
A Multi-Modal Transformer-based Code
Summarization Approach for Smart Contracts

Zhen Yang†, Jacky Keung†, Xiao Yu‡∗, Xiaodong Gu§, Zhengyuan Wei†,
Xiaoxue Ma†, and Miao Zhang†

†Department of Computer Science, City University of Hong Kong, Hong Kong, China,
{zhyang8-c, zywei4-c, xiaoxuema3-c, miazhang9-c}@my.cityu.edu.hk, Jacky.Keung@cityu.edu.hk

‡ School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China, xiaoyu@whut.edu.cn
§School of Software, Shanghai Jiao Tong University, Shanghai, China, xiaodong.gu@sjtu.edu.cn

Abstract—Code comment has been an important part of
computer programs, greatly facilitating the understanding and
maintenance of source code. However, high-quality code com-
ments are often unavailable in smart contracts, the increasingly
popular programs that run on the blockchain. In this paper,
we propose a Multi-Modal Transformer-based (MMTrans) code
summarization approach for smart contracts. Specifically, the
MMTrans learns the representation of source code from the two
heterogeneous modalities of the Abstract Syntax Tree (AST), i.e.,
Structure-based Traversal (SBT) sequences and graphs. The SBT
sequence provides the global semantic information of AST, while
the graph convolution focuses on the local details. The MMTrans
uses two encoders to extract both global and local semantic
information from the two modalities respectively, and then uses
a joint decoder to generate code comments. Both the encoders
and the decoder employ the multi-head attention structure of
the Transformer to enhance the ability to capture the long-range
dependencies between code tokens. We build a dataset with over
300K <method, comment> pairs of smart contracts, and evaluate
the MMTrans on it. The experimental results demonstrate that
the MMTrans outperforms the state-of-the-art baselines in terms
of four evaluation metrics by a substantial margin, and can
generate higher quality comments.

Index Terms—Smart Contracts, Code Summarization, Trans-
former, Graph Convolution, Structure-based Traversal

I. INTRODUCTION

Automatic code summarization, which generates a brief
natural language description for source code, can greatly fa-
cilitate programmers in code comprehension and maintenance.
Many approaches have been proposed to generate comments
for some common programming languages, such as Java
and Python. In recent years, smart contracts, as programs
automatically running on the blockchain [1]–[3], have been
applied in various business areas to enable more efficient and
trustable transactions [4], [5]. More and more developers also
devote themselves to the development of smart contracts, and
contribute their code to various smart contract communities
(e.g., Etherscan.io [6]).

However, as an increasingly universal and vital field, auto-
matic code summarization for smart contracts has not gained
much attention yet. This may cause a few vital issues: (1)
We have observed that most of smart contract comments are

*Corresponding author.

unavailable, thus resulting in great difficulties in comprehend-
ing and learning code between developers. (2) Code clone and
duplicates in smart contracts is a more common phenomenon
than other softwares [4], [7]. He et al. [8] found that about
10% of the vulnerabilities were introduced by code clone, and
the misuse of uncommented code is a principal reason. To this
end, it is necessary to automatically generate high-quality code
comments for smart contracts. The challenges of automatic
code summariztion usually include:

(1) How to extract the semantic information of source
code.

Early researchers, such as Iyer et al. [9] and Loyola et al.
[10], used the plain source code as the input of the code sum-
marization model, which ignored the structural information of
source code. Therefore, most recent works firstly parsed source
code to the Abstract Syntax Tree (AST), and then extracted
the semantic information of code from AST. For example, Hu
et al. [11] firstly traversed the AST by the (Structure-based
Traversal) SBT method to obtain the SBT sequences, then
used the plain source code and the SBT sequences as inputs
to learn the semantic information of source code. LeClair et
al. [12] regarded the AST as a graph, and used the Graph
Neural Network (GNN)-based encoder to model the AST,
combined with the RNN-based encoder to model the plain
source code. However, ASTs can be represented as multiple
modalities, such as SBT sequences and graphs, each focusing
on a distinct aspect of the semantic information. Therefore, it
is not comprehensive to use a single AST modality to represent
the semantic information of code.

(2) How to capture the long-range dependencies between
code tokens.

The source code of smart contract methods can be very long.
In our experiment dataset, smart contract methods contain
58.72 code tokens on average, and the longest one contains
3,272 code tokens. Previous works often applied the Recurrent
Neural Network (RNN), Long Short Term Memory (LSTM),
or Gated Recurrent Unit (GRU) models to extract features
from their inputs, which have shown to be difficult to capture
the long-range dependencies between code tokens [13], [14].

In order to address the above challenges, in this paper,
we propose a Multi-Modal Transformer-based (MMTrans)
code summarization approach for smart contracts. Firstly, the

ar
X

iv
:2

10
3.

07
16

4v
1

 [
cs

.S
E

]
 1

2
M

ar
 2

02
1

MMTrans learns the semantic information of source code
from the two modalities of the AST, i.e., the SBT sequence
and the graph. Specifically, the SBT sequence is globally
parsed from the AST using the SBT method, which involves
the global semantic information of source code. Meanwhile,
MMTrans regards the AST as a graph, and employs the Graph
Convolutional Neural Network (GCN) to learn representations
of nodes based on their neighboring nodes, thus obtaining the
local semantic information of source code. Then, the MMTrans
uses a dual-encoder architecture: a SBT encoder for encoding
SBT sequences to extract the global semantic information,
and a graph encoder for encoding graphs to extract the local
semantic information. Finally, the MMTrans uses a joint de-
coder to decode the outputs of the two encoders and previous
generated words to produce the each time step’s prediction. In
addition, both the encoders and the decoder employ the multi-
head attention structure of the Transformer to reinforce the
capability of capturing the long-range dependencies between
code tokens.

To evaluate the MMTrans, we carefully collect 347,410
<method, comment> pairs from 40,932 smart contracts on
Etherscan.io [6], one of the most popular and active smart
contract communities. We extensively assess the performance
of the MMTrans against the three recently proposed ap-
proaches (i.e., Hybrid-DeepCom [11], code+gnn+GRU [12]
, and Vanilla-Transformer [14]) on the dataset in terms
of sentence-level BLEU (S-BLEU), corpus-level BLEU (C-
BLEU), ROUGE-LCS F1 and METEOR. The experimental
results show that the MMTrans performs better than the
baselines by 17.23%-58.45% in terms of S-BLEU, by 20.74%-
62.49% in terms of C-BLEU, by 6.78%-55.60% in terms of
ROUGE-LCS F1, and by 10.17%-45.50% in terms of ME-
TEOR. We further conduct two groups of ablation experiments
to explore the strength of MMTrans. Both the quantitative and
instance analysis demonstrate that the MMTrans can generate
higher-quality comments for smart contracts.

The main contributions of this paper can be summarized as
follows:

• We propose a novel Multi-Modal Transformer-based
(MMTrans) code summarization approach for smart con-
tracts, which can extract both the global and local se-
mantic information of code, and capture the long-range
dependencies between code tokens to generate higher-
quality comments.

• We build a dataset with totally 347,410 <method,
comment> pairs for the field of smart contract code
summarization. To the best of our knowledge, it is the
first large-scale dataset for this task.

• We open source our replication package, including the
dataset [15] and the source code [16] of the MMTrans
for follow-up works.

The remainder of this paper is organized as follows. Section
II presents the related work and background. Section III and
Section IV elaborate on the proposed approach and data
preparation. Section V and Section VI discuss the experiment

design and results. Section VII demonstrates the threats to
validity. Finally, Section VIII concludes the work of this paper.

II. RELATED WORK AND BACKGROUND

A. Code Summarization

Automatic code summarization approaches can be divided
into two main categories, i.e., heuristic/template-driven ap-
proaches and AI/data-driven approaches [17]. Haiduc et al.
[18], [19] for the first time coined the term “source code sum-
marization”, and proposed a heuristic-based approach, which
applied text retrieval techniques to select some important
keywords as the generated code comments. Following Haiduc
et al.’s works, many researchers [19]–[26] proposed to design a
set of heuristic rules or create some manually-crafted templates
to generate code comments.

Due to the rapid development of deep learning technology,
the recently proposed code summarization approaches are al-
most AI/data-driven approaches. Iyer et al. [9] for the first time
proposed an AI/data-driven code summarization approach,
which used the LSTM networks with attention to generate
descriptions for C# code snippets and SQL queries. The
subsequent works [10]–[12], [17], [27]–[34] almost adopted
the Sequence-to-Sequence (Seq2Seq) model with attention
mechanism. The major difference of the approaches are the
input to the Seq2Seq model. For example, Loyola et al. [10]
input the plain source code into the Seq2Seq model, Lu et
al. [27] used the API sequences as the input, and Fernandes
et al. [32] used the graph representations of source code as
the input. In addition, in order to extract more information
from the source code, Hu et al. [11], [35] and LeClair et al.
[12], [17] proposed some multi-input Seq2Seq models. For
example, Hu et al. [11] input the plain source code and the
SBT sequences to the Seq2Seq model, in order to learn both
the lexical and structural information from the source code
and the AST. LeClair et al. [12] used the graph representation
of the AST and plain source code as the inputs. However, it is
not comprehensive that these works [11], [12], [29] used single
AST modality to represent the semantic information of code.
In addition, the proposed Seq2Seq models [9]–[12], [17], [27]–
[33] mainly applied RNN, LSTM, or GRU to extract the code
feature, which may fail to capture the long-range dependencies
between code tokens. Therefore, Ahmad et al. [14] empirically
investigated the advantage of using the Transformer model
for the source code summarization task. However, they only
adopted the plain source code as the single input, thus ignoring
the structure information of source code.

B. Structure-based Traversal

Hu et al. [29] proposed the Structure-based Traversal (SBT)
method, which converts the ASTs into specially formatted
sequences by globally traversing the ASTs. Specifically, it
applies the “type” and “value” of nodes to represent the
structural and lexical information of code, respectively, and
adopts a series of brackets to keep the AST structure to
ensure the generated sequence is recoverable to the original
AST. The SBT method was applied in some previous code

summarization models, such as ast-attendgru [17], Dual Model
[36], and Hybrid-DeepCom [11], and was proved its powerful
ability in preserving code structural and lexical information.
Therefore, we regard the SBT sequence as the one modality
of AST, and adopt the SBT method to represent the global
semantic (i.e., both structural and lexical) information as an
input of the MMTrans. Taking the smart contract snippet in the
Figure 1 as an example, the method named tokensToSell is
firstly transformed to its AST format, and then the SBT se-
quence is further extracted from the AST. The non-leaf nodes
are represented by their “type” (such as “FunctionDefinition”
and “Block” in bold). For leaf nodes, they are represented
by the format of “type value” (such as “Visibility private”,
etc.) in the original paper [29]. However, in our experiment,
based on the original SBT sequences, we split the “type”
and “value” for leaf nodes, and further split the camelCase
and snake case tokens of leaf nodes’ “values” (such as from
“ tokensToSell” to “ tokens”, “To”, and “Sell” in italic) to
reduce the Out-of-Vocabulary (OOV) tokens, the detailed data
processing methods are elaborated in Section IV-A.

C. Graph Convolutional Neural Network

The Graph Convolutional Neural Network (GCN) is de-
signed for information propagation along the edges between
nodes, where the hop, representing the layers of GCN, is
a critical hyper-parameter. With the hop increasing, each
node can aggregate a larger range of information from its
neighbors, thereby focusing on a wider scope of local semantic
information. Since the node embeddings in GCN includes
both the “type” and “value” in ASTs, the GCN implies both
the lexical and structural semantics of the AST integrated
along the edges. Previous code summarization works, such as
graph2seq [37] and code+gnn+GRU [12], also have proved the
strength of GCN on locally distilling the semantic information
from the AST and achieved promising results. Therefore, we
regard the graph as another modality of AST, and adopt
it as a parallel input of the MMTrans relative to the SBT
sequences. The AST (graph) in Figure 1 is an example
generated from the method named tokensToSell, and shows
the hop of 1,2 and 3 of the root node (i.e., “FunctionDefini-
tion”). Intuitively, it can aggregate the information from its
neighbors of “SimpleName”, “Visibility”, “ReturnParameters”
and “Block” by the convolution of the first hop; and it can
also indirectly aggregate the more extensive information from
its children nodes’ neighbors by increasing the hop number.
More formally, the graph convolution process can be defined
by the following layer-wise propagation rule:

H(l+1) = σ(ÃH(l)W (l)), (1)

where the H l is the nodes embedding matrix at the layer l, the
Ã = A+ IN is the adjacency matrix A of a particular graph
with added self-connection, IN is the identity matrix, W l is a
layer-specific trainable weight matrix, and σ is the activation
function [38].

D. Transformer-related Structures

1) Positional Encoding: Since the multi-head attention is
not the recurrent structure, it needs the positional encoding to
inject order information into the token embedding vectors. In
this work, we follow one of the positional encoding approaches
proposed by Vaswani et al. [13], which defines the specific
pattern that model learns. This kind of positional encoding
rule can be defined by the equations 2 and 3, where pos is the
token position in a sequence, i is the dimension index, and d
is total dimension of the token embedding vector.

PE(pos,2i) = sin(pos/100002i/d) (2)

PE(pos,2i+1) = cos(pos/100002i/d) (3)

2) Multi-head Attention: In order to pay attention from dif-
ferent perspectives and capture the long-range dependencies in
sequences, Vaswani et al. [13] also introduced the multi-head
attention mechanism. The details are given by the following
equations:

q1, ..., qJ = split(QWQ) (4)

k1, ..., kJ = split(KWK) (5)

v1, ..., vJ = split(VWV) (6)

headj = Softmax(
qjk

T
j√
dk

)vj , j = 1, ..., J (7)

MultiHead(Q,K, V) = Concat(head1, ..., headJ)W
o (8)

Here, the Q ∈ RQl×Qd , K ∈ RKl×Kd and V ∈ RKl×Vd

represent the matrices of query, key and value, respectively,
while qj ∈ RQl×qd , kj ∈ RKl×kd , vj ∈ RKl×vd represent
their splitted matrices for headj . Specifically, qd = kd =
vd = dmodel/J . The WQ ∈ RQd×dmodel , WK ∈ RKd×dmodel ,
WV ∈ RVd×dmodel are the three trainable weight matrices.
The equation 7 describes the Scaled Dot-Product Attention
output of headj , where the dk is the scaling factor equals
to kd. Finally, after the concatenating from all heads and the
linear transformation with W o ∈ RJvd×dmodel , we obtain the
output of the multi-head attention in equation 8 [13].

3) Point-Wise Feed-Forward Networks: This is another
module of Transformer that applied in [13]. It is composed
of two dense layers with a ReLU activation function in
between, which can be defined by the equation 9, where W1

and W2 are the weight matrices of each layer, b1 and b2
are their corresponding bias, and x is the input matrix. The
dimensionality of the inner-layer dff is a hyper-parameter in
[13].

FFN(x) = max(0, xW1 + b1)W2 + b2 (9)

III. APPROACH

The whole framework of the MMTrans illustrated in Figure
2 includes the three stages: the data processing, the MM-
Trans training, and the MMTrans testing. The source code
we obtained from the Etherscan.io is parsed and processed
into a parallel corpus of smart contract methods and their

Fig. 1. The AST (Graph) and SBT Sequence of the Smart Contract Method named tokensToSell

Fig. 2. The Overall Framework of MMTrans

corresponding comments. To comprehensively learn the se-
mantic information of source code, we transform the smart
contract methods to graphs (i.e., ASTs) and SBT sequences,
respectively, as the inputs of the MMTrans. The MMTrans
consists of the two encoders (i.e., the graph encoder and SBT
encoder) and a joint decoder. The node sequences and edges
(i.e., their corresponding adjacency matrices) of graphs are fed
into the graph encoder to learn the local semantic information,
while the SBT sequences are fed into the SBT encoder to
learn the global semantic information. Subsequently, in the
training stage, the joint decoder integrates comment sequences,

the graph encoder outputs, and the SBT encoder outputs
to produce a batch of sentences under the teacher forcing
method. Finally, the back-propagation is executed based on
the predefined loss function to optimize the whole network.
However, in the testing stage, the joint decoder integrates the
previously generated comment words, and above two encoder
outputs to predict one word at each time step. It is noticeable
that we do not include plain source code as one part of
inputs for the MMTrans to learn the lexical information of
source code, because each of the modality of AST we adopt
already contains both the lexical and structural information, as

Fig. 3. (Self) Multi-head Attention Module

mentioned in II-B and II-C.

A. Graph Encoder

Initially, for a batch of node sequences X ∈ RNbatch×l,
where l represents the maximum length of node sequences
of this batch and Nbatch represents the batch size, the graph
encoder firstly embeds the node sequences X with the embed-
ding size d = 256. Then, the GCN layer takes the embedding
layer output and the edges E ∈ RNbatch×l×l as the inputs
to perform the graph convolution that we described in the
Section II-C. Previous work by LeClair et al. [12] has proved
that the graph convolution layers hop = 2 is the best setting
for the code summarization task, here we follow their setup
and fix the hop = 2. Each node at the end of the GCN
layer aggregates the neighboring information after the graph
convolution. Since we adopt the pre-order traversal method to
produce the node sequences from ASTs, the node sequences
imply the original appearance order of the tokens in the source
code, which is also the necessary information that needs to
be considered. Therefore, we add the positional encoding
matrices PE ∈ RNbatch×l×d to the output of the GCN layer,
so as to inject the position-wise information.

Subsequently, the output of the GCN layer is imported into
the Self-Multi-head Attention Module (SMAM) to distill their
semantic information further. The internal structure of the
SMAM is demonstrated in Figure 3. It includes the multi-head
attention, layer-normalization, and point-wise feed-forward
network (the dff of the network is set to 512), which are the
principal parts of the Transformer introduced in Section II-D.
Initially, we set the head number J = 4, so that the multi-
head attention can focus on each node sequence from four
different representation subspaces [13]. Moreover, the dmodel

in the multi-head attention is set to 256, representing the width
of this module; while the number of layers N , representing
the depth of this module, is set to 1. Besides, we also adopt
the node mask M ∈ RNbatch×l generated from the batch data
to avoid distracting attention by <PAD> tokens. Finally, we

obtain the output of SMAM X̂ ∈ RNbatch×l×dmodel at the end
of the graph encoder, and the whole process can be described
by the following equation, where the f is the abstract mapping
function constructed by the graph encoder:

X̂ = f(X, E, PE, M) (10)

B. SBT Encoder

For a batch of SBT sequences X
′ ∈ RNbatch×l

′

, where
the l

′
represents the maximum length of SBT sequences of

this batch, the SBT encoder also firstly embeds the X
′

with
the embedding size d = 256 and injects the position-wise
information with PE

′ ∈ RNbatch×l
′
×d. Subsequently, the SBT

encoder adopts the SMAM to extract the semantic information
with the same hyper-parameters and uses the SBT mask M

′ ∈
RNbatch×l

′

to avoid distraction. Thereby, we obtain the final
output of SBT encoder X̂ ′ ∈ RNbatch×l

′
×dmodel . The equation

below illustrates the abstract mapping function f
′

of the SBT
encoder:

X̂ ′ = f
′
(X

′
, PE

′
, M

′
) (11)

C. Joint Decoder

Similarly, for a batch of comment sequences Y ∈
RNbatch×lY , where the lY represents the maximum length of
comment sequences of this batch, the joint decoder also firstly
embeds the Y with the embedding size d = 256, and injects
the positional information PEY ∈ RNbatch×lY ×d. Then, the
features of comment sequences are extracted by the SMAM
with the same hyper-parameters. It should be noticed that the
comment mask MY ∈ RNbatch×lY ×lY is an addition of a
padding mask and a look-ahead mask (i.e., an upper triangular
matrix), which is used for avoiding distraction and information
leakage of the subsequent tokens in training [13].

Next, two Multi-head Attention Modules (MAMs) are in-
troduced in the joint decoder with the same hyper-parameters
to SMAM. The internal structure is shown in Figure 3. One
for comment sequences and the output of graph encoder
X̂ , another for the comment sequences and the output of
SBT encoder X̂ ′ , thereby learning which tokens from the
two encoders are important to the inference of comments,
respectively. The outputs from the two MAMs are concate-
nated together on their last axis, representing a merge of their
respective prediction for the comments. Finally, the merged
output is fed into a linear transformation layer followed by
a softmax function to produce the probability distribution
over the vocabulary, thereby obtaining the final result Ŷ ∈
RNbatch×lY ×S of the MMTrans, where the S represents the
comment vocabulary size. The outlined mapping function fY

of joint decoder can be summarized by the equation below:

Ŷ = fY (Y, X̂, X̂ ′ , PEY , MY) (12)

Similar to most of the Seq2Seq models, we define the loss
function for each batch as equation 13, where the lyi represents
the length of the ith real comment (ground truth) removed
<PAD> tags, and p(Ŷ (z)

ij) represents the probability that the

jth token in the ith sample is the zth (z is the ground truth)
word in the whole comment vocabulary.

Lossbatch = − 1

Nbatch

Nbatch∑
i=1

1

lyi

lyi∑
j=1

log p(Ŷ
(z)
ij) (13)

IV. DATA PREPARATION

A. Preprocessing

The raw dataset is provided by Zhuang et al. [39], which
was collected from the Etherscan.io. The dataset contains
totally 40,932 Ethereum smart contracts written in solidity
with 933,146 normal methods, 73,533 modifiers, and 12,482
fallback methods. Normal methods includes constructors and
other functional methods; Modifiers are used to change the
behaviour of functions in a declarative way, such as checking
a condition prior to executing the function; Fallback methods
will be executed on a call to the contract, if none of the
other methods match the given method signature; another
kind of method in solidity is the receive method, which is
also a kind of fallback method, and is first introduced in the
version of solidity 0.6.0 to receive ether [40]. According to
our preliminary study on the whole dataset, we find 1-to-n
matching problem between methods and comments, i.e., the
same code may correspond to different comments among most
of the fallback methods, which will confuse the MMTrans
in training. The main reason is that most of the developers
use fallback methods for reverting. But different fallback
methods in the different smart contracts will revert different
objectives. In addition, generating comments for constructors
and receive methods is trivial, because their functionalities are
fixed and easy for machines to learn. Furthermore, there is
also no receive method in the whole dataset. Therefore, in our
experiment, we only consider normal functional methods and
modifiers, and we remove the methods without comments. The
remaining data are formulated as <method, comment> pairs
for further process.

According to the introduction of annotation in the solidity
doc [40] and our observation, we find that smart contract
developers tend to place their comments under the NatSpec
tags by the priority order of @notice, @dev, @return or
just “//” and “/**/”. Therefore, we extract the texts behind the
@notice tag firstly, if there is no @notice tag, we extract the
texts behind the @dev tag, and so on. In addition, following
the prior similar work [11], [12], [29], [36], we also use the
first sentence of texts as the ground truth comment, which
typically describes the functionality of the particular method.
Moreover, we remove those <method, comment> pairs whose
comments contain less than 4 words for better computation
of the BLEU-4 score [11]. Finally, we collect the 347,410
<method, comment> pairs from the 40,932 smart contracts.

B. Data Transformation

We transform the source code to SBT sequences and graphs
(represented by xml format) respectively by utilizing the
solidity-parser-antlr [41]. To reduce the Out-Of-Vocabulary

(OOV) tokens and facilitate the model to capture token rep-
resentation, we split the camelCase and snake case tokens
for the “value” of leaf nodes in both SBT sequences and
graphs. Further, we parse the graphs to their corresponding
node sequences and edges (i.e., adjacency matrices), and for-
mulate the <method, comment> pairs to (SBT sequence, node
sequence, adjacency matrix, comment) tuples. The statistics
of the lengths of the SBT sequences, graph node sequences,
and comments are shown in the Table I. The average length
of the SBT sequences, graph node sequences and comments
are 241.44, 75.92, and 10.04, respectively. Here, we set the
maximum length of comments to 20, and remove those tuples
with comment length larger than 20 (i.e., retain 96.53% of
the whole data). We also set the maximum length of SBT
sequences and graph nodes to 600 and 200, and truncate
those excessively long sequences. Afterward, we replace the
numeral and string in source code with <NUM> and
<STR> respectively. Since the address of smart contracts
is a special object in smart contracts and is composed of fixed
40 hexadecimal digits, we generalize address constants by
<ADDR>. Finally, for the SBT sequences and comments,
we add <START> and <END> tokens to represent the start
and end of sequences. However, for graph nodes sequences,
we keep them intact, which is also a common operation in
GCN [12].

TABLE I
STATISTICS FOR DATA LENGTHS

The Lengths of the SBT Sequences

Avg. Mode Median ≤ 200 ≤ 400 ≤ 600
241.44 69 163 59.49% 85.69% 94.92%

The Lengths of the Graph Node Sequences

Avg. Mode Median ≤ 100 ≤ 150 ≤ 200
75.92 21 52 76.77% 89.98% 95.27%

The Lengths of the Comments

Avg. Mode Median ≤ 10 ≤ 20 ≤ 30
10.04 8 10 57.18% 96.53% 99.44%

C. Generating Vocabularies and Input Pipeline

The above procedures yield 317,680 tuples. We randomly
select 90% (285,912 samples) of them for training, 5% (15,884
samples) of them for validation, and 5% (15,884 samples)
of them for testing. We remove duplicated samples in the
validation set and the testing set that are already included
in the training set to avoid data leakage, and finally remain
1,185 and 1,159 samples, respectively. Then, we generate
vocabularies for the SBT sequences, the graph node sequences
and the comments, respectively on the training set. The size of
above vocabularies are 10441, 10431, and 13174, respectively.
Furthermore, we set a <UNK> token in each of the above
vocabulary to substitute the OOV tokens in the validation set
and the testing set.

To prepare the data input pipeline, we randomly select
100 samples to form each batch without replacement. For

each input tunnel (i.e., SBT sequences, graph node sequences,
adjacency matrices, and comment sequences) of each batch,
we append the special tag <PAD> to pad them to the
maximum length of their batch.

V. EXPERIMENT DESIGN

In this section, we propose our research questions and the
corresponding methodologies. Meanwhile, we elaborate on the
baselines from the recent similar works, the evaluation metrics,
and the experimental devices.

A. Research Questions

Our evaluation aim to verify if the MMTrans adopting the
multi-modalities of AST and the multi-head attention struc-
ture outperforms the state-of-the-art baselines, and why the
above two points cause the outperformance of the MMTrans.
Based on these concerns, we propose the following Research
Questions (RQs):
• RQ1: How effective is the MMTrans compared with the

state-of-the-art baselines introduced in Section V-C?
• RQ2: How does the head number of the multi-head at-

tention structure affect the performance of the MMTrans?
• RQ3: What are the advantages of using the multi-

modalities of AST and the multi-head attention structure?
Inspired by the previous works [11], [12], [29], we make

the first attempt of utilizing multi-modalities of AST (i.e.,
both SBT sequences and graphs) and the multi-head attention
structure to construct the framework of dual encoders along
with a joint decoder, thereby proposing the MMTrans. To this
end, the RQ1 is put forward to evaluate the MMTrans against
other state-of-the-art models in terms of the metrics in Section
V-D.

On the other hand, the head number in the multi-head
attention structure has shown to be important in attention
allocation from different representation subspaces. To this end,
we put forward the RQ2 in this work to explore how the head
number affects the MMTrans learning in smart contracts code
summarization.

Finally, the aim of the RQ3 is to investigate why the
MMTrans is more effective in generating code comments, and
how its heterogeneous multi-modalities of AST and the multi-
head attention structure contribute to the generation of higher-
quality comments for smart contracts, respectively.

B. Methodology

To answer the RQ1, we reproduced three baselines that
highly related to our work. Following LeClair et al.’s [12]
experiment setup, we try to set the hyper-parameters of the
baselines consistent with the MMTrans for the fair compari-
son. The detailed hyper-parameters setting for the MMTrans
has been elaborated in Section III. Besides, we adopt the
same training strategy for each model during the experiment.
Specifically, we set the maximum training epoch to 50. Each
model is validated every 500 minibatches on the validation
set by sentence-level BLEU. We save the model with the
best validation performance, and adopt early stopping with

the patience of 5 to avoid the model overfitting and save
computation cost. Furthermore, we adopt Adam [42] as the
training optimizer, and follow the learning rate decay schedule
in [13]. After the above training operations for each model,
we choose their respective best performing model to evaluate
on the testing set in terms of the metrics in Section V-D, and
report the comparison result in this paper.

For the RQ2, we fix the other hyper-parameters of the
MMTrans, and set the head number J = {2, 4, 8, 16, 32} re-
spectively. For each adjustment of J , we retrain the MMTrans
following the training strategy and report the experimental re-
sult in terms of the automated metrics in this paper. The reason
for the choice of above head numbers is that they should be
divisible by dmodel, which is a necessary prerequisite for the
multi-head attention structure.

Finally, for the RQ3, we evaluate the strength of the hetero-
geneous multi-modalities of AST and the multi-head attention
structure by ablation experiments separately. (1) Firstly, we
construct an incomplete-MMTrans (i-MMTrans) utilizing the
graph and plain source code as double inputs. Then, we
adopt the i-MMTrans to compare with the third baseline (i.e.,
vanilla-Transformer with only the plain source code input)
and the MMTrans with both SBT sequences and graphs as
inputs, thereby exploring the contribution of SBT sequences
and graphs, respectively. (2) However, for the evaluation of
the strength of the multi-head attention structure, we adopt the
comparison between the i-MMTrans and the second baseline,
i.e., code+gnn+GRU, because they both adopt the graph and
plain source code as double inputs. But the i-MMTrans adopts
the multi-head attention structure, while the code+gnn+GRU
adopts the GRU-based structure.

C. Baselines

We compare the MMTrans with the three baselines that are
published in last year and directly related to our work. We list
their detailed information as below:

(1) Hybrid-DeepCom: Hu et al. [11] exploited the plain
source code and SBT sequence with only nodes’ “type” as the
double inputs to extract structural and lexical information of
source code, respectively. They also construct a GRU-based
Seq2Seq model to process the double inputs and generate
comments of Java methods. This approach was published in
the EMSE volume 25, 2020, and is the latest representative
approach that adopts SBT sequences as input separately with
the plain source code.

(2) code+gnn+GRU: LeClair et al. [17] proposed to utilize
the ASTs (graphs) and the plain source code as the double
inputs to improve the code summarization performance based
on their previous work [17] published in the ICSE’2019. This
approach was presented in the ICPC’2020 and is the latest
work adopting GCN in the code summarization task.

(3) Vanilla-Transformer: Ahmad et al. [14] proposed to
adopt the Transformer to solve the Java source code com-
ments generation task, which is the first attempt of utilizing
the Transformer in this field. This work was published in

the ACL’2020. We adopt their base model (i.e., Vanilla-
Transformer) to involve in the comparison, rather than their
full model with the relative positional encoding and copy
attention, because these tricks make it difficult to distinguish
the improvement of multi-modalities of AST on transformer-
based approach.

Since those baselines are all applied to Java methods, we
change their inputs as our smart contracts data, and follow their
data processing steps to prepare their inputs. Besides, we adopt
the greedy search algorithm in inference for all approaches to
save the computation cost and ensure a fair comparison.

Other noteworthy recent works, such as Wang et al. [43],
Zhang et al. [34], adopted the Reinforcement Learning (RL)
and Information Retrieval (IR) techniques based on recurrent
models to improve the model performance, respectively. Since
the second improvement of the MMTrans focuses on the
structural upgrade by the Transformer towards the recurrent
models, the contribution of the Transformer-based structure
towards the recurrent models cannot be distinguished from the
RL and IR techniques based on recurrent models. Therefore,
the above two works are not suitable for comparison in this
experiment. However, a potential future direction is to study
the effect of the RL and IR techniques combining with the
Transformer-based structure in another separate experiment.

D. Metrics

We adopt BiLingual Evaluation Understudy (BLEU) 1 [44],
Recall-Oriented Understudy for Gisting Evaluation (ROUGE)
2 [45], and Metric for Evaluation of Translation with Explicit
ORdering (METEOR) 1 [46] to evaluate the performance of
the code summarization approaches.
• We report a composite BLEU score, which is the average

of BLEU-1, BLEU-2, BLEU-3, and BLEU-4 (BLEU-n
is the n-gram precision of a candidate sequence to the
reference). Following Hu et al.’s work [11], we adopt both
sentence-level BLEU (S-BLEU) and corpus-level BLEU
(C-BLEU) to evaluate the generated comments, respec-
tively. The S-BLEU calculates the composite BLEU score
according to the sentence, and the C-BLEU calculates the
composite BLEU score according to the whole corpus. In
addition, to avoid non-overlapping n-grams in sentences,
we simply use the smoothing-1 method [47] to assist the
computation of S-BLEU.

• ROUGE evaluates how much of reference text appears in
the generated text, which can be thought of as a recall
score. Following LeClair et al.’s work [12], we adopt
the ROUGE-LCS (Longest Common Sub-sequence) F1
to evaluate the generated comments on the LCS matching
degree between generated comments and references.

• METEOR is also a widely used recall-oriented metric
in machine translation and code summarization tasks.
It evaluates how well the generated comments capture
content from the references via recall, which is computed
by stemming and synonymy matching.

1NLTK: (https://www.nltk.org/) is used to calculate BLEU and METEOR
2rouge: (https://github.com/pltrdy/rouge) is used to calculate ROUGE

E. Experimental Device

The experiments are conducted on a Ubuntu GPU server
with four RTX2080ti GPUs of 11 GB memory for each. Our
proposed MMTrans is constructed by Tensorflow 2.3 based on
CUDA 10.1 and cuDNN 7.4.

VI. RESULTS

This section reports the experimental results for the research
questions proposed in Section V-A.

A. RQ1: Quantitative Evaluation

Table II shows the performance of the MMTrans (J = 4)
and the compared baselines. As shown in the table, the
MMTrans performs the best, and achieves a S-BLEU score
of 30.47, a C-BLEU score of 34.14, a ROUGE-LCS F1 score
of 50.57, and a METEOR score of 43.24. Specifically, the
MMTrans outperforms the Vanilla-Transformer by 17.23% in
terms of S-BLEU, by 20.74% in terms of C-BLEU, by 6.78%
in terms of ROUGE-LCS F1, and by 10.17% in terms of ME-
TEOR; the MMTrans also outperforms the code+gnn+GRU
by 38.94%, 39.23%, 55.60%, and 21.22% in terms of the
four metrics, respectively; and the MMTrans outperforms the
Hybrid-DeepCom by 58.45%, 62.49%, 31.18%, and 45.05%
in terms of the four metrics, respectively. Towards the great
improvement of the MMTrans against the three baselines, we
generally attribute it to the multi-head attention structure and
the utilization of both GCN and SBT to capture the local
and global semantic information of code. We will discuss the
strength of the MMTrans in more depth in Section VI-C. We
also find that the code+gnn+GRU outperforms the Hybrid-
DeepCom in terms of S-BLEU, C-BLEU, and METEOR,
while the latter performs better in terms of ROUGE-LCS F1.
This may owe to the higher attention of GCN on specific
tokens and structures [12], leading to the higher score in terms
of the gram-statistic-oriented metrics (i.e., S-BLEU, C-BLEU,
and METEOR). However, SBT sequences represent the global
semantic information of source code, therefore, the Hybrid-
DeepCom can capture the global semantic information, and
performs better in terms of the longest common sub-sequence
matching (measured by ROUGE-LCS F1). Moreover, even
the Vanilla-Transformer only adopts the plain source code
as the single input, its performance is still better than that
of the Hybrid-DeepCom and code+gnn+GRU by a relatively
large margin, which indicates the powerful capability of the
Transformer model.

Answer: The MMTrans outperforms the Hybrid-DeepCom,
code+gnn+GRU and Vanilla-Transformer by a significant mar-
gin in terms of all the automated evaluation metrics.

B. RQ2: Head Number Analysis

As mentioned in Section V-A, the head number J is the
prominent part in the multi-head attention module compared
with other attention structures, and affects the model perfor-
mance to a great extent. In order to explore the influence of
the J in the MMTrans, we fix the other hyper-parameters and
tune the J = {2, 4, 8, 16, 32}, respectively. The automated

https://www.nltk.org/
https://github.com/pltrdy/rouge

TABLE II
AUTOMATED METRICS EVALUATION RESULTS FOR THE BASELINES AND MMTRANS

Baseline head number (J) S-BLEU*(%) C-BLEU*(%) ROUGE-LCS F1 (%) METEOR (%)

Hybrid-DeepCom / 19.23 21.01 38.55 29.81
code+gnn+GRU / 21.93 24.52 32.50 35.67
Vanilla-Transformer 4 25.99 28.79 47.36 39.25

Ours

i-MMTrans 4 28.67 30.77 48.76 41.51
MMTrans 2 23.57 26.63 43.45 35.37
MMTrans 4 30.47 34.14 50.57 43.24
MMTrans 8 29.68 33.19 50.50 43.26
MMTrans 16 22.27 24.91 42.71 34.38
MMTrans 32 26.97 30.41 47.38 39.67

* S-BLEU represents the Sentence-level BLEU score; C-BLEU represents the Corpus-level BLEU score.

metric evaluation results are presented in Table II. The whole
experiment result presents a general trend of increasing first
then decreasing in terms of each of the evaluation metrics. And
the performance reaches the peak when the J = 4. With the
J increasing, more representation subspaces of tokens appear
but the embedding dimension of tokens decreases. As such,
a potential explanation is that increasing the head number
indeed can focus on more different perspectives; but when
the subspaces proliferate excessively, the low representation
dimension makes it impossible to accurately describe tokens,
thus leading the attention distraction. Also notice that using
head number J = 32 outperforms the J = 16, this may due
to the random initialization or other minor factors.

Answer: When tuning the head number J =
{2, 4, 8, 16, 32}, there is a general performance trend of
increasing first then decreasing, and the MMTrans performs
the best when the head number is 4.

C. RQ3: Strength of the MMTrans

This section elaborates on the strength of MMTrans from
two perspectives, i.e., heterogeneous multi-modalities of AST
and the multi-head attention structure.

(1) The Vanilla-Transformer uses the plain source code as
a single input; the i-MMTrans has double inputs of graphs
and plain source code, while the MMTrans has double inputs
of graphs and SBT sequences. Moreover, these approaches
all employ the multi-head attention structure. As shown in
Table II, we find that the i-MMTrans outperforms the Vanilla-
Transformer by 10.31% in terms of S-BLEU, by 6.88%
in terms of C-BLEU, by 2.96% in terms of ROUGE-LCS
F1, and by 5.76% in terms of METEOR, which indicates
that the additional input of graphs indeed boosts the model
performance. Subsequently, we make a comparison between
the i-MMTrans and the MMTrans. The Table II demonstrates
that the latter outperforms the former by 6.28%, 10.95%,
3.71%, and 4.17% in terms of the four metrics respectively,
which proves that the additional input by SBT sequences can
further improve the model performance.

Meanwhile, we present the first two instances to intuitively
show the strength of the heterogeneous multi-modalities of
AST in Table III. Following LeClair et al.’s work [12], we

intuitively illustrate the power of multi-modalities of AST
from the copy mechanism perspective. For the first instance,
the i-MMTrans can directly copy the correct words, such
as “modifier”, “when”, “crowdsale” and “ended”, from the
source code to the comment. Comparing with the Vanilla-
Transformer, its copy capability is indeed more powerful.
However, the i-MMTrans seems relatively weaker in sum-
marizing the main idea of source code, when the incorrect
words accounts for a relatively large ratio. Noticing the second
instance, the i-MMTrans wrongly copies the word “sell” and
“tokens”, which appear with the highest frequency in the
source code, therefore does not capture the main idea of
the code snippet. A potential explanation is the i-MMTrans
equipped with GCN puts more focus on local features of the
AST, causing it easy to be attracted by the specific words
and code structure. However, the MMTrans equipped with
both the GCN and SBT can weigh between local and global
semantic information, therefore modifies the fault caused by
the i-MMTrans, and catches the correct main idea of the source
code in the second instance.

(2) As mentioned in Section V-B, the i-MMTrans and
code+gnn+GRU both exploit the graph and plain source
code as the double inputs, but the former adopts the multi-
head attention structure while the latter adopts the GRU-
based structure. Statistically, the i-MMTrans outperforms the
code+gnn+GRU by 30.73% in terms of S-BLEU, by 25.49% in
terms of C-BLEU, by 50.03% in terms of ROUGE-LCS F1,
and by 16.37% in terms of METEOR, which indicates that
applying the multi-head attention structure indeed improves
the performance a lot in the source code summarization task.
And it is noticeable that the contribution to the performance
improvement of the multi-head attention structure is greater
than that of the multi-modalities of AST. We also list two
examples of the generated comments in the Table III. The
instance #3 is a short method that can be parsed to the plain
source code with 49 tokens and the graph node sequence
with 59 tokens. The i-MMTrans and code+gnn+GRU can both
generate the exact correct comments on this short sample.
Nevertheless, when it comes to a relatively long method, such
as the instance #4 with 152 tokens in the plain source code

TABLE III
EXAMPLES OF GENERATED COMMENTS BY EACH APPROACH

ID Smart Contract Methods Comments

1

// Contract #32527, Method #7
modifier whenCrowdsaleNotEnded {

require(deadline >= now);
;

}

Vanilla-Transformer: modifier to make a function callable only when the contract is not finalized.
i-MMTrans: modifier to make a function callable only when the crowdsale has not ended.
MMTrans: modifier to allow actions only when the crowdsale is not ended.
Reference: modifier to allow actions only when the crowdsale has not ended.

2

// Contract #37578, Method #1
function tokensToSell() private returns (uint256 tokensToSell) {

return latium.balanceOf(address(this));
}

Vanilla-Transformer: function to sell tokens.
i-MMTrans: function to sell tokens (with decimals) that we are selling tokens.
MMTrans: function to get amount of Latium tokens (with decimals) of this contract.
Reference: function to get current Latium balance of this contract.

3

// Contract #6743, Method #27
function finalize() public inState(State.Success)

onlyOwner stopInEmergency {
if(finalized) throw;
if(address(finalizeAgent) != 0) finalizeAgent.finalizeCrowdsale();
finalized = true;
}

code+gnn+GRU: finalize a succcesful crowdsale.
i-MMTrans: finalize a succcesful crowdsale.
Reference: finalize a succcesful crowdsale.

4

// Contract #16118, Method #5
function playerMakeBet(uint minRollLimit, uint maxRollLimit,
bytes32 diceRollHash, uint8 v, bytes32 r, bytes32 s) public payable
gameIsActive betIsValid(msg.value, minRollLimit, maxRollLimit) {

if (playerBetDiceRollHash[diceRollHash] != 0x0
|| diceRollHash == 0x0) throw;

tempBetHash = sha256(diceRollHash, byte(minRollLimit),
byte(maxRollLimit), msg.sender);

if (casino != ecrecover(tempBetHash, v, r, s)) throw;
. . .
playerProfit[diceRollHash] = getProfit(msg.value, tempFullprofit);
if (playerProfit[diceRollHash] > maxProfit) throw;
. . .
LogBet(diceRollHash, playerAddress[diceRollHash],
playerProfit[diceRollHash], playerToJackpot[diceRollHash],
playerBetValue[diceRollHash], playerMinRollLimit[diceRollHash],
playerMaxRollLimit[diceRollHash]);

}

code+gnn+GRU: appends the bid’s.
i-MMTrans: public function player submit bet only if game is active bet is valid can be called.
Reference: public function player submit bet only if game is active bet is valid.

and 200 tokens in the graph node sequence (both have been
truncated to the maximum length of the above two sequences),
the code+gnn+GRU with the GRU-based structure cannot
summarize the correct comment, while the i-MMTrans can
still generate readable and meaningful comment. The reason
is that the multi-head attention structure can properly allocate
different attention weights on the tokens at each time step, and
summarize their key information for inference; however, the
GRU-based network has a limited capability in capturing the
long-range dependencies between code tokens, thus generating
the low-quality comments for relatively long methods.

Answer: Leveraging SBT sequences and graphs to extract
the global and local semantic information of code, and employ-
ing the multi-head attention structure to capture the long-range
dependencies between code tokens contribute to the generation
of higher-quality comments.

VII. THREATS TO VALIDITY

We have identified the following threats to validity:
Dataset quality: As the first smart contract code summa-
rization work, we used some heuristic rules to extract the
<method, comment> pairs according to the characteristic of
smart contract data. Although we did a rigorous data pro-
cessing, there may be still some noise. We will continuously
refine and update the version of the open-source dataset.
Comparison on smart contract dataset: Since our work

focuses on the smart contract code summarization, we did
not compare the MMTrans with Hybrid-DeepCom, Vanilla-
Transformer, and code+gnn+GRU on their datasets. But the
results on smart contracts also have proved the effectiveness
of the MMTrans. In the future, we will extend our experiment
on other programming languages (e.g., Java and Python).
Fair comparison threat: Due to the hardware limitations,
we were unable to conduct fully extensive hyper-parameters
optimization for all baselines. Following LeClair et al.’s work
[12], we try to mitigate the impact of this issue by making
each baseline’s hyper-parameters consistent with our model.
Automated evaluation: We adopt four automated evaluation
metrics that have been widely used in previous code summa-
rization studies [11], [12], [14], [29]. Although the metrics are
not representative of human judgment [48], they can evaluate
the performance of code summarization models quickly and
quantitatively. In the future, we will conduct human evaluation
on the models.

VIII. CONCLUSION

This work aims to help programmers comprehend the
meaning of smart contract code by automatically generating
high-quality comment. To tackle this task, we for the first
time collect a smart contract code summarization dataset
with 347,410 <method, comment> pairs. Meanwhile, we
propose a code summarization approach named MMTrans,

which leverages the two modalities of the AST (i.e., SBT
sequences and graphs) to represent both global and local
semantic information of source code, then employs the two
encoders and a joint decoder with the multi-head attention
structure to capture the long-range dependencies between
code tokens. The comprehensive experiments on the collected
dataset show that the MMTrans performs better than the state-
of-the-art baselines by a significant margin, and can generate
higher-quality comments in the practical tests.

ACKNOWLEDGMENT

This work is supported in part by the General Research
Fund of the Research Grants Council of Hong Kong (No.
11208017) and the research funds of City University of Hong
Kong (7005028 and7005217), and the Research Support Fund
by Intel (9220097), and funding supports from other industry
partners (9678149,9440227, 9229029, 9440180 and 9220103).

REFERENCES

[1] M. Röscheisen, M. Baldonado, K. Chang, L. Gravano, S. Ketchpel, and
A. Paepcke, “The stanford infobus and its service layers: Augmenting the
internet with higher-level information management protocols,” in Digital
Libraries in Computer Science: The MeDoc Approach. Springer, 1998,
pp. 213–230.

[2] D. Tapscott and A. Tapscott, Blockchain revolution: how the technology
behind bitcoin is changing money, business, and the world. Penguin,
2016.

[3] A. Savelyev, “Contract law 2.0:‘smart’contracts as the beginning of the
end of classic contract law,” Information & Communications Technology
Law, vol. 26, no. 2, pp. 116–134, 2017.

[4] Z. Gao, L. Jiang, X. Xia, D. Lo, and J. Grundy, “Checking smart con-
tracts with structural code embedding,” IEEE Transactions on Software
Engineering, 2020.

[5] T. Sun and W. Yu, “A formal verification framework for security issues
of blockchain smart contracts,” Electronics, vol. 9, no. 2, p. 255, 2020.

[6] “Ethereum (eth) blockchain explorer,” https://etherscan.io/, 01 2021,
(Accessed on 01/26/2021).

[7] Z. Yang, J. Keung, M. Zhang, Y. Xiao, Y. Huang, and T. Hui,
“Smart contracts vulnerability auditing with multi-semantics,” in 2020
IEEE 44th Annual Computers, Software, and Applications Conference
(COMPSAC). IEEE, 2020, pp. 892–901.

[8] N. He, L. Wu, H. Wang, Y. Guo, and X. Jiang, “Characterizing code
clones in the ethereum smart contract ecosystem,” in International
Conference on Financial Cryptography and Data Security. Springer,
2020, pp. 654–675.

[9] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2016, pp. 2073–2083.

[10] P. Loyola, E. Marrese-Taylor, and Y. Matsuo, “A neural architecture for
generating natural language descriptions from source code changes,”
arXiv preprint arXiv:1704.04856, 2017.

[11] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation
with hybrid lexical and syntactical information,” Empirical Software
Engineering, vol. 25, no. 3, pp. 2179–2217, 2020.

[12] A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved code
summarization via a graph neural network,” in Proceedings of the 28th
International Conference on Program Comprehension, ser. ICPC ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
184–195. [Online]. Available: https://doi.org/10.1145/3387904.3389268

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[14] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A
transformer-based approach for source code summarization,” in
Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Online: Association for Computational
Linguistics, Jul. 2020, pp. 4998–5007. [Online]. Available: https:
//www.aclweb.org/anthology/2020.acl-main.449

[15] “Smart contract code summarization dataset — zenodo,” https://zenodo.
org/record/4587089#.YEog9-gzYuV, (Accessed on 03/11/2021).

[16] “yz1019117968/icpc-21-mmtrans: Mmtrans for smart contract code
summarization,” https://github.com/yz1019117968/ICPC-21-MMTrans,
(Accessed on 03/11/2021).

[17] A. LeClair, S. Jiang, and C. McMillan, “A neural model for gener-
ating natural language summaries of program subroutines,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 795–806.

[18] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source code,”
2010.

[19] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program com-
prehension with source code summarization,” in 2010 acm/ieee 32nd
international conference on software engineering, vol. 2. IEEE, 2010,
pp. 223–226.

[20] B. P. Eddy, J. A. Robinson, N. A. Kraft, and J. C. Carver, “Evaluating
source code summarization techniques: Replication and expansion,” in
2013 21st International Conference on Program Comprehension (ICPC).
IEEE, 2013, pp. 13–22.

[21] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java meth-
ods,” in Proceedings of the IEEE/ACM international conference on
Automated software engineering, 2010, pp. 43–52.

[22] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting
and describing high level actions within methods,” in 2011 33rd Inter-
national Conference on Software Engineering (ICSE). IEEE, 2011, pp.
101–110.

[23] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for java
classes,” in 2013 21st International Conference on Program Compre-
hension (ICPC). IEEE, 2013, pp. 23–32.

[24] E. Wong, T. Liu, and L. Tan, “Clocom: Mining existing source code for
automatic comment generation,” in 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER).
IEEE, 2015, pp. 380–389.

[25] P. W. McBurney and C. McMillan, “Automatic source code summa-
rization of context for java methods,” IEEE Transactions on Software
Engineering, vol. 42, no. 2, pp. 103–119, 2015.

[26] P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan, “An eye-
tracking study of java programmers and application to source code
summarization,” IEEE Transactions on Software Engineering, vol. 41,
no. 11, pp. 1038–1054, 2015.

[27] Y. Lu, Z. Zhao, G. Li, and Z. Jin, “Learning to generate comments for
api-based code snippets,” in Software Engineering and Methodology for
Emerging Domains. Springer, 2017, pp. 3–14.

[28] Y. Liang and K. Zhu, “Automatic generation of text descriptive com-
ments for code blocks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32, no. 1, 2018.

[29] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment gener-
ation,” in 2018 IEEE/ACM 26th International Conference on Program
Comprehension (ICPC). IEEE, 2018, pp. 200–20 010.

[30] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S. Yu,
“Improving automatic source code summarization via deep reinforce-
ment learning,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018, pp. 397–407.

[31] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” in 7th International
Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019. [Online]. Available:
https://openreview.net/forum?id=H1gKYo09tX

[32] P. Fernandes, M. Allamanis, and M. Brockschmidt, “Structured
neural summarization,” in International Conference on Learning
Representations, 2019. [Online]. Available: https://openreview.net/
forum?id=H1ersoRqtm

[33] Q. Wang, B. Li, T. Xiao, J. Zhu, C. Li, D. F. Wong, and L. S.
Chao, “Learning deep transformer models for machine translation,”
in Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics. Florence, Italy: Association for
Computational Linguistics, Jul. 2019, pp. 1810–1822. [Online].
Available: https://www.aclweb.org/anthology/P19-1176

[34] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based
neural source code summarization,” in 2020 IEEE/ACM 42nd Interna-

https://etherscan.io/
https://doi.org/10.1145/3387904.3389268
https://www.aclweb.org/anthology/2020.acl-main.449
https://www.aclweb.org/anthology/2020.acl-main.449
https://zenodo.org/record/4587089#.YEog9-gzYuV
https://zenodo.org/record/4587089#.YEog9-gzYuV
https://github.com/yz1019117968/ICPC-21-MMTrans
https://openreview.net/forum?id=H1gKYo09tX
https://openreview.net/forum?id=H1ersoRqtm
https://openreview.net/forum?id=H1ersoRqtm
https://www.aclweb.org/anthology/P19-1176

tional Conference on Software Engineering (ICSE). IEEE, 2020, pp.
1385–1397.

[35] X. HU, G. LI, X. XIA, D. LO, S. LU, and Z. JIN, “Summarizing
source code with transferred api knowledge.(2018),” in Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelli-
gence (IJCAI 2018), Stockholm, Sweden, 2018 July 13, vol. 19, pp.
2269–2275.

[36] B. Wei, G. Li, X. Xia, Z. Fu, and Z. Jin, “Code generation as a dual task
of code summarization,” in Advances in Neural Information Processing
Systems, 2019, pp. 6563–6573.

[37] K. Xu, L. Wu, Z. Wang, Y. Feng, M. Witbrock, and V. Sheinin,
“Graph2seq: Graph to sequence learning with attention-based neural
networks,” arXiv preprint arXiv:1804.00823, 2018.

[38] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[39] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart contract
vulnerability detection using graph neural network,” in Proceedings
of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, C. Bessiere, Ed. International Joint Conferences
on Artificial Intelligence Organization, 7 2020, pp. 3283–3290, main
track. [Online]. Available: https://doi.org/10.24963/ijcai.2020/454

[40] “Solidity — solidity 0.6.0 documentation,” https://docs.soliditylang.org/
en/v0.6.0/index.html, 01 2021, (Accessed on 01/09/2021).

[41] “federicobond/solidity-parser-antlr: A solidity parser for js built on
top of a robust antlr4 grammar,” https://github.com/federicobond/
solidity-parser-antlr, 01 2021, (Accessed on 01/26/2021).

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[43] W. Wang, Y. Zhang, Y. Sui, Y. Wan, Z. Zhao, J. Wu, P. Yu, and
G. Xu, “Reinforcement-learning-guided source code summarization via
hierarchical attention,” IEEE Transactions on Software Engineering,
2020.

[44] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[45] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text summarization branches out, 2004, pp. 74–81.

[46] M. Denkowski and A. Lavie, “Meteor universal: Language specific
translation evaluation for any target language,” in Proceedings of the
ninth workshop on statistical machine translation, 2014, pp. 376–380.

[47] B. Chen and C. Cherry, “A systematic comparison of smoothing tech-
niques for sentence-level bleu,” in Proceedings of the Ninth Workshop
on Statistical Machine Translation, 2014, pp. 362–367.

[48] S. Stapleton, Y. Gambhir, A. LeClair, Z. Eberhart, W. Weimer, K. Leach,
and Y. Huang, “A human study of comprehension and code summariza-
tion,” in Proceedings of the 28th International Conference on Program
Comprehension, 2020, pp. 2–13.

https://doi.org/10.24963/ijcai.2020/454
https://docs.soliditylang.org/en/v0.6.0/index.html
https://docs.soliditylang.org/en/v0.6.0/index.html
https://github.com/federicobond/solidity-parser-antlr
https://github.com/federicobond/solidity-parser-antlr

	I Introduction
	II RELATED WORK AND BACKGROUND
	II-A Code Summarization
	II-B Structure-based Traversal
	II-C Graph Convolutional Neural Network
	II-D Transformer-related Structures
	II-D1 Positional Encoding
	II-D2 Multi-head Attention
	II-D3 Point-Wise Feed-Forward Networks

	III APPROACH
	III-A Graph Encoder
	III-B SBT Encoder
	III-C Joint Decoder

	IV Data Preparation
	IV-A Preprocessing
	IV-B Data Transformation
	IV-C Generating Vocabularies and Input Pipeline

	V EXPERIMENT DESIGN
	V-A Research Questions
	V-B Methodology
	V-C Baselines
	V-D Metrics
	V-E Experimental Device

	VI RESULTS
	VI-A RQ1: Quantitative Evaluation
	VI-B RQ2: Head Number Analysis
	VI-C RQ3: Strength of the MMTrans

	VII THREATS TO VALIDITY
	VIII CONCLUSION
	References

