
Multi-dimensional Exploration of API Usage
Coen De Roover

Software Languages Lab
Vrije Universiteit Brussel

Belgium

Ralf Lämmel
Software Languages Team

University of Koblenz-Landau
Germany

Ekaterina Pek
ADAPT Lab

University of Koblenz-Landau
Germany

Abstract—This paper is concerned with understanding API
usage in a systematic, explorative manner for the benefit of both
API developers and API users. There exist complementary, less
explorative methods, e.g., based on code search, code completion,
or API documentation. In contrast, our approach is highly
interactive and can be seen as an extension of what IDEs readily
provide today. Exploration is based on multiple dimensions: i) the
hierarchically organized scopes of projects and APIs; ii) metrics
of API usage (e.g., number of project classes extending API
classes); iii) metadata for APIs; iv) project- versus API-centric
views. We also provide the QUAATLAS corpus of Java projects
which enhances the existing QUALITAS corpus to enable API-
usage analysis. We implemented the exploration approach in an
open-source, IDE-like, Web-enabled tool EXAPUS.

Index Terms—API usage, code exploration, metadata, pro-
gram comprehension, reverse engineering, QUAATLAS, EXAPUS,
QUALITAS

I. INTRODUCTION

The use (and the design) of APIs is an integral part of
OO software development. Projects are littered with usage
of easily a dozen APIs; perhaps every third line of code
references some API [1]. Accordingly, understanding APIs
or their usage must be an important objective. Much of the
existing work, as discussed in detail in §III, focuses on some
form of documentation or discovery of API-usage scenarios
perhaps by code completion or code search [2], [3], [4], [5].

In our work on API migration [6], [7], we have always
missed an exploration-based approach to understanding API
usage in a systematic manner. In this paper, we describe a form
of exploration which is interactive in nature while leveraging
query-based program understanding underneath [8], [9].

Contributions: We identify exploration insights as they
are expected by API users and developers with regard to their
overall intention to understand API usage. For instance, one
insight may relate to the coupled use of APIs in a project
or packages thereof; another insight may relate to the use
of particular API facets (e.g., ‘non-trivial API usage’) across
projects in a corpus. Such insights rely on multiple dimensions
of exploration, e.g., hierarchical organization of scopes and
project- versus API-centric perspectives.

We set up QUAATLAS (for QUALITAS API Atlas)—a Java-
based corpus for API-usage analysis that builds on top of the
existing QUALITAS corpus while revising it substantially such
that fact extraction can be applied with the level of precision
required for API-usage analysis, while also adding metadata
that supports exploration and records knowledge about APIs.

We provide conceptual support for said exploration insights
by means of an abstract model of API-usage views, which we
implemented in EXAPUS (for Explore API usage)—an IDE-
like, Web-enabled tool so that we also provide tool support for
exploration that can be used by others for exploration exper-
iments. The paper’s website1 provides access to QUAATLAS,
EXAPUS, and screencasts demonstrating their usage.

Road-map: §II motivates multi-dimensional exploration
of API usage by means of an ‘exploration story’. §III discusses
related work and further motivates our research. §IV describes
basic concepts regarding APIs and API usage. §V describes
the development of the QUAATLAS corpus that can be used for
experimenting with API-usage exploration in the Java context.
§VI presents an inventory of abstract insights expected from
exploration. §VII describes an abstract model of views for
exploration. §VIII describes the EXAPUS tool which supports
the described exploration approach. §IX concludes the paper.

II. AN EXPLORATION STORY

Joanna Programmer is a new hire in software development
at the fictional Acme Corporation. The company’s main prod-
uct is JHotDraw and Joanna was hired to respond to pending
renovation plans.

JHotDraw has been reverse-engineered in the past for the
sake of incorporating crosscutting concerns such as logging,
enabling refactoring (e.g., for design patterns), or generally
understanding its architecture at various levels. Such existing
research does not directly apply to Joanna’s assignment. She
is asked to renovate JHotDraw to use JSON instead of XML;
to replace native GUI programming by HTML5 compliance.
Further, an Android SDK-based version is needed as well.
Joanna is not particularly familiar yet with JHotDraw, but
she quickly realizes that much of the challenge lies in the API
usage of JHotDraw. This is when Joanna encounters EXAPUS.

Fig. 1 summarizes API usage in JHotDraw as analyzed with
EXAPUS. The tree view shows all APIs as they are known to
EXAPUS and exercised by JHotDraw. The heavier the border,
the more usage. Rectangles proxy for APIs that are packages.
Triangles proxy for APIs with a package subtree.

Let us focus on the requirement for replacing XML by
JSON. In Fig. 1, two XML APIs show up: DOM and SAX.
Joanna begins with an exploration of DOM usage. Fig. 3 sum-
marizes DOM usage in JHotDraw as analyzed with EXAPUS.

1http://softlang.uni-koblenz.de/explore-API-usage

978-1-4673-3092-3/13 c© 2013 IEEE ICPC 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

152

Fig. 1. API usage in JHotDraw with scaling applied to numbers of API references.

Slice of JHotDraw
with DOM usage

The view only shows packages and types with API ref-
erences to DOM. Out of the 13 top-level packages of
JHotDraw, only 1 of them, the xml package and its sub-
package css reference DOM. There is a total of 4 class
types that contain references. The combined reference
count is 94 where 19 unique API elements are referenced,
which is a relatively small number of used API elements
in the view of hundreds of API elements declared by the
DOM API.
public void applyStylesTo(Element elem) {

for (CSSRule rule : rules) {
if (rule.matches(elem)) {

rule.apply(elem);
}

}
}

Fig. 2. The slice of JHotDraw with DOM usage.

Fig. 3. Minuscule view for DOM usage in JHotDraw: with leaves for
methods, eggs for types, and the remaining nodes for packages.

Encouragingly, DOM’s footprint in JHotDraw only covers a
few types and methods.

A logical option for continuing the exploration is to exam-
ine the distribution of API usage across JHotDraw. In this
manner, Joanna gets a sense of the locality of API usage.
The corresponding view is shown in Fig. 2 and it strikingly
reveals good news in so far that DOM usage is limited to the
JHotDraw package org.jhotdraw.xml, which she shall explore
further to prepare a possible XML-to-JSON migration.

III. RELATED WORK

We identify the following categories of related work.
1) Project Exploration: There are several conceptual styles

of project comprehension. The work of Brühlmann et al. [10]
exemplifies a human-intensive effort, where experts annotate
project parts to capture human knowledge. They further use
the emerged meta-model to analyze features and architectural
flaws of the project.

Query-driven comprehension can proceed through user-
defined queries that identify code of interest, as in the work
of Hou and Hoover [11] Mens and Kellens [12] or De Roover
et al. [9] such that a comprehensive tool suite facilitates
defining and exploring query results. Alwis and Murphy [8]

identify and investigate pre-defined queries for exploration of
a software system, e.g., “What calls this method.”

Visual summary of projects usually involves some sort of
scaling, color coding, and hierarchical grouping, as discussed
by Lanza and Ducasse [13]. More involved visualizations have
been explored as well, such as a 3D city metaphor [14].

Our approach combines these conceptual styles. We allow
the user to accumulate and refine knowledge about APIs, their
facets, and domains. The exploration activities explained in
the paper are intuitive; flexibility in their combination enables
answering typical questions like those in [8]. Tag clouds,
tables, and trees accompanied by metrics provide basic and
familiar visual aid in exploration.

2) Measuring API Usage: Research on API usage often
leverages usage frequency, or popularity, of APIs and their
parts. For instance, Mileva et al. use popularity to identify
most commonly used library versions [15] or to identify and
predict API usage trends over time [16]. Holmes et al. appeal
to popularity as the main indicator: for the API developer, to
be able to prioritize efforts and be informed about consumption
of libraries; for the API user, to be able to identify libraries of
interest and be informed of ways of their usage [17]. Eisenberg
et al. use font scaling w.r.t. popularity of API elements to
help navigate through its structure [5], [18]. Thummalapenta
and Xie use Google search to find relevant code examples
for further frequency analysis of used API elements [19]. Ma
et al. investigate coverage of Java Standard API to identify
which parts are ignored by the API users [20]. In our work,
we suggest several metrics indicating specific forms of API
usage; their distribution is integrated in the table and graph
views of our tool, providing sorting and scaling.

153

3) Understanding API Usage: Robillard and DeLine dis-
covered in a field study on API learning obstacles that API
users prefer to learn from patterns of related calls rather than
illustrations of individual methods [21]. Hou and Li report
similar obstacles based on an exploratory study of newsgroup
discussions [22]. Generally, information about API usage may
be used in helping developers. Nasehi and Maurer show that
API unit tests can be used as usage examples [23]. Zhong et
al. cluster API calls and mine patterns to recommend useful
code snippets to API users [3]. Bruch et al. develop intelligent
code completion that narrows down the possible suggestions
to those API elements that are actually relevant [24]. Hou
et al. [25] compare different filtering, sorting and grouping
strategies to this end. The latter would, for instance, group
all methods related to managing the components of an AWT
container. Mandelin et al. present an approach for synthesizing
a snippet to fill in a gap in the code using an API, given
certain contextual information [26]. Our effort differs in that
it enables navigating both projects and APIs in the familiar
IDE-like manner with API usage in focus. We also identify a
catalogue of exploration activities to perform.

IV. BASIC CONCEPTS

We set up the basic concepts underlying this paper: APIs,
API usage, and API-usage metrics. We also augment the basic
notion of API with extra concepts for API domains and API
facets to raise the level of abstraction in exploration.

APIs: We use the term API to refer to the actual interface
but also to the underlying implementation. We do not pay
attention to any distinction between libraries and frameworks.
We simply view an API as a set of types (classes, interfaces,
etc.) referable by name and distributed together for use in soft-
ware projects. Without loss of generality, this paper invokes
Java for most illustrations and intuitions.

Indeed, we assume that package names, package prefixes,
and types within packages can be used to describe APIs.
For instance, the package prefix javax.swing (and possibly
others) could be associated with the Swing API for GUI
programming. It is important that we view javax.swing as a
package prefix because Swing is indeed organized in a package
tree. In contrast, the java.util API corresponds to all the types
in the package of ditto name. There are various sub-packages
of java.util, but they are preferably considered separate APIs.
In fact, the java.util API deserves further breakdown because
the package serves de facto distinct purposes, notably Java’s
collections and Java’s event system. (This is not an uncommon
situation.) We use the term sub-API to refer to declared subsets
of the types in a given API.

Clearly, an API may exist in different versions, in which
case it needs to be decided whether or not the versions should
be treated like different APIs, as far as API-usage analysis is
concerned.

API Usage: We are concerned with API usage in given
software projects. API usage is evidenced from any sort
of reference from projects to APIs. References are directly
associated with syntactical patterns in the code of the projects,

e.g., a method call in a class of a project that invokes a method
of an API type, or a class declaration in a project that explicitly
extends a class of an API. The resulting patterns can hence
be used to classify API references and to control exploration
with regard to the kinds of references to present to users.

A reasonably precise analysis of API usage requires that the
underlying projects are ‘resolved’ in that each API reference
in a project can be followed to the corresponding declaration
in the API. Further, since exploration of API usage relies on
the developer’s view on source code of projects, we effectively
need compilable source code of all projects.

API-usage Metrics: For quantifying API usage, metrics
are needed that can be used in exploration views in different
ways, e.g., for ordering (elements or scopes of APIs or
projects) or for scaling in the visualization of API usage. For
the purpose of this paper, the following metrics suffice:
#proj: Number of projects referencing APIs.
#api: Number of APIs being referenced.
#ref: Number of references from projects to APIs.
#elem: Number of API elements being referenced.
#derive: Number of project types derived from API types.
#super: Number of API types serving as supertype for derivations.
#sub: Number of project types serving as subtype for derivations.

These metrics can be applied, of course, to different selec-
tions of projects or APIs as well as specific packages, types,
or methods thereof. For instance, we may be interested in #api
for a specific project. Also, we may be interested in #ref for
some part of an API.

Further, these metrics can be configured to count only
specific patterns. It is easy to see now that the given metrics
are not even orthogonal because, for example, #derive can be
obtained from #ref by only counting patterns for ‘extends’ and
‘implements’ relationships.

API Domains: We assume that each API addresses some
programming domain such as XML processing or GUI pro-
gramming. We are not aware of any general, widely adopted
attempt to associate APIs with domains, but the idea appears
to merit further research. We have begun collecting program-
ming domains (or in fact, API domains) and tagging APIs
appropriately. Let us list a few API domains and associate
them with well-known Java APIs:
GUI: GUI programming, e.g., Swing and AWT.
XML: XML processing, e.g., DOM, JDOM, and SAX.
Data: Data structures incl. containers, e.g., java.util.
IO: File- and stream-based I/O, e.g., java.io and java.nio.
Component: Component-oriented programming, e.g., JavaBeans.
Meta: Meta-programming incl. reflection, e.g., java.lang.reflect.
Basics: Basic language support, e.g., java.lang.String.

API domains are helpful in reporting API usage and quan-
tifying API usage of interest in more abstract terms than the
names of individual APIs, as will be illustrated in §VI.

API Facets: An API may contain dozens or hundreds
of types each of which has many method members in turn.
Some APIs use sub-packages to organize such API complexity,
but those sub-packages are typically concerned with advanced
API usage whereas the core facets of API usage are not
distinguished in any operational manner. This makes it hard
to understand API usage at a somewhat abstract level.

154

1. input : corpus, candidateList
2. output : corpus
3. for each name in candidateList :
4. (psrc , pbin) = obtainProject(name);
5. patches = exploratoryBuild(psrc , pbin);
6. timestamp = build(psrc , patches);
7. (java, classes, jars) = collectStats(psrc);
8. java ′ = filter(java);
9. (jarsbuilt , jars lib) = detectJars(timestamp, java ′, jars);

10. java ′
compiled = detectJava(timestamp, java ′, classes, jarsbuilt);

11. p′
src = (java ′

compiled , jars lib);
12. p′

bin = jarsbuilt ;
13. p′ = (p′

src , p
′
bin);

14. if validate(p′) : corpus = corpus + p′;

Fig. 4. Pseudocode describing the corpus (re)-engineering method.

Accordingly, we propose leveraging a notion of API facets
in the sense of aspects or concerns supported by the API.
In this paper, we assume that facets are represented as named
collections of specific API types or methods. As an illustration,
we name a few API facets of the typical DOM-like API such
as DOM itself, JDOM, or dom4j:
Input / Output: De-/serialization for DOM trees.
Observation: Getter-like access and other ‘read only’ forms.
Addition: Addition of nodes et al. as part also of construction.
Removal: Removal of nodes et al. as a form of mutation.
Namespaces: XML namespace manipulation.
Nontrivial XML: Use of CDATA, PI, and other XML idiosyncrasies.
Nontrivial API: Usage of types and methods that are beyond normal
API usage. For instance, XML APIs may provide some framework
for node factories or adapters for API integration.

API facets are helpful in communicating API usage to the
user at a more abstract level than the level of individual
types and methods, as will be illustrated in §VI. We leverage
knowledge of the APIs to identify (to name) API facets and to
tag APIs appropriately. The idea of grouping API members,
e.g., by their functional roles, has also been studied in related
work on code completion; see §III.

V. THE QUAATLAS CORPUS FOR API-USAGE ANALYSIS

Our study requires a suitable corpus of mature, well-
developed projects coming from different application domains.
Arguably, such projects show sufficient and advanced API
usage. We decided to restrict ourselves to open-source Java
projects; in order to increase quality and reproducibility of our
research, we decided to use an existing, established and cu-
rated, collection of Java projects—the QUALITAS corpus [27],
release 20101126r. As we discuss in §IV, API usage entails
the ability to resolve types. However, QUALITAS does not
guarantee the availability of a project’s library types. The
collection consists of source and binary forms as they are
provided by the project developers.

In the interest of similar research tasks that require a
dependency-resolved corpus, we detail our method for corpus
(re-)engineering. The resulting dependency-resolved QUALI-
TAS variant is available on the paper’s website.

A. Method

The pseudocode depicted in Fig. 4 describes our corpus (re)-
engineering method. The input is a (possibly empty) corpus to

be extended and a list of candidate projects, candidateList , to
be added to it. The output is the corpus populated with refined
projects.

Line 4 assumes that a project can be obtained both in its
source and binary forms (e.g., downloading them from the
project website). During an exploratory build (line 5), the
nature of the project is manually investigated by an expert.
The expert investigates how the project is built, what errors
occur during the build (if any), and how to patch them. At this
stage, we also compare the set of built JARs with the JARs
in the binary distribution form of the project. If the former
set is smaller than the latter (e.g., because default targets in
build scripts may be insufficient and a series of target calls
or invocation of several build scripts is needed), we attempt
to push the build of the project for completeness. Once the
exploratory build is successful, we are able to automatically
build the project (line 6), if necessary after applying patches.

After the build, we collect the full path, creation and
modification times of each file in the project (line 7). For
Java files we extract qualified names of contained top-level
types, for class files we detect their qualified names. For JARs
we explore their contents and collect information about the
contained class files.

On line 8, we apply a filter, keeping only the source code
that we consider to be both system and core (see §V-C). On
line 9, we use the known start time of the build together with
information about Java types computed on lines 7 and 8 to
classify the JARs found after the build either as library JARs
or as built JARs. On line 10, we use the identified built JARs
and the compiled class files to identify Java types that were
compiled during the build. On line 11, we refine the project’s
source code form p′

src to include only the compiled Java
types together with the necessary library JARs. On line 12,
the binary form p′

bin is refined to consist of the built JARs.
The refined project p′ (line 13) is validated (line 14) by

rebuilding the project in a sandbox, outside its specific setup,
making sure to use only those files that have been identified by
the method.2 A successful sandbox build indicates that source
and library files have been discerned correctly. In that case,
we add the refined project to the corpus (line 14).

This pseudocode is, of course, an idealized description of
the process. In practice, we would execute line 4 only once
per project; line 5 could be repeated several times, if the build
coverage is found unsatisfactory in terms of compiled types—
something that becomes clear only on line 9. We treat lines 6–
10 as an atomic action, call it a “corpus build,” and perform
it on regular basis.

B. Exploratory Builds

The QUALITAS corpus contains 106 projects. We were able
to build 86 projects, of which 54 required a patch to build. We
limit our exploratory build efforts to approximately 2-3 hours
per project.

2In practice, we use an Eclipse workspace with automatically generated
configuration files (i.e., .system and .classpath).

155

We distinguish the following patch operations. The most
common patch operation is adding JARs: almost 200 JARs
were added to 30 projects to make them build (not counting
libraries that Maven downloads automatically). Another patch
operation is creating directories (20 projects) and adding
resource files (4 projects). Other patch operations are patching
build files (6 projects) and setting up usage of a specific Java
version (4 projects). Almost half of the patched projects (25
out of 54) needs only one type of fixing.

We used ANT to build the majority of projects. Some
projects support more than one build setup (e.g., both ANT
and Maven)—in such cases we opted for ANT. In total, for
building the corpus, ANT was used 69 times, Maven 2.x—
11 times, Maven 1.x—3 times, a Bash script—2 times, and
Makefile—once.

C. Identifying Relevant Types

We heuristically classify files (and hence, types) as core,
test, and demo by checking whether some part of the file
path starts or ends with any of the following terms. Category
test: test, tests, testcase, testcases, testsuite, testsuites, testing,
junit.3 Category demo: demo, demos, tutorial, tutorials, exam-
ple, examples, sample, samples. For the test category, we also
check whether the file name ends with either “Test,” “Test-
Case,” or “TestSuite.” By default, source code is considered
to be core.

Table I lists descriptive statistics about percentage of non-
core files per project. We observe that an average project
contains 10,73 % non-core files. Usually those files are tests.

TABLE I
NON-core FILES IN PROJECTS.

% Min. 1st Qu. Median Mean 3rd Qu. Max

test 0.04 4,57 9,75 11,81 17,04 41,91
demo 0.11 0,91 1,78 5,88 6,66 30,65

total 0.04 5,36 10,73 14,14 19,09 46,2

QUALITAS comes with metadata that designates package
prefixes of Java types as implying system scope (or simply
system), which corresponds roughly to our core, as we mea-
sured. Our approach handles packages with mixed core and
other types.

D. Conversion to Eclipse Projects

We automatically convert the built and possibly patched
projects into Eclipse projects, while only including types that
are identified as both system by QUALITAS and core by us.
Successful compilation of a project in Eclipse shows that the
classpath and the discerning of source and library code are
correct. We successfully converted 79 projects (out of 86 built
ones). There are a few cases where validation via export to
Eclipse is not possible. For example, in case of the nekohtml
project, different parts of the code are compiled with different

3We did not apply this heuristic to junit, since the application area of this
project is testing. Instead, junit types were classified manually.

versions of a library JAR, which cannot be easily modeled in
an Eclipse project with its ‘global’ setting of the classpath.

In some cases, the exported code would not compile due
to non-core dependencies, while we could make the projects
compile by revising the classification of core code. In those
few cases where a project’s core code indeed required the
non-core code (e.g., to run self tests via a specific com-
mand line option), we included the compiled non-core classes
into a library JAR with the name <project>-sys.jar.
Some systems use 3rd-party source code; we also ship
those compiled classes in a library JAR with the name
<project>-nonSys.jar.

E. API Metadata

The corpus, obtained so far, is still not a sufficient starting
point for exploring API usage. Any conceivable experiment
relies on basic awareness of the involved APIs. Accordingly,
we systematically analyzed the package tree implied by API
usage (external dependencies) in all projects of the corpus. We
leveraged the concepts of API domains and facets as discussed
in §IV. The results are available online.

We identified 98 APIs in terms of packages or package
prefixes, and associated online resources. We assigned names
to the APIs, where necessary. We also added a few sub-APIs to
compensate for otherwise too diverse APIs. In this manner, we
faced more than 100 APIs. We found it difficult to experiment
with exploration while using the diverse API names directly.
Hence, we identified 27 API domains and assigned them to
APIs. (With a few exceptions, each API is associated with
exactly one domain.) In order to be able to explore some
specific APIs in more detail, we also explored API facets for
a few APIs. Most notably, at the time of writing, we added a
matured set of API facets for the JDOM API.

VI. EXPLORATION INSIGHTS

Overall, developers need to understand API usage, when
APIs relate to or affect their development efforts such as
a specific maintenance, migration, or integration task. We
assume that an exploration effort can be decomposed into
a series of primitive exploration activities meant to increase
understanding via some attainable insights. In this section, we
present a catalogue of such expected, abstract insights.

A. Format of Insight Descriptions

We use the following format. The Intent paragraph summa-
rizes the insight. The Stakeholder paragraph identifies whether
the insight benefits the API developer, the project developer,
or both. The API usage paragraph quantifies API usage of
interest, e.g., whether one API is considered or all APIs. The
View paragraph describes, in abstract terms, how API-usage
data is to be rendered. The Illustration paragraph applies the
abstract insight concretely to APIs and projects of QUAATLAS.
We use different forms of illustrations: tables, trees, and tag
clouds. The Intelligence paragraph hints at the ‘operational’
intelligence supported by the insight.

156

Fig. 5. JDOM’s API Dispersion in QUAATLAS (project-centric table).

B. The API Dispersion Insight

Intent – Understand an API’s dispersion in a corpus by com-
paring API usage across the projects in the corpus.
Stakeholder – API developer.
API Usage – One API.
View – The listing of projects with associated API-usage met-
rics for quantitative comparison and API facets for qualitative
comparison.
Illustration – Fig. 5 summarizes JDOM’s dispersion quantita-
tively in QUAATLAS. 6 projects in the corpus exercise JDOM.
The projects are ordered by the #ref metric with the other
metrics not aligning. Only 2 projects (jspwiki and velocity)
exercise type derivation at the boundary of API and project.
Intelligence – The insight is about the significance of API
usage across corpus. In the figure, arguably, project jspwiki
shows the most significant API usage because it references the
most API elements. Project jmeter shows the least significant
API usage. Observation of significance helps an API developer
in picking hard and easy projects for compliance testing along
API evolution—an easy one to get started; a hard one for
a solid proof of concept. For instance, development of a
wrapper-based API re-implementation for API migration relies
on suitable ‘test projects’ just like that [6], [7].

C. The API Distribution Insight

Intent – Understand API distribution across project scopes.
Stakeholder – Project developer.
API Usage – One API.
View – The hierarchical breakdown of the project scopes with
associated API-usage metrics for quantitative comparison and
API facets for qualitative comparison.
Illustration – Remember JHotDraw’s slice of DOM usage in
Fig. 2 in §II. This view was suitable for efficient exploration
of project scopes that directly depend on DOM.
Intelligence – The insight may help a developer to decide on
the feasibility of an API migration, as we discussed in §II.

D. The API Footprint Insight

Intent – Understand what API elements are used in a corpus
or varying project scopes.
Stakeholder – Project developer and API developer.
API Usage – One API.
View – The listing of used API packages, types, and methods.

Fig. 6. JDOM’s API Footprint in QUAATLAS (API-centric table).

Nontrivial JDOM API usage in velocity
org.apache.velocity.anakia.AnakiaJDOMFactory

Scope Tags incl. facets #proj

...
Fig. 7. ‘Non-trivial API’ usage for package org.jdom in QUAATLAS.

Illustration – Remember the tree-based representation of the
API footprint for JHotDraw as shown in Fig. 3 in §II. In
a similar manner, while using a table-based representation,
Fig. 6 summarizes JDOM usage across QUAATLAS. All
JDOM packages are listed. The core package is heavily used
and thus the listing is further refined to show details per API
type. Ordering relies on the #ref metric. Clearly, there is little
usage of API elements outside the core package.
Intelligence – Overall, the footprint describes the (smaller)
‘actual’ API that needs to be understood as opposed to the
full (‘official’) API. For instance, many APIs enable nontrivial,
framework-like usage [1], [28], but in the absence of actual
framework-like usage, the project developer may entertain
a much simpler view on the API. In the context of API
evolution, an API developer consults an API’s footprint to
minimize changes that break actual usage or to make an impact
analysis for changes. In the context of wrapper-based API
re-implementation for API migration, an API developer or a
project developer (who develops a project-specific wrapper)
uses the footprint to limit the effort [6], [7].

E. The Sub-API Footprint Insight

Intent – Understand usage of a sub-API in a corpus or project.
Stakeholder – API developer and, possibly, project developer.
API Usage – One API.

157

Swing!!java.lang!!JavaBeans!!java.io!!AWT!!java.util

Package org.jhotdraw.undo

AWT!!Swing!!java.io java.lang java.util

JavaBeans java.text java.lang.reflect!!DOM!!java.net
java.util.regex!!Java Print Service!!java.util.zip!!java.lang.annotation
java.math java.lang.ref java.util.concurrent Java security!!javax.imageio!!SAX

JHotDraw’s API Cocktail

Fig. 8. The API Cocktail of JHotDraw (cloud of API tags).

View – A list as in the case of the API Footprint insight, except
that it is narrowed down to a sub-API of interest.
Illustration – Fig. 7 illustrates ‘Non-trivial API’ usage for
JDOM’s core package. The selection is concerned with a
project type which extends the API type DefaultJDOMFactory
to introduce a project-specific factory for XML elements.
Basic IDE functionality could be used from here on to check
where the API-derived type is used.
Intelligence – In the example, we explored non-trivial API
usage, such as type derivation at the boundary of project and
API—knowing that it challenges API evolution and migra-
tion [7]. More generally, developers are interested in specific
sub-APIs, when they require detailed analysis for understand-
ing. API developers (more likely than project developers)
may be more aware of sub-APIs; they may, in fact, capture
them, as part of the exploration. (This is what we did during
this research.) Such sub-API tagging, which is supported by
the Sub-API Footprint insight may ultimately improve API
documentation in ways that are complementary to existing
approaches [4], [5].

F. The API Cocktail Insight

Intent – Understand what APIs are used together in larger
project scopes.
Stakeholder – Project developer.
API Usage – All APIs.
View – The listing of all APIs exercised in the project or a
project package with API-usage metrics applied to the APIs.
Illustration – Remember the tree-based representation of the
API cocktail for JHotDraw as shown in Fig. 1 in §II. The
same cocktail of 20 APIs is shown as a tag cloud in Fig. 8.
Scaling is based on the #ref metric.
Intelligence – The cocktail lists and ranks APIs that are used in
the corresponding project scope. Thus, the cocktail proxies as a
measurement for system complexity, required developer skills,
and foreseeable design and implementation challenges. API
usage is part of the software architecture, in the sense of “what
makes it hard to change the software” and chances are that
API usage may cause some “software or API asbestos” [29].
While a large cocktail may be acceptable and unavoidable for
a complex project, the cocktail should be smaller for individual
packages in the interest of a modularized, evolvable system.

G. APIs Versus Domains

We can always use API domains in place of APIs to
raise the level of abstraction. Thus, any insight that compares
APIs may as well be applied to API domains. APIs are
concrete technologies while API domains are more abstract

GUI!!Data!!Basics!!
IO!!Format!!Component!!Meta!!
XML!!Distribution!!Parsing!!Control!!Math!!Output!!Security!!Concurrency

JHotDraw’s API Domain Cocktail

GUI!!Basics!!Component!!IO Package org.jhotdraw.undo

Project jhotdraw

Fig. 9. Cocktail of domains for JHotDraw.

Basics!!Distribution!!GUI!!IO!!Component

java.lang!!java.net!!Swing!!JavaBeans!!java.io!!

APIs

API domains

Coupling in JHotDraw
for the interface org.jhotdraw.app.View

Fig. 10. API Coupling for JHotDraw’s interface org.jhotdraw.app.View.

software concepts. Consider Fig. 9 for illustration. It shows
API domains for all of JHotDraw and also for its undo
package. Thus, it presents the API cocktails of Fig. 8 in a
more abstract manner.

H. The API Coupling Insight

Intent – Understand what APIs or API domains are used
together in smaller project scopes.
Stakeholder – Project developer.
API Usage – All APIs.
View – See §VI-F except APIs or domains are listed for smaller
project scopes.
Illustration – Fig. 10 shows API Coupling for the interface
org.jhotdraw.app.View from the JHotDraw’s app package4.
According to the documentation, the package “defines a
framework for document-oriented applications and provides
default implementations”. The View type “paints a document
on a JComponent within an Application”. (Application is the
main type from the package which “handles the lifecycle of
views and provides windows to present them on screen”.) The
coupled use of APIs can be dissected in terms of the involved
types as follows:
java.lang: trivial usage of strings.
java.net: types for the location to save the view.
JavaBeans: de-/registration of PropertyChangeListeners.
java.io: exception handling for reading/writing views.
Swing: usage of JComponent on which to paint a document; usage
of ActionMap for actions on the GUI component.

Intelligence – Simultaneous presence of several domains or
APIs in a relatively small project scope may indicate acciden-
tal complexity and poor separation of concerns. Thus, such
exploration may reveal a code smell [30], [31] that is worth
addressing. Alternatively, a dissection, as performed for the
illustrative example, may help in understanding the design and
reasonable API dependencies.

I. The API Profile Insight

Intent – Understand what API facets are used in varying
project scopes.
Stakeholder – Project developer and, possibly, API developer.

4The lifecycle of the interface as explained by its documentation: http:
//www.randelshofer.ch/oop/jhotdraw/JavaDoc/org/jhotdraw/app/View.html

158

Observation!!Input!!Exception!!
Package de.nava.informa.parsers

Observation!!Input!!

Nontrivial XML!!Manipulation Exception!!Renaming

Addition Namespaces!!Nontrivial API!!Output!!

Project informa

JDOM’s API Profile for informa

Fig. 11. JDOM’s API Profile in the informa project (cloud of facet tags).

API Usage – One API with available facets.
View – The listing of all API facets exercised in the selected
project scope with API-usage metrics applied to the facets.
Illustration – Fig. 11 shows JDOM profiles for a project and
one of its packages. The project, as a whole, exercises most
facets of the API. In contrast, the selected package is more
focused; it is concerned only with loading XML into memory,
reading access by getters and friends, and some inevitable
exception handling. There is no involvement of namespaces,
non-trivial XML, or data access other than observation.
Intelligence – At the level of a complete project, the profile
reveals the API facets that the project depends on. As some of
the facets are more idiosyncratic than others, such exploration
may, in fact, reveal “software or API asbestos” [29], as
discussed in §VI-F. For instance, the (J)DOM facets ‘Non-
trivial API’ and ‘Non-trivial XML’ and to a lesser extent also
‘Namespaces’ proxy for development challenges or idiosyn-
crasies. At the level of smaller project scopes, an API’s profile
may characterize an actual usage scenario, as in the case of the
profile at the bottom of Fig. 11. Such a facet-based approach
to understanding API-usage scenarios complements existing,
more code pattern-based approaches [2], [3]. API profiles also
provide feedback to API developers with regard to ‘usage in
the wild’, thereby guiding API evolution or documentation.

VII. EXPLORATION VIEWS

Let us systematically conceptualize attainable views in
abstract terms. In this manner, a more abstract model of ex-
ploration arises and a foundation for tool support is provided.

We approach this task essentially as a data modeling prob-
lem in that we describe the structure behind views and the
underlying facts. We use Haskell for data modeling.5

A. Forests

We begin by modeling the (essential) facts about projects
and APIs as well as API usage. To this end, we think of two
forests: one for all the projects in the corpus, another for all
the APIs used in the corpus.

−− Forests as collections of named trees
data Forest = Forest [(UqName,PackageTree)]

5Products are formed with “(...)”. Lists are formed with “[...]”. We use
Haskell’s data types to group alternatives (as in a sum); they are separated
by ‘|’. Each alternative groups components (as in a product) and is labeled
by a constructor name. Enums are degenerated sums where the constructor
name stands alone without any components. Other types may suffice with
type aliases on top of existing types.

Each project or API gives rise to one tree (root) in the
respective forest. Such a tree breaks down recursively into
package layers. If a package layer corresponds to an actual
package, then it may also contain types. Types further break
down into members. Thus:
−− Trees breaking down into packages, types, etc.
data PackageTree = PackageTree [PackageLayer]
data PackageLayer = PackageLayer UqName [PackageLayer] [Type]
data Type = Type UqName [Member] [Ref]
data Member = Member Element UqName [Type] [Ref]
data Element = Interface | Class | InstanceMethod | StaticMethod | ...

−− Different kinds of names
type RName = QName −− qualified names within forests
type QName = [UqName] −− qualified names within trees
type UqName = String −− unqualified names

In both forests, we associate types and members with API-
usage references; see the occurrences of Ref . Depending on
the forest, the references may be ‘inbound’ (from project to
API) or ‘outbound’ and each reference may be classified by
the (syntactic) pattern expressing it. Thus:
data Ref = Ref Direction Pattern Element RName
data Direction = Outbound | Inbound
data Pattern = InstanceMethodCall | ExtendsClass | ...

The components of a reference carry different meanings de-
pending on the chosen direction:

Outbound Inbound

Pattern Project pattern Project pattern
Element API element Project element
RName Name of API element Name of project element

The project forest is obtained by walking the primary repre-
sentation of projects and deriving the forest as a projection/ab-
straction at all levels. The API forest is obtained by a (non-
trivial) transposition of the project forest to account for the
project-specific jars and memory constraints on simultaneously
open projects.

B. View Descriptions

We continue with the descriptions of views. These are the
executable models that are interpreted on top of the forests
of APIs and projects. Here is the overall structure of these
descriptions:
type View = (

Perspective , −− Project− versus API−centric
ApiSelection , −− APIs and parts thereof to consider
ProjectSelection , −− Projects and parts thereof to consider
Details , −− Details to retain
Metrics) −− Metrics to be applied

data Perspective = ApiCentric | ProjectCentric

The API-centric perspective uses the hierarchical organiza-
tion of APIs (packages, sub-packages, types, members) as the
organizational principle of a view. Likewise, the project-centric
perspective uses the hierarchical organization of projects as the
organizational principle of a view.

Selection of projects, APIs, or parts thereof is based on
names of APIs and projects as well as qualified names for the
relevant scopes; we do not cover here selection based on API

159

domain tags and API facet tags, which would require only a
routine extension:

type ApiSelection = Selection
type ProjectSelection = Selection
data Selection
= UniversalSelection −− Select entire forest
| Selection [(UqName, Scope)] −− Select tree scopes

Scopes for selection are described as follows:

data Scope
= RootScope −− Select entire tree
| PrefixScope [UqName] −− Selection by package prefix
| PackageScope [UqName] −− Selection by package name
| TypeScope [UqName] −− Selection by type name
| MethodScope [UqName] Signature −− Selection by method signature

type Signature = ... −− details omitted

We left out some forms, e.g., scopes for fields or nested
types. However, all of the above forms have proven relevant
in practice. For instance, we have used package scopes and
prefix scopes for API and API domain tagging respectively.
Likewise, we have used type scopes and method scopes for
API facet tagging.

Each view description controls details for each selection:

type Details = (
[ProjectDetail], −− Project elements to retain
[ApiDetail]) −− API elements to retain

type ProjectDetail = (Element, Usage)
type ApiDetail = (Element, Usage)
type Usage = Bool −− Whether to retain only elements with usage

(See above for type Element .) The selection of details is
important for usability of exploration views. For instance,
Fig. 3 shows only API elements that are actually used to
summarize an API foot print concisely. In contrast, Fig. 7
shows all API types to better understand what API types
possibly could exercise the chosen API facet.

Finally, applicable API-usage metrics are to be identified
for the view. The choice of metrics serves multiple purposes.
First, the final, actual view should only include metrics of
interest to limit the presented information. Second, metrics can
be identified for ordering/ranking entries in the actual views, as
we have seen throughout §II and §VI. Third, metrics can be
configured to only count certain aspects of API-usage. Last
but not least, selection of metrics lowers the computational
complexity of materializing views. Thus:

type Metrics = [(Metric, Maybe Order)]
data Metric = RefMetrics [Source] [Target]

| ElemMetric [Source] [Target]
| DeriveMetric [Derivation]
| ... −− Further metrics omitted

data Order = Ascending | Descending −− Whether to order by the metric

−− What API references to count
type Source = Pattern −− Usage patterns to count
type Target = Element −− API elements to count

−− Forms of derivation to count
data Derivation = ProjectClassExtendsApiClass

| ProjectClassImplementsApiInterface
| ProjectInterfaceExtendsApiInterface

Nontrivial JDOM API usage in velocity
org.apache.velocity.anakia.AnakiaJDOMFactory

Fig. 12. The dual view for Fig. 7 (project-centric table).

For instance, the #ref metric can be configured to only
count references to API types as opposed to, for example,
API methods; the #derive metric can be configured to only
count class-to-class extension as opposed to other forms of
derivation.

To summarize, means of selection, details, and metrics
provide a rich domain-specific query language to express what
API usage should be included into an actual view and how
to rank API usage. Thereby, a foundation is provided for
interactive tool support.

C. Operations on Views

Because of the hierarchical nature of forests, established
means of ‘package exploration’, as in an IDE are immediately
feasible. That is, one can fold and unfold scopes; references to
API or project elements can be resolved to their declarations
and declarations can be associated with references to them.
Beyond ‘package exploration’, views can be defined to dissect
API usage explicitly.

More interestingly, exploration can switch between API-
centric and project-centric perspectives. Fig. 12 shows a
project-centric view which is fundamentally dual to the API-
centric view of Fig. 7 in that the selected outgoing reference
corresponds to the originally incoming reference selected in
Fig. 7. The hierarchical exploration has been readily unfolded
to expose the encompassing project scopes. Such travel be-
tween perspectives may be very insightful. In the example
at hand, an API developer may have spotted the relevant
API usage in the API-centric view, as part of a systematic
exploration of non-trivial API usage in the corpus. In an
attempt to better understand the broader context of the API
reference, the developer needs to consult the project-centric
view for the culprit. Such context switches are laborious when
only basic IDE support for package exploration is available.

VIII. THE EXAPUS EXPLORATION PLATFORM

The EXAPUS web server processes all Java projects in the
Eclipse workspace it is pointed to. Fact extraction proceeds
through a recursive descent on the ASTs produced by the
Eclipse JDT. Whether an AST node of a project references
an API member is determined on a case-by-case basis. In

160

general, identifiers are resolved to their corresponding decla-
ration. Identifiers that resolve to a binary rather than a source
member are considered an API reference. Hence, we require
the workspace to have been prepared as described in §V. For
each reference, EXAPUS extracts the referenced element (e.g.,
a method declaration), the referencing pattern (e.g., a super
invocation) as well as the encompassing project scope in which
the reference resides (i.e., a path towards the root of the AST).

Exploration views as of §VII are computed by selecting
references from the resulting fact forest (e.g., only those
to a particular sub-API) and superimposing one of either
two hierarchical organizations: a project-centric hierarchy of
project members and the outbound references within their
scope; or an API-centric hierarchy of API members and the
inbound references within their scope.

The EXAPUS web interface enables exploring the computed
exploration views through trees (e.g., Fig. 1) and tables (e.g.,
Fig. 2). An exploration view can be refined further on the
kind of the referenced elements (e.g., a particular type) and
the referencing pattern (e.g., constructor invocation), as well
as sorted by a particular metric. Multiple views can be shown
simultaneously and navigated between. The interface owes its
dynamic and IDE-like feel to the widgets of the Eclipse Rich
Ajax Platform.

IX. CONCLUSION

We have described and illustrated a powerful notion of
multi-dimensional exploration of API usage, which is imple-
mented in the tool EXAPUS and can be experimented with on
the grounds of the QUAATLAS corpus. The tool, the corpus,
and all related metadata are available via the paper’s website.

In the future, we hope to enrich API-usage exploration by
flow-sensitive analyses, which is important when interproce-
dural API-usage scenarios or flow-based determination of API
coupling are to be enabled.

Metadata (tags) for APIs, API domains, and API facets
are being integrated with the knowledge base of http://
101companies.org/, thereby also enabling rule-based detection
of those phenomena on other corpora including the one of
101companies [32]. We are also working on corpus engi-
neering so that the maintainance and improvement of corpora
such as QUAATLAS is more effectively supported by the
community.

The introduced notion of API-usage exploration calls for
empirical research on understanding API usage where explo-
ration is taken into account in addition to more established
means of documentation, code search, and code completion.

ACKNOWLEDGMENTS
Coen De Roover is funded by the Cha-Q SBO project sponsored by

the “Flemish agency for Innovation by Science and Technology” (IWT
Vlaanderen).

REFERENCES

[1] R. Lämmel, E. Pek, and J. Starek, “Large-scale, AST-based API-usage
analysis of open-source Java projects,” in SAC, 2011, pp. 1317–1324.

[2] J. Jiang, J. Koskinen, A. Ruokonen, and T. Systä, “Constructing usage
scenarios for API redocumentation,” in ICPC, 2007, pp. 259–264.

[3] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: Mining and
recommending API usage patterns,” in ECOOP, 2009, pp. 318–343.

[4] J. Stylos, A. Faulring, Z. Yang, and B. A. Myers, “Improving API
documentation using API usage information,” in VL/HCC, 2009, pp.
119–126.

[5] D. S. Eisenberg, J. Stylos, A. Faulring, and B. A. Myers, “Using
association metrics to help users navigate API documentation,” in
VL/HCC, 2010, pp. 23–30.

[6] T. T. Bartolomei, K. Czarnecki, R. Lämmel, and T. van der Storm,
“Study of an API migration for two XML APIs,” in SLE, 2010, pp.
42–61.

[7] T. T. Bartolomei, K. Czarnecki, and R. Lämmel, “Swing to SWT and
back: Patterns for API migration by wrapping,” in ICSM, 2010, pp. 1–10.

[8] B. de Alwis and G. C. Murphy, “Answering conceptual queries with
Ferret,” in ICSE, 2008, pp. 21–30.

[9] C. De Roover, C. Noguera, A. Kellens, and V. Jonckers, “The SOUL
tool suite for querying programs in symbiosis with Eclipse,” in PPPJ,
2011, pp. 71–80.

[10] A. Brühlmann, T. Gı̂rba, O. Greevy, and O. Nierstrasz, “Enriching
reverse engineering with annotations,” in MoDELS, 2008, pp. 660–674.

[11] D. Hou and H. J. Hoover, “Using SCL to specify and check design
intent in source code,” IEEE Trans. Software Eng., vol. 32, no. 6, pp.
404–423, 2006.

[12] K. Mens and A. Kellens, “IntensiVE, a toolsuite for documenting and
checking structural source-code regularities,” in CSMR, 2006, pp. 239–
248.

[13] M. Lanza and S. Ducasse, “Polymetric views - A lightweight visual
approach to reverse engineering,” Trans. Software Eng., vol. 29, no. 9,
pp. 782–795, 2003.

[14] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: A
controlled experiment,” in ICSE, 2011, pp. 551–560.

[15] Y. M. Mileva, V. Dallmeier, M. Burger, and A. Zeller, “Mining trends
of library usage,” in ERCIM Workshops, 2009, pp. 57–62.

[16] Y. M. Mileva, V. Dallmeier, and A. Zeller, “Mining API popularity,” in
TAIC PART, 2010, pp. 173–180.

[17] R. Holmes and R. J. Walker, “Informing Eclipse API production and
consumption,” in OOPSLA, 2007, pp. 70–74.

[18] D. S. Eisenberg, J. Stylos, and B. A. Myers, “Apatite: A new interface
for exploring APIs,” in CHI, 2010, pp. 1331–1334.

[19] S. Thummalapenta and T. Xie, “SpotWeb: Detecting framework hotspots
and coldspots via mining open source code on the Web,” in ASE, 2008,
pp. 327–336.

[20] H. Ma, R. Amor, and E. D. Tempero, “Usage patterns of the Java
standard API,” in APSEC, 2006, pp. 342–352.

[21] M. P. Robillard and R. DeLine, “A field study of API learning obstacles,”
Empir. Softw. Eng., vol. 16, no. 6, pp. 703–732, 2011.

[22] D. Hou and L. Li, “Obstacles in using frameworks and APIs: An
exploratory study of programmers’ newsgroup discussions,” in ICPC,
2011, pp. 91–100.

[23] S. M. Nasehi and F. Maurer, “Unit tests as API usage examples,” in
ICSM. IEEE, 2010, pp. 1–10.

[24] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems,” in ESEC/SIGSOFT FSE, 2009, pp.
213–222.

[25] D. Hou and D. M. Pletcher, “An evaluation of the strategies of sorting,
filtering, and grouping api methods for code completion,” in ICSM, 2011,
pp. 233–242.

[26] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid mining:
Helping to navigate the API jungle,” in PLDI, 2005, pp. 48–61.

[27] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “Qualitas corpus: A curated collection of Java code for
empirical studies,” in APSEC, 2010, pp. 336–345.

[28] R. Lämmel, R. Linke, E. Pek, and A. Varanovich, “A framework profile
of .NET,” in WCRE, 2011, pp. 141–150.

[29] A. Klusener, R. Lämmel, and C. Verhoef, “Architectural modifications
to deployed software,” Sci. of Comput. Program., vol. 54, no. 2–3, pp.
143–211, 2005.

[30] E. V. Emden and L. Moonen, “Java quality assurance by detecting code
smells,” in WCRE, 2002, pp. 97–108.

[31] C. Parnin, C. Görg, and O. Nnadi, “A catalogue of lightweight visualiza-
tions to support code smell inspection,” in SOFTVIS, 2008, pp. 77–86.

[32] J.-M. Favre, R. Lammel, M. Leinberger, T. Schmorleiz, and A. Vara-
novich, “Linking documentation and source code in a software
chrestomathy,” in WCRE, 2012, pp. 335–344.

161

