is not
universal. The seed for one feature had over 100 terms, but
the two types of queries performed the same.

4.3. Research question 3

On average, the use of marked traces produced better
results than full traces, which supports the findings of a
previous study [13]. Using marked traces limits the number
of methods recorded as executed, meaning more methods
will be pruned from a ranked list. On the other hand, full

traces were better at finding methods categorized as
somewhat relevant. The methods classified as somewhat
relevant generally seem to be in the call chain of relevant
methods but do not directly implement a feature. We can
offer no explanation for why full traces found more
somewhat relevant methods and conjecture it may be
coincidental.

4.4. Threats to validity

There are several issues that may limit the
generalizability of our results. Foremost is the subjectivity
in the evaluation. To minimize bias, the author did not know
to which approach each top ten list belonged. Also, we
formalized how methods were classified by creating
guidelines. For one feature, we asked several programmers
to categorize methods and compared them to the author’s.
Since the classification agreement with the author was high,
it is reasonable to assume that the author’s classifications are
sound. Another subjective aspect of this work is the
construction of nl-queries and the selection of seed
methods. To form nl-queries, we used words from the
change requests and bug reports. The seed methods were
randomly selected from patches to the features/bugs. The
use of other queries and seeds could have altered the results.

Another threat is that only one scenario was used to
collect traces. Every effort was made to ensure that the
scenarios fully captured the behavior of the features, but
aspects may have been missed. Finally, we only studied a
small number of features from two systems, both written in
Java, limiting the ability to generalize our results to other
types of systems. Eclipse is a real-world system, but jEdit is
rather small in comparison. This threat can be reduced if we
experiment on a larger number of diverse systems.

5. Related work

This section reviews some existing feature location
approaches by categorizing them as static, dynamic, or
hybrid. A more complete discussion of feature location
techniques can be found in [1].

Most static feature location techniques are either
structural or textual. Structural approaches include [4, 11].

Table 1. Average percentage of the number of methods classified as relevant, somewhat relevant, and not
relevant in the top ten results returned by each feature location technique for jEdit, Eclipse, and both.

 jEdit Eclipse Both Systems

Feature location technique Relevant
Somewhat
Relevant

Not
Relevant

Relevant
Somewhat
Relevant

Not
Relevant

Relevant
Somewhat
Relevant

Not
Relevant

IRquery [14] 12.5% 15% 72.5% 22.5% 12.5% 65% 17.5% 13.75% 68.75%
IRseed 12.5% 20% 67.5% 12.5% 22.5% 65% 12.5% 21.25% 66.25%
IRquery + Dynmarked [13] 30% 20% 50% 25% 5% 70% 27.5% 12.5% 60%
IRquery + Dynfull [15] 15% 22.5% 62.5% 25% 12.5% 67.5% 17.5% 17.5% 65%
IRseed + Dynmarked 20% 15% 65% 27.5% 25% 47.5% 23.75% 20% 56.25%
IRseed + Dynfull 15% 27.5% 57.5% 27.5% 35% 42.5% 18.75% 31.35% 50%
IRquery + Dynmarked + Static 30% 17.5% 52.5% 30% 12.5% 57.5% 30% 15% 55%
IRquery + Dynfull + Static [6] 12.5% 25% 62.5% 30% 12.5% 57.5% 21.25% 20% 58.75%
IRseed + Dynmarked + Static 17.5% 17.5% 65% 30% 15% 55% 23.75% 25% 51.25%
IRseed + Dynfull + Static 12.5% 30% 57.5% 27.5% 22.5% 50% 20% 26.25% 53.75%

 5

Textual approaches utilize such techniques as information
retrieval [14, 16], independent component analysis [9], and
natural language [20]. Some tools use both structural and
textual information to locate code [10, 22] by using textual
information to prune structural relationships, or vice versa.

Some of the earliest work on feature location was
software reconnaissance [21], a dynamic approach that
compares a trace of a program when a feature is invoked to
a trace when it is not. This approach has been expanded and
improved [1, 8]. Hybrid feature location leverages the
benefits of static and dynamic analyses. Eisenbarth et al. [7]
developed a technique that applies formal concept analysis
to traces to produce a mapping of features to methods. In
PROMESIR [15], LSI is combined with a dynamic
technique known as SPR [1] to rank methods likely relevant
to a feature. In SITIR [13], a single execution trace is
filtered using LSI to extract code relevant to a feature.

Cerberus [6] is the only approach we are aware of that
combines three types of analyses for feature location.
Cerberus does not produce a ranked list of methods, while
all the techniques we studied do. We investigated several
combinations of information because Cerberus is not able to
locate methods relevant to some features.

6. Conclusion

This paper presented an exploratory study of the
effectiveness of ten feature location approaches at finding
near-complete implementations of features. Although we
did not discover an approach that outperforms all others, we
did observe that combining analyses generally improves
results. One promising result is that method-queries
perform comparably to queries formed by a human. We
also summarized cases in which certain combinations of
analyses were more effective than others. These findings
can be used in future research to improve feature location.

Acknowledgements

We acknowledge David Coppit, Andrian Marcus, and
Václav Rajlich for contributions to previous versions of this
research and Huzefa Kagdi for his helpful comments. We
thank Maksym Petrenko for his help with JRipples and the
students who took part in the study. This research was
supported in part by the United States Air Force Office of
Scientific Research under grant number FA9550-07-1-0030.

References

[1] Antoniol, G. and Guéhéneuc, Y. G., "Feature Identification: An
Epidemiological Metaphor", TSE, vol. 32, no. 9, 2006, pp. 627-641.
[2] Biggerstaff, T. J., Mitbander, B. G., and Webster, D. E., "The
Concept Assignment Problem in Program Understanding", in Proc. of
ICSE'94 May 17-21 1994, pp. 482-498.
[3] Buckner, J., Buchta, J., Petrenko, M., and Rajlich, V., "JRipples: A
Tool for Program Comprehension during Incremental Change", in
Proc. of IWPC'05, May 15-16 2005, pp. 149-152.

[4] Chen, K. and Rajlich, V., "Case Study of Feature Location Using
Dependence Graph", in Proc. of IWPC'00, June 2000, pp. 241-249.
[5] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and
Harshman, R., "Indexing by Latent Semantic Analysis", Journal of the
American Society for Information Science, vol. 41, 1990, pp. 391-407.
[6] Eaddy, M., Aho, A. V., Antoniol, G., and Guéhéneuc, Y. G.,
"CERBERUS: Tracing Requirements to Source Code Using
Information Retrieval, Dynamic Analysis, and Program Analysis", in
Proc. of ICPC'08, Amsterdam, The Netherlands, 2008.
[7] Eisenbarth, T., Koschke, R., and Simon, D., "Locating Features in
Source Code", TSE, vol. 29, no. 3, March 2003, pp. 210 - 224.
[8] Eisenberg, A. D. and De Volder, K., "Dynamic Feature Traces:
Finding Features in Unfamiliar Code", in Proc. of ICSM'05, Budapest,
Hungary, September 25-30 2005, pp. 337-346.
[9] Grant, S., Cordy, J. R., and Skillicorn, D. B., "Automated Concept
Location Using Independent Component Analysis ", in Proc. of
WCRE'08, Antwerp, Belgium, 2008.
[10] Hill, E., Pollock, L., and Vijay-Shanker, K., "Exploring the
Neighborhood with Dora to Expedite Software Maintenance", in Proc.
of ASE'07, November 2007, pp. 14-23.
[11] Kothari, J., Denton, T., Mancoridis, S., and Shokoufandeh, A.,
"Reducing Program Comprehension Effort in Evolving Software by
Recognizing Feature Implementation Convergence", in Proc. of
ICPC'07, Banff, Canada, June 2007.
[12] Letovsky, S. and Soloway, E., "Delocalized Plans and Program
Comprehension", IEEE Softw., vol. 3, no. 3, 1986, pp. 41-49.
[13] Liu, D., Marcus, A., Poshyvanyk, D., and Rajlich, V., "Feature
Location via Information Retrieval based Filtering of a Single Scenario
Execution Trace", in Proc. of ASE'07, November 5-9 2007.
[14] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., "An
Information Retrieval Approach to Concept Location in Source Code",
in Proc. of WCRE'04, Delft, The Netherlands, Nov. 9-12 2004, pp.
214-223.
[15] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G., and
Rajlich, V., "Feature Location using Probabilistic Ranking of Methods
based on Execution Scenarios and Information Retrieval", TSE, vol. 33,
no. 6, June 2007, pp. 420-432.
[16] Poshyvanyk, D. and Marcus, D., "Combining Formal Concept
Analysis with Information Retrieval for Concept Location in Source
Code", in Proc. of ICPC'07, Banff, Alberta, Canada, June 2007.
[17] Robillard, M. P., "Topology Analysis of Software Dependencies",
TOSEM, vol. 17, no. 4, August 2008.
[18] Robillard, M. P., Shepherd, D., Hill, E., Vijay-Shanker, K., and
Pollock, L., "An Empirical Study of the Concept Assignment
Problem", McGill University June 2007.
[19] Salah, M. and Mancoridis, S., "A hierarchy of dynamic software
views: from object-interactions to feature-interactions", in Proc. of
ICSM'04, Chicago, IL, September 11-14 2004, pp. 72-81.
[20] Shepherd, D., Fry, Z., Gibson, E., Pollock, L., and Vijay-Shanker,
K., "Using Natural Language Program Analysis to Locate and
Understand Action-Oriented Concerns", in Proc. of AOSD'07, 2007,
pp. 212-224.
[21] Wilde, N. and Scully, M., "Software Reconnaissance: Mapping
Program Features to Code", Software Maintenance: Research and
Practice, vol. 7, 1995, pp. 49-62.
[22] Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F., "SNIAFL:
Towards a Static Non-interactive Approach to Feature Location",
TOSEM, vol. 15, no. 2, 2006, pp. 195-226.
[23] Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S.,
"Mining Version Histories to Guide Software Changes", TSE, vol. 31,
no. 6, June 2005, pp. 429-445.

