
A Replication Study on Code Comprehension and
Expertise using Lightweight Biometric Sensors

Davide Fucci∗, Daniela Girardi†, Nicole Novielli†, Luigi Quaranta†, Filippo Lanubile†
∗University of Hamburg, Germany, fucci@informatik.uni-hamburg.de

†University of Bari Aldo Moro, Italy, {daniela.girardi—nicole.novielli—filippo.lanubile}@uniba.it,l.quaranta6@studenti.uniba.it

Abstract—Code comprehension has been recently investigated
from physiological and cognitive perspectives using medical
imaging devices. Floyd et al. (i.e., the original study) used fMRI to
classify the type of comprehension tasks performed by developers
and relate their results to their expertise. We replicate the
original study using lightweight biometrics sensors. Our study
participants—28 undergrads in computer science—performed
comprehension tasks on source code and natural language prose.
We developed machine learning models to automatically identify
what kind of tasks developers are working on leveraging their
brain-, heart-, and skin-related signals. The best improvement
over the original study performance is achieved using solely
the heart signal obtained through a single device (BAC 87%
vs. 79.1%). Differently from the original study, we did not
observe a correlation between the participants’ expertise and the
classifier performance (τ = 0.16, p = 0.31). Our findings show that
lightweight biometric sensors can be used to accurately recognize
comprehension tasks opening interesting scenarios for research
and practice.

Index Terms—software development tasks, biometric sensors,
machine learning.

I. INTRODUCTION

Developers spend a significant amount of time understand-
ing code as code comprehension is crucial for several software
development activities, such as code review [1], [2], [3].
Accordingly, researchers have developed several strategies to
study this activity [4], [5].

Despite its importance, we only have an initial grasp about
the role that human physiological factors [6] play for code
comprehension. A first step towards understanding the re-
lationship between code comprehension and the underlying
cognitive mechanisms is to study to what extent biometric
feedback can help discriminating between code and other
comprehension tasks—e.g., natural language comprehension.
To that end, Floyd et al. [7] (i.e., the original study replicated
in this paper) use functional Magnetic Resonance Imaging
(fMRI) to build a classifier able to distinguish these two
tasks based on brain activity. However, their approach, on top
of being expensive (approximately $500/hour [7]), limits the
ecological validity of the results. In this paper, we study to
what extent we can replicate the results of the original study
using lightweight biometric sensors.

The decision of using lightweight biometric sensors—i.e.,
non-intrusive, wearable, and affordable devices—to measure
human physiology is supported by the results of recent re-
search demonstrating their potential application to software

engineering. For example, cognitive-aware IDEs can support
developers comprehending code (e.g., during code-review [8])
and for foster their productivity by monitoring interruptibil-
ity [9]. Fritz et al. [10] uses a combination of eye-tracker,
electrodermal activity, and electroencephalography sensors to
measure the difficulty of a development task. Fakhoury et
al. [11] used fNIRS (a brain imaging technique which uses
sensors connected to a portable headband) to study the effects
of poor code readability and lexicon on novice developers’
code comprehension.

In this study, we use electroencephalogram (EEG), elec-
trodermal (EDA), and heart-related sensors to replicate the
original study. Although such biometrics cannot give a detailed
account of a developer’s cerebral activity (e.g., activated
brain areas) as in the case of fMRI, they can be used to
sense variation in cognitive load associated with a cognitive
task [12], [13]. We developed machine learning models that
use features extracted from biometric signals collected from 28
participants comprehending source code and natural language.
Our approach outperforms the one presented in the original
study and achieves its best result using only features from
signals acquired using a single wearable device.

The contributions of this paper are:
• an approach for automatic recognition of two comprehen-

sion tasks leveraging lightweight biometrical sensors;
• an empirical investigation of which combination of phys-

iological sensors and measurements are most effective at
predicting a code comprehension task;

• a lab package including to replicate our experiment
including data collection material, datasets, scripts, and
benchmarks to run and evaluate the machine learning
models.1

This paper is organized according to standard replication report
guidelines for software engineering studies [14]. We consider
the current study an external, independent, and differentiated
replication [15], [16] as a completely independent set of
researchers replicated the original study while making inten-
tional changes to it.

Paper organization. Section II reviews the existing litera-
ture regarding the use of biometrics. Section III summarizes
the original study goals, its settings, and results. The main
changes to the original study and the details about this replica-

1https://github.com/collab-uniba/Replication Package ICPC

ar
X

iv
:1

90
3.

03
42

6v
2

 [
cs

.S
E

]
 2

 A
pr

 2
01

9

tion are reported in Section IV while the machine learning ap-
proach is described in Section V. Section VI reports the results
of this replication while Section VII summarizes its limitation
and implications. Finally, we conclude in Section VIII.

II. USE OF BIOMETRICS IN SOFTWARE ENGINEERING

The software engineering research community has studied
the relationship between the developers’ cognitive state—
measured using physiological signals—and several aspects of
software development, like code comprehension [17], produc-
tivity [18], and software quality [19].

Parnin [20] used sub-vocal utterances, emitted by software
developers, to study the complexity of two programming task.
The author used an electromyogram (EMG) to show that those
signals are correlated to the cognitive patterns that developers
follow when tackling a programming task. Fritz et al. [10]
combined three physiological features (i.e., eye movement,
electrical signal of skin and brain) with a similar goal. The
authors showed that the three biometrics together provide the
best combination for predicting the difficulty of a task (84.38%
precision, and 69.79% recall). Moreover, they demonstrated
that off-the-shelf devices can be used to build accurate, on-
line classifiers of difficult code chunks.

Developers productivity has recently been the subject of re-
search exploiting physiological measures. For example, Rade-
vski et al. [18] proposed a framework for continuous mon-
itoring of developers’ productivity based on brain electrical
activities. Müller and Fritz [19] used an ensemble of biomet-
rics to measure the progress and interruptibility of developers
performing small development tasks. They demonstrated that it
is possible to classify the emotions experienced by developers
while working on a programming task using biometrics (i.e.,
brainwave frequency, pupil size, heart rate) with an accuracy
of 71%. The progress experienced by developers was predicted
at a similar rate, but using a different set of biometrics (i.e.,
EDA signal, skin temperature, brainwave frequency, and the
pupil size).

Müller and Fritz [21] investigated the use of physiological
measures for real-time identification of code quality concerns
in a real-world setting. Using heart-, skin-, and brain-related
biometrics, the authors identified difficult parts of the system—
e.g., low-quality code containing bugs. The authors provide
some evidence that biometrics can outperform traditional code-
related metrics to identify quality issues in a code base.

For Code Comprehension. As far as code comprehen-
sion is concerned, two similar studies, Siegmund et al. [6]
and Ikutani and Uwano [22], assessed the brain activity of
developers involved in code comprehension tasks. Siegmund
et al. [6] used fMRI to show clear activation patterns in five
regions of the brain all related to language processing, working
memory, and attention. The study by Ikutani and Uwano [22]
uses near-infrared spectroscopy to show that different parts of
the brain are activated during code comprehension with respect
to a specific sub-task. For example, they distinguish between
the areas activated by the workload necessary to memorize a
variable and the ones activated by arithmetic calculation.

More recently, Peitek et al. [17] used fMRI to monitor
the brain activity of 28 participants involved in the compre-
hension of 12 source code snippets. Their results show that
distinct areas of the brain are activated during such a task.
Moreover, the activation patterns suggest that natural language
processing is essential for code comprehension. To get a more
comprehensive view of the strategies adopted by developers
when comprehending source code, Peitek et al. [23] obtained
simultaneous measurements of fMRI and eye-tracking devices.
They showed strong activation of specific brain areas when
code beacons are available. However, their setup was subject
to data loss—complete fMRI and eye-tracking data could be
collected for 10 out of the 22 participants.

III. ORIGINAL STUDY

This section summarizes the original study, giving an
overview of its settings, methodology, and results.

A. Research Question

The original study explored the use of fMRI and ma-
chine learning techniques to automatically distinguish between
code comprehension, code review, and prose review tasks.
Moreover, it investigated whether the neural representation of
programming and natural languages changes depending on the
developer’s expertise.

To guide their research, the authors formulated the following
research questions [7]:

• RQ1 - Can we classify which task a participant is
undertaking based on patterns of brain activation?

• RQ2 - Can we relate tasks to brain regions?
• RQ3 - Can we relate expertise to classification accuracy?

B. Participants and Context

The original study involved 29 students (18 men, 11 women)
at the University of Virginia (USA) with basic experience in
the C programming language. Among them, two were com-
puter science graduate students, nine were undergraduates in
the College of Arts and Sciences, and 18 were undergraduates
in the College of Engineering. All participants were right-
handed native English speakers, had normal or corrected-to-
normal vision, and reported no history of neuropsychological
disorders. The authors rewarded the students for their par-
ticipation with monetary compensation and extra university
credits. The experiment was conducted at the University of
Virginia (USA).

C. Artifacts

The authors prepared three types of artifacts according to
the experimental tasks.

1) Code snippets with related software maintenance ques-
tions.

2) Patches from GitHub Pull Request including code diff
and comments.

3) English texts with simple editing request markup.
The artifacts are available at the original experiment website.2

2https://web.eecs.umich.edu/∼weimerw/fmri.html

https://web.eecs.umich.edu/~weimerw/fmri.html

D. Design

The experiment consisted of three tasks, code comprehen-
sion, code review, and prose review. The tasks were presented
as visual stimuli on a special screen installed in the fMRI
scanner. Before beginning the experiment, participants signed
a consent form for personal data treatment. The original
experiment started by showing the participants an instructional
video explaining the goal and the different steps of the
study. The participants entered the fMRI scanner for an initial
anatomical scan. Then, they performed the experimental tasks
consisting of four 11-minute sessions where blocks of code
review, code comprehension, and prose review were presented
in a quasi-random order. Code comprehension and code review
blocks contained three tasks each, whereas prose review blocks
were composed of six tasks. Tasks containing source code
were displayed for 60 seconds and the ones containing prose
for 30 seconds. The participants provided their answer (i.e.,
accept or reject) through an fMRI-compatible button. They
were encouraged to respond as quickly and accurately as
possible within the allotted time. Between tasks, the screen
displayed a fixation cross for an random interval between
two and eight seconds. The sessions were completed without
interruptions.

E. Summary of Results

The original study authors found that neural representations
of programming languages and natural language are distinct.
Specifically, they used Gaussian Process Classification to
distinguish between code and prose tasks, achieving a balanced
accuracy (BAC) of 79%. They show that neural activity in the
prefrontal regions strongly drives this distinction. However,
their approach performance was lower (BAC = 62%) when
comparing code comprehensions to code review, revealing that
these tasks are less distinguishable at a neural level.

Finally, authors showed a negative correlation between their
classifier performance and the participants’ expertise (r = 0.44,
p = 0.16), indicating that for experts the neural representation
of source code and prose are similar.

IV. OUR STUDY

This section summarizes our replication.

A. Motivation for conducting the replication

We conducted this replication to broaden the original study
results by replacing the observed signal (i.e., neural activity
sensed through fMRI) with a different set of signals capturing
the same construct (i.e., cognitive effort). Moreover, we want
to increase the ecological validity of the original study by
using sensing devices which can be used in real-world settings.

B. Level of interaction with original experimenters

The authors of the original study did not take part in
the replication process; therefore, this replication is to be
considered external [15].

We reused a subset of 18 source code snippets that the
authors of the original study made available in their replication
package.

TABLE I: Settings comparison between the original study and
this replication.

Study
Setting Original study This replication

Experiment site Univ. of Virginia (USA) Univ. of Bari (Italy)
Participants 29 28
Participants experience Grads and undergrads Undergrads

Task 36 tasks
four 11-minute sessions

27 tasks
three 6-minute sessions

Task type
Code comprehension
Code review
Prose review

Code comprehension
Prose comprehension

Physiological signal Neural
Neural
Skin
Heart

Physiologial measure BOLD
EEG
EDA
BVP, HR, HRV

Device fMRI scanner BrainLink headset
Empatica wristband

Classifier Gaussian Process Machine Learning
(8 algorithms)

Classifier validation LORO-CV LORO-CV
Hold-out

Classifier metric Balanced accuracy (BAC) Balanced accuracy (BAC)

C. Changes to the original experiment

This replication makes explicit changes to the original study.
1) Adaptation of the research question;
2) Partial modification of task presented to the participants

through visual stimuli;
3) Different physiological signals captured from the partic-

ipants performing the task;
4) Modifications to the experimental protocol;
5) Additional machine learning settings.

Table I compares the original study settings to this replication.
Research Questions. In our study, we answer the following

research questions:
• RQClf - Can we classify which task a participant is

undertaking based on signals collected from lightweight
biometric sensors?

• RQExp - Can we relate expertise to classification accu-
racy?

Our research questions are adapted from those addressed
in the original study. Specifically, RQClf is adapted from
RQ1 of the original study, which we modify by considering
lightweight biometric sensors instead of fMRI.

In the original study, RQ2 investigates whether the tasks
are associated with the activation of specific brain areas. In
our study, it is not possible to address this question. The
lightweight EEG device we use in our replication to obtain
brain-related signals is not capable of registering activation of
brain areas as it allows to only collect the signal from the
frontal part of the brain. Therefore, we decided to discard the
original study RQ2 from our replication. Finally, we address
RQ3 from the original study considering the accuracy of each
participant best classifier trained using biometrical signals.

Tasks. In our study, the participants are required to solve a
series of code comprehension tasks (see Fig. 1a) and a series
of prose comprehension task (see Fig. 1b). As opposed to the

original study, we decided to focus only on comprehension;
thus, excluding code review and prose review tasks.

Initially, we conducted a pilot study to validate the feasibil-
ity of all the original study tasks, including code review. The
participants involved in the pilot (i.e., a Ph.D. student and a
researcher in Computer Science) perceived code review tasks
as too difficult and the entire experiment as too demanding
given the allotted time. The pilot participants reported that they
felt overwhelmed when performing the code review task and
that they ended up providing random answers without actually
trying to solve the task. Such behavior is a threat to the study
validity which led us to discard the code review tasks.

Finally, to be consistent with the type of activities to com-
pare, we replaced the prose review appearing in the original
study with a new prose comprehension task. We operational-
ized prose comprehension using standard evaluation exercises
for high school students (see Fig. 1b). We repeated the pilot
study with the same participants, who agreed with the changes.

Physiological signals. In the original study, the authors
used images captured from functional magnetic resonance
(fMRI) to build a classifier able to distinguish between the
tasks a participant is performing. The fMRI provides indirect
estimates of brain activity by measuring metabolic changes in
blood flow and oxygen consumption. Although this technique
allows to understand how the human brain processes software
engineering tasks, it is expensive and cannot be used in real-
world settings—i.e., to monitor a developer’s cognitive activity
during daily programming tasks.

Thus, we decided to measure other physiological signals
which can be recorded using low cost, lightweight biometric
sensors. In our study, we use the BrainLink headset (Fig. 2a)
to record the electrical activity of the brain (EEG), and the
Empatica E4 wristband (Fig. 2b) to record the electrodermal
activity of the skin (EDA) and the blood volume pulse (BVP).
The EEG sensor records the electrical activity of the brain
through one electrode placed on the surface of the scalp.
The cerebral waves can be categorized based on frequency
as delta (<4Hz), theta (4-7,5Hz), alpha (4-12,5Hz), beta (13-
30Hz), and gamma (> 30Hz). Delta waves are mainly recorded
during sleep, theta waves indicate a decrease of vigilance
level, alpha waves are recorded during relaxing moments, beta
waves are observed during mental activity demanding attention
or concentration, and gamma waves are related to cognitive
processes. In addition to raw data for the EEG signal, the
BrainLink device extracts metrics related to meditation and
attention levels. 3 The EEG samples the signal at 512Hz.

EDA is constituted by a tonic component, indicating the
level of electrical conductivity of the skin (SCL), and a pha-
sic component, representing the phasic changes in electrical
conductivity or skin conductance response (SCR) [24]. The
device samples the EDA signal at a frequency of 4Hz.

BVP is the volume of blood that passes through tissues in
a localized area with each heartbeat. It is used to calculate the
heart rate (HR) and the variation in the time interval between

3http://developer.neurosky.com/docs/doku.php?id=esenses tm

heartbeats or heart rate variability (HRV). The device samples
the BVP signal at a frequency of 64Hz.

Experimental protocol. We organized the experiment ac-
cording to the following phases.

Pre-experimental briefing. The participant gets acquainted
with the settings—e.g., sitting in a comfortable position,
adjusting the monitor height. The experimenter summarizes
the upcoming steps and explains how to perform the task.
Subsequently, the participants signs the consent form for
personal data treatment.

Device calibration. The participant wears the biometric
sensors (see Figure 3) and watches a two-minute fish thank
video to collect physiological baselines.4

Task execution. The participants performed 27 tasks, divided
into three sessions. The tasks are displayed on a 24-inches
monitor connected to a standard desktop computer. Answers
are recorded by pressing the arrow keys (i.e., left arrow to
accept and right arrow to reject). After each session, a 10-
second fixation cross is displayed. Each session is composed
of three unique code comprehension and six unique prose
comprehension tasks randomly displayed for 60 and 30 sec-
onds respectively. The total duration of the experiment for one
participant was 30 minutes.

Post-experimental briefing. The participants can ask ques-
tions and give feedback about the experiment. Finally, they
were rewarded with a voucher for a meal.

Machine Learning settings. We perform the classification
using eight different machine learning algorithms whereas only
one, Gaussian Process Classifier, was used in the original
study. Moreover, we present two different validation settings,
leave-one-run-out cross-validation (LORO-CV, as in the orig-
inal study) and the additional Hold-out validation.

D. Experimental Sample

Our goal is to have a sample size comparable to the original
study. Accordingly, we recruited 32 (28 males, four females)
Bachelors’ students from the Department of Computer Sci-
ence. We applied a quota sampling strategy based on students
expertise, measured through the number of credits obtained in
courses where the C programming language (i.e., the language
used for the code comprehension tasks) was used. At the time
of the experiment, the average GPA (grade point average) of
the students was 3.0 (±0.25).

Outliers and dropouts. Once the experiment was com-
pleted, but before analyzing the data, we discarded two par-
ticipants because they failed to complete more than 30% of
the tasks (e.g., they did not provide an answer within the
time allotted). We interpreted this as a sign of inability or
negligence in carrying out the experimental tasks. Moreover,
due to a technical issue with the devices, we discarded two
more participants. Therefore, we considered a total of 28
participants (24 males, four females) during data analysis.

4Sensors 101 workshop. https://github.com/BioStack/Sensors101

http://developer.neurosky.com/docs/doku.php?id=esenses_tm
https://github.com/BioStack/Sensors101

(a) Example of a code snippet used for the code comprehen-
sion task.

(b) Example of a prose snippet used for the prose comprehen-
sion task (translated from Italian to English).

Fig. 1: Examples of tasks for code and prose comprehension used in this study.

V. MACHINE LEARNING

In this section, we report the machine learning approach
used to classify the comprehension tasks. The machine learn-
ing pipeline implemented in this study is reported in Fig.5.

A. Dataset

Each of the 28 participants performed a total of 27 com-
prehension tasks (i.e., nine code, 18 prose). They had the
possibility of not answering a task question if they did not feel
confident. Therefore, out of the total 756 tasks, we consider the
biometric signals associated with the 695 completed ones—
469 of prose comprehension and 226 of code comprehension.

B. Preprocessing and Features extraction

The biometric signals were recorded during the entire ex-
perimental session for all the participants. However, to address
our research questions, we only consider the signals associated
with the stimuli of interest—i.e., the signals collected between
the time a task appeared on the screen and the time the
participant provided an answer. We did not consider signals
collected when a participant was not focusing on a task—
i.e., when a fixation point was displayed on the screen. To

(a) BrainLink EEG headset.
(b) Empatica E4
wristband.

Fig. 2: Devices used to measure biometric signals in this study.

Fig. 3: A participant wearing the wristband and headband
during the experimental session.

synchronize the measurement of the biometric signals with
the tasks, we applied the following procedure.

1) We registered the timestamp at the start of the experi-
ment (t_start_experiment);

2) We saved the name of the task, its type (code or prose),
and the timestamp of the answer (t_answer);

3) We calculated the timestamp for the start of each task
(t_start) using t_start_experiment and the
duration associated with each type (60 seconds for code
and 30 seconds for prose);

4) From each biometric signal, we selected the samples
recorded between t_start and t_answer.

For each participant, we normalize the signals to her base-
line using Z−score normalization [19]. As it is customary
for this kind of studies [10], the baseline was calculated

considering the last 30 seconds of the fish thank video showed
to the participant during the device calibration.

Finally, to maximize the signal information and reduce noise
caused by movement, we applied multiple filtering techniques,
as reported in Figure 4.

EEG

Band pass filter:
• Delta: 0−4HZ
• Theta: 4−8HZ
• Alpha: 8−12HZ
• Beta: 12−30HZ
• Gamma: >30HZ

EDA
cvxEDA algorithm:
• Tonic component
• Phasic component

BVP Band pass filter: 1−8HZ

Fig. 4: Filtering strategies for the biometric signals (EEG,
EDA, and BVP) collected in this study.

Regarding EEG and BVP, we extract the different frequency
bands using a band−pass filter at different intervals [25].
Concerning EDA, we applied the cvxEDA algorithm [26] to
extract the tonic and the phasic components.

After signals preprocessing, we extracted the feature pre-
sented in Table II. We selected features based on previous
studies [19] in which the same signals were used to train
machine learning classifiers for recognizing affective and
cognitive states of software developers.

In 21 cases, values were missing for HRV features due to
noise in the recorded signals. As suggested in [27], missing
values were replaced with the median of the non-missing
values for that feature, calculated on the other tasks of the
same type performed by the same participant.

C. Classification Settings

We choose eight popular machine learning classifiers
(see Table III) based on previous studies using biometrical
data [19], [28].

In the LORO setting (i.e., the same of the original study),
the evaluation on a test set is repeated for 28 times—i.e., the
number of participants in our dataset. At each iteration, we use
all observations from n-1 participants (i.e., 27) for training the
model and test the performance on the remaining one.

In the Hold-out setting, we assess to what extent the trained
model can generalize task classification on unseen new data
from an hold-out test set not specific to a single participant.
In such a setting, we split the entire dataset into training (20
participants) and test (8 participants) sets. The model is trained
on the entire training set and then evaluated on the held-out
test set. We repeat this process 10 times to further increase
the validity of the results.

In line with previous research [29], [30], in both settings
we performed hyper-parameter tuning using the caret R
package5. Table III reports the parameters we tuned for to each
classifier. For tuning, we followed a GridSearch approach [31]
with tuneLength = 5—i.e., the maximum number of dif-
ferent values to be evaluated for each parameter [32], [33].

We evaluate the models using precision, recall, and F1-score
for which we report values macro-averaged over the evaluation
runs [34]. However, for comparison, we focus on the metric
reported in the original study—i.e., balanced accuracy (BAC).

VI. RESULTS

In this section, we present the results and answer the
research questions.

A. RQClf—Classification of Tasks based on Biometrics

We evaluate whether our models can classify which task a
participant is performing based on signals combinations from
different biometric sensors. In Figure 6a and Figure 6b, we
compare the median BAC obtained on the different combi-
nation of signals by each classifier in the LORO and Hold-
out settings respectively. We did not observe a classifier
which performs better than the others independently from the
considered signal(s). On the other hand, nb and knn classifiers
do not seem appropriate for our classification task.

In Table IV and Table V, for each signal and their combi-
nation, we report the classifier with the highest BAC together
with its precision, recall, and F-measure. In both evaluation
settings, the EEG signal shows the worst performance (BAC
= 66%, 67%). Conversely, Heart is the signal with the highest
performance, yielding a BAC of 87% (90% in the Hold-out
evaluation setting). Moreover, when combined with Hearth,
EEG and EDA performances increase considerably. This sug-
gests that the best and most reliable classification results can
be accomplished solely using the Empatica E4 sensors while
the EEG contribution is negligible.

We answer RQClf as follows.

Physiological signals can be used to train classifiers
which accurately differentiate between code and prose
comprehension tasks. The classifier trained using features
based on Heart signal shows the best results.

B. RQExp—Classification Accuracy and Expertise

We examine the relationship between classifier accuracy
and participant expertise. For each participant, we consider
the classifier with the best BAC among all configurations
of classifiers and signals. We then calculate the association
between BAC and the participant’s GPA using the Kendall
tau correlation coefficient (τ ∈ [−1,−1] with 0 indicating
no association). For statistical testing (α = 0.05), the null
hypothesis assumes no association between the two variables.

5http://topepo.github.io/caret/index.html

TABLE II: Machine learning features grouped by physiological signal.

Signal Features

Brain EEG

• Frequency bin for alpha, beta, gamma, delta and theta waves
• Ratio between frequency bin of each band and one another
• For the attention and meditation measures:

min, max, difference between the mean attention (meditation) during the baseline and during the task

Skin EDA tonic • mean tonic signal

EDA phasic • area under the receiving operator curve (AUC)
• min, max, mean, sum peaks amplitudes

Heart
BVP • min, max, mean, sum peak amplitudes

• difference between the mean peak amplitude during baseline and during the task

HR • difference between the mean heart rate during the baseline and during the task
• difference between the variance heart rate during the baseline and during the task

HRV • standard deviation of beat-to-beat intervals
• root mean square of the successive differences

TABLE III: Machine learning classifiers used in this study and parameters used for tuning (“?” indicates a boolean parameter).

Family Classifier (short name) Parameter Description

Bayesian Naive Bayes (nb)
fL
usekernel?
adjust

Laplace correction factor
Use kernel density estimate
Bandwidth adjustment

Nearest Neighbor K-Nearest Neighbor (knn) k #Clusters

Decision Trees C4.5-like trees (J48) C Confidence factor for pruning

Support Vector Machines SVM with Linear Kernel (svmLinear) C Cost penalty factor

Neural Networks Multi-layer Perceptron (mlp) size #Hidden units

Rule-based Repeated Incremental Pruning to Produce Error Reduction (Jrip) NumOpt #Optimizations iterations

Bagging Random Forest (randomforest) mtry #Predictors sampled

Boosting C5.0
trials
model
winnow?

Boosting iterations
Decision Trees or rule-based
Apply predictor feature selection

Fig. 5: Machine learning pipeline implemented in this study. The evaluation settings include LORO and Hold-out cross-
validation.

(a) Median BAC of the machine learning classifiers after LORO cross-validation. Results are grouped according to different
signal configurations.

(b) Median BAC of the machine learning classifiers after Hold-out cross-validation. Results are grouped according to different
signal configurations.

Fig. 6: Median BAC of the machine learning classifiers evaluated in this study. Results are grouped according to different
signal configurations.

TABLE IV: Results of the best machine learning classifier
evaluated using LORO cross-validation.

Signal
Best

Classifier Precision Recall F1 BAC

EEG mlp 0.72 0.66 0.62 0.66
EDA rf 0.78 0.71 0.71 0.71
Heart mlp 0.91 0.87 0.87 0.87
EEG + EDA C5.0 0.75 0.72 0.72 0.72
EEG + Heart Jrip 0.90 0.86 0.87 0.86
EDA + Heart mlp 0.91 0.83 0.86 0.83
EEG + EDA + Heart Jrip 0.88 0.86 0.86 0.86

TABLE V: Results of the best machine learning classifier
evaluated using Hold-out cross-validation.

Signal
Best

Classifier Precision Recall F1 BAC

EEG rf 0.70 0.67 0.68 0.67
EDA Knn 0.83 0.74 0.77 0.74
Heart mlp 0.95 0.90 0.92 0.90
EEG + EDA mlp 0.75 0.75 0.75 0.75
EEG + Heart C5.0 0.90 0.89 0.90 0.89
EDA + Heart svm 0.93 0.87 0.89 0.87
EEG + EDA + Heart C5.0 0.92 0.89 0.90 0.89

There is a positive, although small, correlation between the
classifier accuracy and the participants’ expertise (τ = 0.16),
as shown in Fig. 7. However, we failed to reject the null
hypothesis (p = 0.31). We answer RQExp as follows.

Fig. 7: Scatterplot of classifiers BAC and participants’ GPA.
The regression line indicates a non-significant relationship.

Expertise is not related to the accuracy of classifiers
trained using biometrical signals.

C. Comparison with results of the original study

RQClf replicates the results of RQ1 from the original study.
For comparison, we contrast our settings (code comprehension
vs. prose comprehension) with the ones reported in the original
study (code comprehension vs. prose review). We consider the
best configuration of classifier and signal—i.e., mlp and Heart.
Table VI reports the best classifier BAC for both classes.

TABLE VI: Result comparison between the original study
and this replication. For RQClf , best BAC results for LORO
(Hold-out) validation are reported.

RQ
(original study)

Original
Study

This
replication Replicated?

RQClf

(RQ1)

Overall 0.79 0.87 (0.90) Yes,
with improvementsCode 0.72 0.80 (0.81)

Prose 0.95 0.99 (0.99)

RQExp

(RQ3)
r = -0.44
(p = 0.01)

τ = 0.16
(p = 0.31) No

In both studies, prose-related tasks are better identified
than code-related ones and with high accuracy—95% in the
original study and 99% in the replication. Our approach
improves by 8% (9% if considering the Hold-out evaluation
setting) the original study accuracy when classifying the same
code comprehension tasks. Finally, the overall results show
an improvement of 8% (11% if considering the Hold-out
evaluation setting) obtained by using lightweight biometric
sensors rather than fMRI.

We did not replicate RQExp—i.e., RQ3 in the original
study (see Table VI). The original study reported a nega-
tive correlation coefficient (Pearson r = -0.44, p = 0.016)
between classifier accuracy and expertise. The inverse rela-
tionship between accuracy and expertise suggests that neural
representations of code and prose are harder to differentiate
once coding skills increase (and viceversa). Given the non-
significant and small correlation coefficient reported in this
study, a similar relationship between expertise and heart-
related signals is not apparent. We believe that the reason
for this result is the limited variation of experience within
our sample. Compared to the original study (i.e., a mix of
graduate and undergraduate students from different schools),
our sample is more homogeneous (i.e., undergraduate students
from a single school) which can be reflected in their expertise.

VII. DISCUSSION

In this section, we discuss the limitations of our study, the
current state of knowledge based on this and the original study
results, and consider implications for practice and research.

A. Threats to Validity

Threats to the external validity of our replication are as-
sociated with the representativeness of the tasks. For code
comprehension, we used the same tasks of the original study
which, although targeting only the C language, were sampled
from real-world projects. For prose comprehension, we use
standardized text from the Italian Ministry of Education.

Our study suffers from threats to construct validity—i.e.,
the reliability of are our measures in capturing code and prose
comprehension. For the former, we use the same questions
as in the original study [7], which are also utilized in previ-
ous work (e.g., [35]). For the latter, we use examples from
cognitive linguistic studies [36], [37]. The complex biometric
signals needed to be filtered before the analysis. To that end,
we followed state-of-the-art practices from signal processing.
As in the original study, the expertise construct is measured
through a proxy—i.e., GPA. Although we acknowledge that
software development expertise is difficult to measure, GPA
correlates with learning and academic skills [38], and was
measured taking into only courses focusing on the program-
ming language used during the experiment.

When assessing the impact of expertise on classifiers per-
formance, we did not observe a significant correlation. We
cannot exclude that such result is due to the homogeneity of
our sample which includes only undergraduate students; thus,
representing a potential threat to internal validity.

The validity of our conclusions is based on the robustness
of the machine learning models and null-hypothesis statistical
test used to answer the research questions. Regarding machine
learning, we mitigated such threat by i) running several
algorithms addressing the same classification task, ii) applying
hyper-parameters tuning to optimally solve the task, and iii)
reporting results from two different evaluation settings—i.e.,
LORO and Hold-out. Regarding hypothesis testing, we rely
on robust, non-parametric statistics [39] for which the effect
size (i.e., Kendall τ) can be interpreted similarly to the one
reported in the original study (i.e., Pearson r).

B. Drawing Conclusion Across Studies

In this study, we strengthen the original study conclusion
that different comprehension tasks can be recognized using
biometric-based signals as a proxy for cognitive effort. In par-
ticular, we explicitly compare code comprehension and prose
comprehension—strengthening the construct validity of the
original study—while demonstrating an affordable approach
in real-world settings by using lightweight sensors. Our setup
costs less than $2,000 as opposed to the $21,000 reported
in the original study. Considering performance on individual
tasks, we show that prose comprehension can be more ac-
curately (and in almost every case is) recognized compared
to code comprehension. Our best overall accuracy (BAC =
90%) and the improvement over the original study (∆BAC =
8%, approx. $2,400 saved for each percentage point gained
in performance) is ground for further evaluation in in-vivo
settings—e.g., integration with development environments.

Implications for Practice. Our results provide opportunities
for improving software engineering tools. By means of a
relatively cheap wristband (approx. $1,500), the development
environment can become aware of the comprehension task
in which a developer is engaged and optimize support for
such a task. For example, knowing when developers are
comprehending source code—a more demanding task than
prose comprehension [10]—can be leveraged to better measure

their interruptibility [9] and adjust their environment (e.g., by
temporarily disabling notifications).

Using our approach, developers can collect interesting met-
rics from a Personal Software Process perspective [40], such
as time spent comprehending source code vs. time spent
understanding requirement specifications or documentation.
Developers can leverage these metrics to improve their pro-
ductivity, effort estimation, and planning skills.

Furthermore, a developer engaged for too long in compre-
hending a specification or a piece of code can indicate quality
issues related to complexity [41]. In the future, the integration
of our approach with eye-tracking will allow us to identify
the specific focus of a developer [42], [43] and recommend
documentation to support her information needs [44], [8].

Implications for Research. Although previous studies have
tackled the use of lightweight biometrics in software engineer-
ing, this study is one of the first to explicitly deal with code
comprehension.

Currently, researchers study comprehension strategies (e.g.,
bottom-up vs. top-down) by relying on developers’ assessment
(e.g., subjective rating [45] or think aloud protocols [46]) or
more invasive methods (e.g., fMRI [6]). The ability to automat-
ically recognize code comprehension tasks using physiologi-
cal signals enables less invasive research on comprehension
strategies. Code comprehension is the basis for several other
software development tasks [7]. Our approach can be used to
study the “weight” that comprehension has for tasks such as
refactoring [47] and code reviews [48] in an unobtrusive (and
cheaper) way.

Cognitive activities are related to task difficulty. As shown in
the original study [7], understanding code is more difficult than
comprehending text. Our study confirms previous work results
which showed that it is possible to classify task difficulty using
lightweight biometric sensors [10].

We showed that an EEG headset equipped with one elec-
trode is not sufficient to recognize the task a participant is
performing. Therefore, we suggest to researchers interested in
the same goal of this study, but focusing on the investigation of
neural activity measured unobtrusively through EEG, to invest
in devices with higher definition (e.g., 14 or 32 channels).

Furthermore, researchers can replicate our setup using de-
vices available at retail shops and standard data analysis tools.

VIII. CONCLUSION AND FUTURE WORK

This paper presents the replication of a previous study aimed
at i) automatically classifying which kind of comprehension
task (prose or code) a developer is performing and ii) studying
the correlation between classifier accuracy and expertise.

In the original study, the authors explored the use of fMRI
finding that it is possible to classify which task a participant
is undertaking based on brain activity. However, collecting
fMRI signals is expensive and can be applied only for in-
vitro studies. Therefore, we investigated whether fMRI could
be replaced by lightweight devices, which previous research
used to investigate cognitive effort in software development.
We found that an off-the-shelf EEG headset is not suitable

to achieve our goal with high performance. Conversely, the
heart activity, captured using a wristband, can be used to
distinguish between code and prose comprehension tasks with
high accuracy. The original study also showed that, when
considering expert developers, the two tasks are harder to
distinguish at neural level. We were not able to replicate this
result using biometric signals in our homogeneous sample
composed of undergraduate students. Further replications, in-
volving a more heterogeneous sample, are required to further
investigate the association between participants’ expertise and
the performance of the task classifiers.

Our future work consists in investigating software develop-
ment expertise from a physiological perspective. Furthermore,
we want to assess an additional task in which code and prose
are mixed such as technical documentation, programming
tutorials, and StackOverflow posts.

REFERENCES

[1] M. Ciolkowski, O. Laitenberger, and S. Biffl, “Software Reviews: The
State of the Practice,” IEEE software, no. 6, pp. 46–51, 2003.

[2] F. Lanubile, T. Mallardo, F. Calefato, C. Denger, and M. Ciolkowski,
“Assessing the Impact of Active Guidance for Defect Detection: A
Replicated Experiment,” in null. IEEE, 2004, pp. 269–279.

[3] D. Rombach, M. Ciolkowski, R. Jeffery, O. Laitenberger, F. McGarry,
and F. Shull, “Impact of Research on Practice in the Field of Inspections,
Reviews and Walkthroughs: Learning from Successful Industrial Uses,”
ACM SIGSOFT Software Engineering Notes, vol. 33, no. 6, pp. 26–35,
2008.

[4] K. Nishizono, S. Morisakl, R. Vivanco, and K. Matsumoto, “Source
Code Comprehension Strategies and Metrics to Predict Comprehension
Effort in Software Maintenance and Evolution Tasks-An Empirical Study
with Industry Practitioners,” in Software Maintenance (ICSM), 2011 27th
IEEE International Conference on. IEEE, 2011, pp. 473–481.

[5] A. Armaly, P. Rodeghero, and C. McMillan, “AudioHighlight: Code
Skimming for Blind Programmers,” in 2018 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME). IEEE, 2018,
pp. 206–216.

[6] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich,
G. Saake, and A. Brechmann, “Understanding Understanding Source
Code with Functional Magnetic Resonance Imaging,” in Proceedings
of the 36th International Conference on Software Engineering. ACM,
2014, pp. 378–389.

[7] B. Floyd, T. Santander, and W. Weimer, “Decoding the Representation
of Code in the Brain: An fMRI Study of Code Review and Expertise,”
in Proceedings of the 39th International Conference on Software Engi-
neering. IEEE Press, 2017, pp. 175–186.

[8] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion in Code
Reviews: Reasons, Impacts, and Coping Strategies,” in Proceedings
of 26th International Conference on Software Analysis, Evolution and
Reengineering SANER 2019. IEEE Press, 2019, pp. 49–60.

[9] M. Züger, C. Corley, A. N. Meyer, B. Li, T. Fritz, D. Shepherd, V. Au-
gustine, P. Francis, N. Kraft, and W. Snipes, “Reducing Interruptions at
Work: A Large-scale Field Study of FlowLight,” in Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems. ACM,
2017, pp. 61–72.

[10] T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, and M. Züger, “Using
Psycho-physiological Measures to Assess Task Difficulty in Software
Development,” in Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014, pp. 402–413.

[11] S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The Effect of
Poor Source Code Lexicon and Readability on Developers’ Cognitive
Load,” in Proc. Int’l Conf. Program Comprehension (ICPC), 2018.

[12] D. W. Rowe, J. Sibert, and D. Irwin, “Heart Rate Variability: Indicator of
User State as an Aid to Human-computer Interaction,” in Proceedings of
the SIGCHI conference on Human factors in computing systems. ACM
Press/Addison-Wesley Publishing Co., 1998, pp. 480–487.

[13] M. Gjoreski, M. Luštrek, and V. Pejović, “My Watch Says I’m Busy:
Inferring Cognitive Load with Low-Cost Wearables,” in Proceedings of
the 2018 ACM International Joint Conference and 2018 International

Symposium on Pervasive and Ubiquitous Computing and Wearable
Computers. ACM, 2018, pp. 1234–1240.

[14] J. C. Carver, “Towards Reporting Guidelines for Experimental Repli-
cations: A Proposal,” in 1st International Workshop on Replication in
Empirical Software Engineering Research, 2010.

[15] M. T. Baldassarre, J. Carver, O. Dieste, and N. Juristo, “Replication
Types: Towards a Shared Taxonomy,” in Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering. ACM, 2014, p. 18.

[16] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The Role of
Replications in Empirical Software Engineering,” Empirical software
engineering, vol. 13, no. 2, pp. 211–218, 2008.

[17] N. Peitek, J. Siegmund, S. Apel, C. Kästner, C. Parnin, A. Bethmann,
T. Leich, G. Saake, and A. Brechmann, “A Look into Programmers’
Heads,” IEEE Transactions on Software Engineering, 2018.

[18] S. Radevski, H. Hata, and K. Matsumoto, “Real-time Monitoring of
Neural State in Assessing and Improving Software Developers’ Pro-
ductivity,” in Proceedings of the Eighth International Workshop on
Cooperative and Human Aspects of Software Engineering. IEEE Press,
2015, pp. 93–96.

[19] S. Müller and T. Fritz, “Stuck and Frustrated or in Flow and Happy:
Sensing Developers’ Emotions and Progress,” in Software Engineering
(ICSE), 2015 IEEE/ACM 37th IEEE International Conference on, vol. 1.
IEEE, 2015, pp. 688–699.

[20] C. Parnin, “Subvocalization-Toward Hearing the Inner Thoughts of
Developers,” in Program Comprehension (ICPC), 2011 IEEE 19th
International Conference on. IEEE, 2011, pp. 197–200.

[21] S. Müller and T. Fritz, “Using (bio) Metrics to Predict Code Quality On-
line,” in Proceedings of the 38th International Conference on Software
Engineering. ACM, 2016, pp. 452–463.

[22] Y. Ikutani and H. Uwano, “Brain Activity Measurement During Program
Comprehension with NIRS,” in Software Engineering, Artificial Intelli-
gence, Networking and Parallel/Distributed Computing (SNPD), 2014
15th IEEE/ACIS International Conference on. IEEE, 2014, pp. 1–6.

[23] N. Peitek, J. Siegmund, C. Parnin, S. Apel, J. Hofmeister, and A. Brech-
mann, “Simultaneous Measurement of Program Comprehension with
fMRI and Eye Tracking: A Case Study,” in Proc. Intl Symposium
Empirical Software Engineering and Measurement (ESEM). ACM,
2018.

[24] J. J. Braithwaite, D. G. Watson, R. Jones, and M. Rowe, “A Guide
for Analysing Electrodermal Activity (EDA) & Skin Conductance
Responses (SCRs) for Psychological Experiments,” Psychophysiology,
vol. 49, no. 1, pp. 1017–1034, 2013.

[25] F. Canento, A.Fred, H. Silva, H. Gamboa, and A. Loureno, “Multimodal
biosignal sensor data handling for emotion recognition,” in SENSORS,
2011 IEEE, 2011, pp. 647–650.

[26] A. Greco, G. Valenza, A. Lanata, E. P. Scilingo, and L. Citi, “cvxEDA: A
Convex Optimization Approach to Electrodermal Activity Processing,”
IEEE Transactions on Biomedical Engineering, vol. 63, no. 4, pp. 797–
804, 2016.

[27] H. Trevor, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer,
2009.

[28] S. Koelstra, C. Mühl, M. Soleymani, J.-S. Lee, A. Yazdani, T. Ebrahimi,
T. Pun, A. Nijholt, and I. Yiannis) Patras, “Deap: A database for emotion
analysis using physiological signals,” IEEE Transactions on Affective
Computing, vol. 3, pp. 18–31, 12 2011.

[29] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
“Automated parameter optimization of classification techniques for
defect prediction models,” in 2016 IEEE/ACM 38th International Con-
ference on Software Engineering (ICSE). IEEE, 2016, pp. 321–332.

[30] ——, “The impact of automated parameter optimization on defect
prediction models,” IEEE Transactions on Software Engineering, 2018.

[31] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for Hyper-parameter Optimization,” in Advances in neural information
processing systems, 2011, pp. 2546–2554.

[32] M. Kuhn, “Building Predictive Models in R Using the caret Package,”
Journal of Statistical Software, Articles, vol. 28, no. 5, pp. 1–26, 2008.

[33] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
“An Empirical Comparison of Model Validation Techniques for De-
fect Prediction Models,” IEEE Transactions on Software Engineering,
vol. 43, no. 1, pp. 1–18, 2017.

[34] F. Sebastiani, “Machine learning in automated text categorization,” ACM
Comput. Surv., vol. 34, no. 1, pp. 1–47, Mar. 2002.

[35] J. Sillito, G. C. Murphy, and K. De Volder, “Questions Programmers
ask During Software Evolution Tasks,” in Proceedings of the 14th
ACM SIGSOFT international symposium on Foundations of software
engineering. ACM, 2006, pp. 23–34.

[36] J. Hatcher, M. J. Snowling, and Y. M. Griffiths, “Cognitive Assessment
of Dyslexic Students in Higher Education,” British journal of educa-
tional psychology, vol. 72, no. 1, pp. 119–133, 2002.

[37] E. Macaro, “Strategies for Language Learning and For Language Use:
Revising the Theoretical Framework,” The Modern Language Journal,
vol. 90, no. 3, pp. 320–337, 2006.

[38] W. A. Grove, T. Wasserman, and A. Grodner, “Choosing a Proxy for
Academic Aptitude,” The Journal of Economic Education, vol. 37, no. 2,
pp. 131–147, 2006.

[39] G. E. Noether, “Why Kendall Tau?” Teaching Statistics, vol. 3, no. 2,
pp. 41–43, 1981.

[40] W. S. Humphrey, “Personal Software Process (PSP),” Encyclopedia of
Software Engineering, 2002.

[41] X. Yang, R. G. Kula, N. Yoshida, and H. Iida, “Mining the Modern
Code Review Repositories: A Dataset of People, Process and Product,”
in Proceedings of the 13th International Conference on Mining Software
Repositories. ACM, 2016, pp. 460–463.

[42] K. Kevic, B. Walters, T. Shaffer, B. Sharif, D. C. Shepherd, and T. Fritz,
“Eye Gaze and Interaction Contexts for Change Tasks-Observations and

Potential,” Journal of Systems and Software, vol. 128, pp. 252–266,
2017.

[43] B. Sharif, T. Shaffer, J. Wise, and J. I. Maletic, “Tracking Developers’
Eyes in the IDE,” IEEE Software, vol. 33, no. 3, pp. 105–108, 2016.

[44] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro,
N. Ernst, M. A. Gerosa, M. Godfrey, M. Lanza, and M. Linares-Vásquez,
“On-demand Developer Documentation,” in Software Maintenance and
Evolution (ICSME), 2017 IEEE International Conference on. IEEE,
2017, pp. 479–483.

[45] A. Dunsmore and M. Roper, “A Comparative Evaluation of Program
Comprehension Measures,” The Journal of Systems and Software,
vol. 52, no. 3, pp. 121–129, 2000.

[46] T. M. Shaft and I. Vessey, “The Relevance of Application Domain
Knowledge: The Case of Computer Program Comprehension,” Infor-
mation systems research, vol. 6, no. 3, pp. 286–299, 1995.

[47] J. Feigenspan, M. Schulze, M. Papendieck, C. Kästner, R. Dachselt,
V. Köppen, M. Frisch, and G. Saake, “Supporting Program Comprehen-
sion in Large Preprocessor-based Software Product Lines,” IET software,
vol. 6, no. 6, pp. 488–501, 2012.

[48] A. Van Deursen, “Program Comprehension Risks and Opportunities in
Extreme Programming,” in Reverse Engineering, 2001. Proceedings.
Eighth Working Conference on. IEEE, 2001, pp. 176–185.

