
UC Irvine
UC Irvine Previously Published Works

Title
Structure transition graphs: An ECG for program comprehension?

Permalink
https://escholarship.org/uc/item/82j5r0gf

Authors
Susan, Sim Elliott
Sukanya, Ratanotayanon
Cotran, Leyna

Publication Date
2009-05-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/82j5r0gf
https://escholarship.org
http://www.cdlib.org/

Developing Requirements in an Established Domain
Using Tags and Metadata

Leyna C. Cotran
Department of Informatics

University of California, Irvine
Irvine, CA 92697-3440 U.S.A.

lcotran@uci.edu

Richard N. Taylor
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455 U.S.A.

taylor@ics.uci.edu

Abstract— Requirements for new aerospace applications, such
as missile or satellite control systems, draw heavily from simi-
lar, previously built systems. Both requirements and varied
architectural artifacts from prior systems may be consulted.
The application domain is quite complex, so “reuse” brings
clear advantages. Unfortunately numerous problems are ap-
parent too. For example, while prior artifacts are potentially
rich in information, if they are of low quality they may hinder
development of high quality requirements for new systems.
The Co-Evolvable Traceable Requirements and Architecture
Network (COTRAN) technique presented here addresses the
challenge of productively using information from prior systems
while targeting development of properly scoped, testable re-
quirements. The technique centers on iteratively building a
requirements matrix characterizing the application and tag-
ging artifacts based upon the metadata found in the matrix.
This enables information to be correlated across artifacts and
used consistently. Using the requirements matrix, contextual
information about the system provides the basis for capturing
clear requirements.

Keywords- Requirements/Specifications elicitation methods,
methodologies, software architecture, aerospace systems, tags,
metadata

I. INTRODUCTION
The engineering of software requirements for aerospace

applications is arguably in need of significant improvement.
Aerospace systems are highly complex, being comprised of
multiple also-complex subsystems, for which software is a
key integrating technology. Numerous companies are in-
volved in the creation of most spacecraft systems; require-
ments specifications form the basis for the contractual rela-
tionships among the organizations.

Unfortunately, despite the importance of good require-
ments [5], typical requirements engineering practice in this
domain is beset with a variety of problems. For example,
requirements specifications all-too-frequently arise that are
non-testable, ambiguous, or not properly scoped. Critical
contextual information is also frequently lost. Such informa-
tion has the potential for providing insight regarding the mo-
tivation for inclusion of a requirement, guidance for imple-
mentation choices, or indication of one requirement’s rela-
tive priority over another, should the need for requirements
triage occur.

This is ironic, since spacecraft systems are not new: aer-
ospace companies have been building these systems for dec-
ades and there is substantial experience upon which to draw.
Requirements engineering professionals have long worked in
the domain and the value of good requirements specifica-
tions is widely acknowledged. Many major aerospace pro-
grams are upgrades to previous programs, implying that the
specifications for the upgraded system will be similar to
those of the previous system. At a minimum there will be
commonality with respect to the specific application domain
and most likely there will be significant overlap in the consti-
tuent subsystems. While this paradigm is potentially effec-
tive, the reality is that these previous systems likely include
poor requirements, lacking the information needed for un-
derstanding and capturing new, high-quality requirements.

The practice that provides the way out of this thicket is
referencing architectural artifacts from the pre-existing sys-
tems as well as those that may be emerging concurrently for
the new system. That is, a key aspect of the oft-missing con-
text is the systems and (partial) software architecture within
which the new system/application is to be conceptualized.
These artifacts correlate in various ways to prior require-
ments and, potentially, to the new requirements under devel-
opment. They provide significant information to help better
understand prior requirements and develop new ones.

We view the problems with requirements engineering for
spacecraft systems as open for improvement, and that im-
provement is indeed possible through the leveraging of de-
veloper experience, expertise, and the architectural artifacts
available. This paper outlines a new requirements engineer-
ing technique created on this foundation. The Co-Evolving
Traceable Requirements and Architecture Network
(COTRAN) technique incorporates two primary innovations.
First, COTRAN uses a tagging approach to connect require-
ments to correlating architecture and design artifacts, includ-
ing artifacts from prior systems. Second, COTRAN uses a
matrix approach to index and organize requirements by cor-
relating architecture information found in these artifacts. The
matrix approach works particularly well in aerospace be-
cause a large wealth of domain knowledge can be used to
develop critical requirements.

The remainder of this paper is organized as follows: Sec-
tion 2 describes metadata tags usage; Section 3 discusses

978-1-4577-0941-8/11/$26.00 ©2011 IEEE 24

how to build the requirements matrix with the COTRAN
technique; Section 4 provides an example; Section 5 dis-
cusses writing requirements using the matrix. We conclude
and describe our future work in Section 6.

II. USE OF METADATA TAGS
Metadata is “a set of data that describes and gives

information about other data [4]” One common popular
usage of metadata is with digital photo management [4].
Digital images from modern cameras include metadata
about the photo: location, exposure, and date, for example.
This metadata can serve as keywords for searching or
indexing on social digital sites such as Flickr. Names of
people in these photos are metadata that is tagged by users
(rather than the camera).

Similarily, tagging metadata found in architecture
artifacts to support requirements development provides two
benefits. One, these tags provide an index to the topical area
of these artifacts. Two, they provide a mechanism for
organizing this data.

Architecture artifacts are rich in requirements-relevant
data, and establishing tags for this data allows us to correlate
this architecture-based information to requirements. For
example, architecture artifacts contain data that describes
behavior, interfaces, and functionality of the system. These
types of information are examples of the type of metadata
that provide a basis for understanding requirements.

Architecture artifacts are linked through metadata tags,
providing associations between the information found in
these artifacts and meaningful requirements. By organizing
requirements around a metadata tags structure, we gain the
capability to correlate specific software requirements to
specific aspects of the architecture.

III. COTRAN TECHNIQUE: BUILDING THE
REQUIREMENTS MATRIX

The COTRAN requirements engineering technique
builds a matrix for requirements through correlating critical
information found in software architecture artifacts. We in-
corporate two primary innovations. First, we use a tagging
approach to connect requirements to architecture artifacts
from either prior systems, or the system-to-be. Second, we
use a matrix to organize the data found in these artifacts.
This further improves the quality of requirements by making
it easier to assess whether a requirement is appropriately
scoped and testable.

We believe that a sound approach to requirements syn-
thesis involves a significant intertwinement with architecture
development. To execute this paradigm, requirements have
to be developed in parallel with architecture artifacts.

To build the matrix, we must establish software architec-
ture artifacts that define behavioral and functional data of the
system. This data is tagged with a meaningful keyword. The
tagged metadata content is captured in the matrix, where this
content is indexed by their tags. Once this matrix is built, we
can assess the correlated information for use in meaningful
requirements.

A. Establish Software Architecture Artifacts
Architecture artifacts include a data dictionary, context

diagrams, an operational concept, the software architecture,
and state diagrams. Such artifacts frequently exhibit both
requirements choices and design decisions (i.e. software ar-
chitecture, “the set of principal design decisions made about
the system” [1]). Architecture artifacts evolve during the
development of a system, meaning that requirements must
continuously adapt with these evolutions. Together these
artifacts imply a network of information that can provide
various views of the system.

The data dictionary establishes terminology, aiding en-
forcement of consistency of metadata tags to be used across
artifacts. Context diagrams provide information on the sys-
tem’s actors and how these actors interplay. This provides
scope for the requirements problem. An operational concept
describes how people, systems, and all the elements of the
mission architecture will interact to satisfy the mission goals.
Software architecture encompasses design decisions such as
structure, functionality, and interdependencies. States of the
software system capture the transitions, triggers, and events
of the system.

B. Define the Metadata
After the architecture artifacts have been established, we

examine these artifacts for metadata – that is, data that will
augment our understanding of requirements. The criterion
for metadata is based on the software architecture artifact
and understanding what information that artifact provides.

For example, data in state diagrams describe the sys-
tems’ behavioral transitions from start to finish. By tagging
aspects of these behaviors in a state diagram, we can corre-
late the requirements that deal with system behaviors. States
such as operate or idle will have a number of associated
requirements that deal with those particular states. The me-
tadata itself might also be the behaviors operate or idle in
the state diagram, but now the information that deal with
these two particular states are tagged for correlating poten-
tial operate or idle requirements. Important metadata found
in context diagrams, as another example, are the definitions
of interfaces and key players that context diagrams inherent-
ly capture. Metadata found in the system’s operational con-
cept includes objectives, goals, and planned development
paths. This information that each of these unique artifacts
provide will shape potential requirements [6].

The software architecture artifact is also very rich in
metadata for requirements. This critical metadata includes
architecture styles and data flow between architecture com-
ponents. An architecture style, for example, reflects a spe-
cific category of systems, therefore providing a significant
amount of context about what the system can do and how it
will do it. In a product line context architectural styles may
also be accompanied by a set of reference requirements. In
particular, domain specific architectures [1] exist in the aer-
ospace domain and knowledge about these domains is em-
bedded in these specific architectures. This provides signifi-
cant data for correlating requirements.

25

C. Tag Metadata in Architecture Artifacts
Once metadata in the software architecture artifacts is

determined, we then tag this data. Metadata tags in the
COTRAN technique are annotated keywords placed on the
data content in the software architecture artifacts. Using the
tag definitions in the data dictionary, we tag relevant ele-
ments of the architecture artifacts that comply with their
respective definitions captured in the data dictionary.

Tags are intended to be repeated within the same artifact
and cross cut through other artifacts (it is expected that there
would be a number of tags related to telemetry or interface,
as examples). For distinct tags of the same type, it is neces-
sary to add an identifier to these tags (i.e. telemetry 01,
telemetry 02) to distinguish the tagged content. Should the
same piece of metadata reappear across artifacts (i.e. data01
appears in multiple artifacts), this means that this piece of
metadata is captured at a different granularity of detail. In
this case, telemetry 01 would appear several times in the
requirements matrix. It is up to the engineer to reconcile the
meanings of all the telemetry tagged content.

D. Create the Requirements Matrix
We define a requirements matrix as a table structure that
captures the information tagged in the software architecture
artifacts. It is intended that this information placed in the
matrix will allow the engineer to further decompose the
information to requirements. We define each row in the ma-
trix as a tuple for one requirement. This means that each
tuple defines the associated architecture artifact data per
tagged item. It is also expected that the engineer will further
expand the matrix with additional attributes: specifically the
requirement itself, the requirement rationale, and the re-
quirement verification success criteria. Table I shows the
matrix attributes.

The matrix provides an organization mechanism for as-
sessing requirements in groups or individually. Looking at
our brief earlier telemetry metadata tag example, we would
have several telemetry tags in the matrix. These telemetry
tags would be organized together in the matrix, where tele-
metry01 till telemetry0n will be grouped together. There-

fore, the engineer can assess all the data tuples together as a
group, or investigate one individual tuple with the telemetry
tag.

Using metadata found in relevant architecture artifacts
forces the requirements matrix to be focused around
architecture. The tags can be filtered within the matrix for
stakeholders that are focused on a specific area of the
architecture.

In our current implementation of the COTRAN tech-
nique, we built these matrices in the DOORS environment.
We build our architecture artifacts using commercially
available modeling tools, and embed the tags in artifacts.
The tags are assigned identification numbers and we import
these tags and tag IDs into DOORS modules. We then in-
corporate our decomposition of the metadata into require-
ment statements, with the correlating metadata of architec-
ture information, rationale, and verification success criteria.

IV. FIRESAT EXAMPLE
The COTRAN technique can be illustrated using the aca-

demic FireSat spacecraft example [7] to demonstrate a sim-
ple behavior transition requirement. The objective of FireSat
is to orbit the earth and detect forest fires. Once detected,
these forest fires are reported to the FireSat ground station.
In this example, we want to express the requirement of spe-
cific time transition from the FireSat’s idle state to operate
state. Timing requirements are found, for example, in a con-
cept of operations document (dealing with orbit phases), an
architecture dataflow (defining clock timing interfaces), and
a states diagram (capturing the state transitions between
different behavior phases and timing between phases).

In this example, we see that the timing need for FireSat’s
Idle to Operate is at 5 minutes. Note, that this timing need
emerges over different artifacts. Each artifact provides a
different perspective of this requirement, and so we tag this
data appropriately with timing01 throughout the artifacts
that capture this 5 minute transition. The timing01 tag is
now embedded in these architecture files. What is demon-
strated here is a requirement that has emerged over several
tightly associated architecture artifacts.

As we develop these artifacts, we start building our ma-
trix. Since we have now established this timing need among
artifacts, then we add it as a requirement in the matrix. tim-
ing01 is an index to the timing requirement of Idle to Oper-
ate in 5 minutes. Should the system evolve (perhaps that
timing requirement will change to 7 or 8 minutes), then we
locate the requirement in our matrix per the timing01 tag,
which is now mapped to all relevant artifacts and informa-
tion.

V. WRITING THE REQUIREMENTS
Once the matrix is established, the engineer is then to add

the requirement derived from the tagged information, the
requirement rationale, and the verification success criteria
based on the metadata tags and content that is tagged. The
engineer needs to use their expertise and knowledge to write

TABLE I. REQUIREMENTS MATRIX ATTRIBUTES

Matrix Attribute Definition

Metadata Tag Name of Metadata Tag

Metadata Tag ID ID assigned to metadata tags

Architecture Artifact Artifact where the metadata was tagged
from

Description of Tagged
Content

Description of the content tagged with
a particular metadata tag

Requirement Requirement captured from correlating
metadata content

Rationale Rationale of requirement (using archi-
tecture metadata as the basis)

Verification Success
Criteria

Specific verification criteria that de-
monstrates the requirement was fully

met

26

the requirement statement. The matrix provides the contex-
tual information to do this. The requirement statements focus
on the architecture content. The tags provide the organization
mechanism for these requirements (i.e. data requirements,
telemetry requirements). Using the data in the matrix, a re-
quirements specification is created by extracting the re-
quirement, its correlating architecture correlation, the ratio-
nale, and the verification success criteria. With this contex-
tual metadata, the written requirement statement has more
data in order to interpret the requirement.

Traditional aerospace industry practice is to capture re-
quirements in a document with simple “shall” statements
using various military standards for writing requirements.
We believe that an architecture rationale will give more me-
rit as to why a requirement exists. Using our matrix ap-
proach, the requirements data traces to tagged architecture
content that provides that rationale basis.

Verifiability is another critical factor to requirements de-
velopment. Capturing verification aspects of requirements
helps promote testing approaches earlier in the development
cycle. The COTRAN technique enforces the capturing of the
verification success criteria of the requirement in the re-
quirements matrix; that is, capturing the steps or resultant
measurements that will demonstrate that the requirement has
been successfully proven.

Requirement statements alone do not provide enough in-
formation or context to understand the meaning of the re-
quirement or the consequence of executing the requirement.
The matrix provides the mechanism to correlate architecture
metadata information together so that writing the require-
ment has context and meaning.

VI. FUTURE WORK
The COTRAN technique has been applied in two re-

quirements engineering projects at a large government-
contracted aerospace company. One study is complete and
currently under analysis; the other is on-going. Both studies
involve “live projects”, rather than artificial exercises.

Our future direction with the COTRAN technique is to
further develop the matrix approach into an ontology-based
[2] approach. An ontology is appropriate for aerospace-based
systems as these systems are well defined in particular do-
mains (e.g., spacecraft, satellites) where concepts and entities
are defined and are strongly correlated to the development of
a domain-based system.

There are a number of benefits with an ontology ap-
proach. First, ontologies are an accepted way of organizing
domain information [2]. Because ontologies are a representa-

tion of a set of concepts in a domain and the relationships
between those concepts [2], it is reasonable to consider on-
tologies for aerospace domain-based products.

Second, ontologies provide a framework for organizing
critical data about a system. Ontologies capture common
elements of a system through attributes and relationships
from domain concepts.

Third, there is flexibility in such ontologies. Ontologies
can capture a number of different elements and can be tai-
lored to project-specific needs. Therefore, tracking depen-
dencies to requirements information is facilitated. The con-
textual data found in architecture, design approaches, or veri-
fication aspects can be tracked – the ontology can be molded
to fit the needs of the project’s requirements development.

The current matrix approach captures the dependencies
of requirements information to architecture, design decisions,
and testability criteria. The COTRAN technique’s current
use of a matrix to correlate the metadata found in architec-
ture artifacts has significant potential in resulting to an on-
tology-based approach.

ACKNOWLEDGMENT
This work is supported in part by the National Science

Foundation under grants CCF-0917129 and CCF-0820222.

REFERENCES
[1] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy.

Software Architectures: Foundations, Theory, and Practice. John
Wiley & Sons, 2008.

[2] Gruber, T. R. 1993. A translation approach to protable ontology
specifications. Knowl. Acquis. 5, 2 (Jun. 1993), 199-220.

[3] Ames, M. and Naaman, M. 2007. Why we tag: motivations for
annotation in mobile and online media. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (San Jose,
California, USA, April 28 - May 03, 2007). CHI '07. ACM, New
York, NY, 971-980.

[4] Sarvas, R., Herrarte, E., Wilhelm, A., and Davis, M. 2004. Metadata
creation system for mobile images. In Proceedings of the 2nd
international Conference on Mobile Systems, Applications, and
Services (Boston, MA, USA, June 06 - 09, 2004). MobiSys '04.
ACM, New York, NY, 36-48.

[5] Nuseibeh, B. and Easterbrook, S. 2000. Requirements engineering: a
roadmap. In Proceedings of the Conference on the Future of Software
Engineering (Limerick, Ireland, June 04 - 11, 2000). ICSE '00. ACM,
New York, NY, 35-46.

[6] Axel Van Lamsweerde. Requirements Engineering: From System
Goals to UML models to software specifications. John Wiley & Sons,
Ltd. UK. 2009.

[7] Jerry J. Sellers. Understanding Space: An Introduction to
Astrodynamics, 2nd Edition. McGraw-Hill Companies, Inc. Boston,
MA. 2004.

27

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

