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Abstract—Nowadays, developers often reuse existing APIs to
implement their programming tasks. A lot of API usage patterns
are mined to help developers learn API usage rules. However,
there are still many missing variables to be synthesized when
developers integrate the patterns into their programming context.
To deal with this issue, we propose a comprehensive approach
to integrate API usage patterns in this paper. We first perform
an empirical study by analyzing how API usage patterns are
integrated in real-world projects. We find the expressions for
variable synthesis is often non-trivial and can be divided into 5
syntax types. Based on the observation, we promote an approach
to help developers interactively complete API usage patterns.
Compared to the existing code completion techniques, our ap-
proach can recommend infrequent expressions accompanied with
their real-world usage examples according to the user intent. The
evaluation shows that our approach could assist users to integrate
APIs more efficiently and complete the programming tasks faster
than existing works.

Index Terms—API usage patterns, code examples, code inte-
gration

I. INTRODUCTION

Learning how to reuse existing APIs is a daily activity for
developers. Given an interested API method, developers often
resort to online resources (e.g., Q&A forums, blogs, tutorials)
to search concrete API usage examples [1]. Furthermore, many
works [2]–[4] focus on mining abstract API usage patterns
from large code corpus. An API usage pattern is a code frag-
ment mined from many concrete API usage examples, which
documents that some API methods are frequently invoked in
sequence to implement certain functionality. Although API
usage patterns are good starting points to learn APIs, it can
be tedious for developers to integrate the APIs into their local
programming context [5], [6]. Existing studies show that a big
barrier during the process is that many online code fragments
are incomprehensive [7], [8].

Fig. 1. Incomplete API invocation sequence from online user forum

∗Corresponding author.

Figure 1 displays a code snippet from a Stack Overflow
post1. The code snippet displays the frequent API usage for
setting the foreground color of an Excel cell with a third-party
library apache-poi. Although the snippet lists all important
API methods to implement the functionality, it cannot be
compiled or executed. To complete the snippet, three well-
typed expressions have to be manually synthesized for the
style, color, and cell variables separately.

We summarize two challenges in the follow-up program-
ming. The first one is variable understanding. Developers need
to configure the APIs with correct local variables (i.e., re-
ceivers and parameters). However, the meaning of the missing
variables is often not well explained in the code fragment.
Each method invocation in Figure 1 requires a receiver and a
parameter. To specify the cell color in this task, users need to
configure the parameters with type short in the second and
third method calls. Yet the relation between a short variable
and a user-specified color is quite subtle. The second challenge
is variable synthesis. After understanding the meaning of the
variables to configure, developers need to synthesize a well-
typed expression for each variable. The synthesized expression
can be a constant, a constructor, or a method chain. For ex-
ample, a correct expression to specify the red color in our ex-
ample sequence is IndexedColors.RED.getIndex().
Although code completion is a common feature in modern
IDEs (Integrated Development Environments), such comple-
tion typically considers one step of computation [9]. Further-
more, it is difficult for developers to judge the correctness of
the recommended expressions when they are not familiar with
the reused library.

To ease the process of integrating API methods, we develop
a tool that assists developers to integrate API usage patterns in
an interactive way. Figure 2 displays the user interface of our
tool CODA. After triggering CODA with ctrl-x, users can
select the desired task description, and our tool will hint users
with the variables to configure. The hint for a variable contains
a description for its meaning and a list of expressions to
synthesize the variable, equipped with the occurring frequency
in real-world usages. After users complete all the variables, a
well-typed code snippet will be inserted at the current caret.
The input of our tool is an API usage pattern to integrate,
with some missing variables to complete. Given an API usage
pattern, the tool first extracts its real-world usages from the
code corpus. Then, the usages are analyzed to build the

1https://stackoverflow.com/questions/45536432
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def-use relations between the receivers and parameters. The
tool also records the expressions that declare our concerned
variables. CODA annotates each variable with its description
from Javadoc and recommends the frequent expressions to
create the variable. Besides, our tool also recommends a list
of concrete API usage examples according to the current user
configuration.

(a) User selects an API usage pattern

(b) CODA summarizes four parameters to configure, with recommended
expressions

(c) The final complete code

Fig. 2. User Interface of CODA

The contributions of this paper are:
• A taxonomy of variable completion syntax for integrating

API usage patterns. We analyze 168 API usage patterns
mined from five Java libraries, and conclude five syntax
types for variable completion.

• An approach for comprehensive integration of API us-
age patterns, which guides users to interactively fill the
missing variables.

• A code example recommendation study and a user study
to evaluate the usefulness of our approach in real-world
integration scenario.

II. RELATED WORK

Since our approach is tightly associated with API usage
pattern mining and API usage example recommendation, we
first introduce some related works to help readers understand
our work better.

A. Mining API usage patterns

An API usage pattern describes that in a certain usage
scenario, some API methods are frequently called together and
their usages follow some sequential rules [10]. The general
procedure of mining API usage patterns follows three steps.
First, a representative set of source code is collected as
the code corpus. Second, code is transformed into certain
intermediate representation. Common representations include
call sequences [1], execution traces [11], syntax trees [12], and
graph structure [13], [14].

The main application of the mined API usage patterns is
to detect API misuse, which works by comparing a given
API usage with the highest-ranked patterns and reporting
the violations as misuse. However, existing works seldom
apply the mined patterns to generate well-typed code snippets.
Some works [15]–[17] discussed this problem by providing
simple completion after mining API usage patterns. SWIM
[2], a program synthesizer tool for C# completes a mined
API usage pattern with simple rules(e.g., the default values for
the basic types, directly call the constructor for the reference
types). NLI2Code [18] combines type-directed search and user
interaction to complete the missing parameters in Java API
usage patterns. Similar synthesis approach is also applied in
some other works [9], [19].

Our conjecture is that users need more information than the
default value, constructors, or synthesized expressions when
filling an unfamiliar API usage pattern. Recommendation of
both candidate expressions and their usage in real-world code
examples are valuable for developers.

B. Recommending API usage examples

Besides abstract code patterns mined from a large corpus,
concrete code examples from the real world are also an
important resource to learn APIs. Recommending API usage
examples can be viewed as a subfield of code search because
it specifies the user query as an API element.

MUSE [20] accepts a given method and returns a list
of its usage examples from the large corpus. By applying
static slicing and clone detection, MUSE can cluster similar
examples and recommend different, representative usage of
the interested method. The tool further selects and ranks
the examples with heuristics to improve the understandability
and popularity of the recommendation result. Some works
[21], [22] notice that developers often need some descriptions
accompanied with the returned code examples. CROKAGE
[23] returns a comprehensive solution for a given programming
task, containing both code examples and succinct explanations.
Furthermore, some works [24]–[26] provide direct support
for code search in IDEs. CodeMend [27] is a system that
supports finding and integration of code, which leverages a



neural embedding model to jointly model natural language and
code. CodeScoop [28] helps developers extract code fragments
in their current projects for further code reuse. Examplore [29]
is the state-of-art work for visualizing hundreds of examples
for a given API element. It predefines a synthetic skeleton for
API usage, which includes seven API usage features including
preconditions, return value check, exception handling, and
so on. Given a recommended API usage example, different
features are marked with different colors to help developers
quickly locate their desired part. Similar to our work, Exam-
plore [29] can also update the order of recommended code
snippets according to the current user configuration. However,
Examplore focuses on visualizing the API specification such
as pre-conditions and exception handling. Different from Ex-
amplore, our hypothesis is that API usage pattern mining tools
can mine API specifications automatically, and we focus on
how to configure a code example into a well-typed, executable
snippet.

To sum up, recommending API usage examples is a hot
topic in software engineering research. Improving the reusabil-
ity and understandability of examples is an important direction
in this area. In this paper, we further strengthen this by
providing direct guidance during the API integration.

III. EMPIRICAL STUDY ON API INTEGRATION

Before we dive into the details of our empirical study and
approach, we first define two important concepts in this paper.

Definition 1 (API usage pattern): An API usage pattern is
a set of API methods that are frequently called in sequence.
There are some missing receivers or parameters of methods in
an API usage pattern. After developers formulate the receivers
and parameters, an API usage pattern becomes a complete
code snippet.

Definition 2 (Hole): The missing receivers and parameters
of methods in the API usage pattern.

A. Data collection

To get insights into API integration, we collected 100
code elements and analyze their usage examples from Github.
Consider the ways of integration may vary among differ-
ent APIs, the code elements are from five representative
Java libraries, i.e., an html extraction library (jsoup), a
source code parser (eclipse-jdt), a library manipulat-
ing Microsoft documents (apache-poi), a deep learning
toolkit (deeplearning4j), and a graph database platform
(neo4j). In addition to being widely used, these five libraries
cover different programming domains, from the front-end
html parsing to the back-end database manipulation. For each
library, we use the library name as the query, search and
download 500 client repositories from Github. To guarantee
the repository quality, each repository has at least two stars.
Repositories with fewer stars are removed, and we further
remove forked repositories. For each library, we parse the
client repositories and count the occurrence of each code
element from the library API. We sort the code elements ac-
cording to their occurrence times and remove trivial ones like

toString(). Finally, we collect the top 20 frequent code
elements for each library. For each code element, we collect
1,000 usage examples from the corpus. A usage example for
a code element is a method from the client repositories that
invokes the code element.

B. API usage pattern mining

In this paper, we choose Structured Call Sequence (SCS)
as the intermediate representation for code, which is also used
in previous API pattern mining works [1], [2]. The syntax we
used is the same as an existing work EXAMPLECHECK, the
detailed syntax rules can be found in the original paper. There
are two reasons we choose SCS as our code abstraction. First,
it has rich syntax to deal with the complex API usage model,
including necessary control statements like if, while, and try to
represent preconditions and exception handling. Second, there
is a mature frequent subsequence mining algorithm PrefixSpan
[30] to efficiently mine the API usage patterns. Compared to
other code abstraction forms, the sequence model is simple and
scales to very large corpus. One thing to note that, although
this paper chooses SCS as code abstraction in implementation,
our approach can be easily spread to other code abstractions,
which only need to know the type of missing expressions in
the mined patterns.

During mining, we choose the threshold as 5%, which
means a subsequence has to appear in at least 5% of the files in
the corpus. Furthermore, we configured the BIDE tool to only
return closed sequences, which means if the super sequence of
a sequence is also frequent, this sequence won’t be returned.
The minimum length of the returned sequence is 3. The mining
result only represent the subsequences are frequent, however,
they do not necessarily represent a correct usage of a given
API method. Thus, we did a manual checking for each mined
pattern and removed the following two types of results:
• illegal syntax. The mined pattern has illegal syntax, e.g.,

unclosed brackets
• unclear semantics. The mined pattern is only a frequent

combination of some unrelated code elements and does
not have a clear functionality.

Finally, we mine 168 API usage patterns for the 100 chosen
code elements. We focus on an important problem during code
integration: completing the missing variables of a given API
usage pattern. All the receivers and parameters of method calls
in the mined SCS sequences need to be completed. Totally, we
collect 670 variables to complete.

C. Completion type analysis

Given an API usage pattern and its usage examples, we
implement a tool to automatically extract how holes in the
pattern are filled. For each hole in the pattern, the tool
analyze the def-use relations in the usage examples and returns
a list of expressions, corresponding to the real-world hole
implementation. We not only consider the internal data flow
of a method, but the fields and the constructor functions as
well. Figure 3 shows an example to illustrate how our tool
works. In this example, the <HOLE> with type CellStyle



class WriteExcelSheet {
public WriteExcelSheet(String path){

try {
f= new File(path);
fis= new FileInputStream(f);
wb= new XSSFWorkbook(fis);

} catch (Exception e) {
// lines of code ommited

}
public void writeData(){
CellStyle <HOLE> = wb.createCellStyle();
// lines of code ommited

}
}

Fig. 3. Example code to illustrate how holes are constructed

is filled from the path variable from the constructor function.
The following method call chain is called for the construction:
File(), FileInputStream(), XSSFWorkbook(),
createCellStyle(). The first author initially inpected
the returned expressions for 50 API usage patterns and al-
ready observed convergent completion types. Then the author
continued to inspect the returned expressions for all the 168
API usage patterns, since the list of completion types was con-
verging. This is a typical procedure in qualitative analysis [31].
Finally, we conclude 5 categories from the syntax perspective.

Enumerations With enumerated constants, empty holes
often indicate a software developer’s need to choose from a
limited set of options that best fit his or her needs.

Method calls Any method call with the correct return type
can be a candidate expression for the hole. Furthermore, it
could be a method call chain that returns the desired type.
There are some noticeable ways of method calls to create the
variables:

• Design patterns. Factory patterns and singleton patterns
are the most common design patterns to create a new
variable.

• Load persistent data. Important data are often stored in
persistant structure like databases or files. Load from such
persistant storage is a common way for data creation.

• Getters. A desired variable is often a private field of
another data structure. A getter method is a common
interface to visit such fields.

Constants For the basic types, programming languages
often provide their default value, such as 0 for int, or ”hello
world” for string, such types have infinite options, which
can only be specified by users. For the reference types, the
common constant is null.

Class instantiations For the reference types, a variable
could be instantiated with the corresponding constructors.

Defined variables from the context Unless a user decide
to reuse an API usage pattern from scratch, the current
programming context has already defined some variables. Such
defined variables can be directly used to fill the holes.

Table I shows the distrubution of all the five types in our
empirical study. As we can see, the most frequent types are

TABLE I
DISTRUBUTION OF THE FIVE TYPES OF COMPLETION TYPES

Type #Occurrences Percentage(%)
Enumerations 25 3.7
Method Calls 248 37.0
Constants 40 6.0
Class Instatiation 69 10.3
Defined variables from the context 288 43.0
Total 670 100.0

Workbook wb = new HSSFWorkbook();
Cell cell = wb.createSheet().createRow(0)

.createCell(0);

Fig. 4. A long method call chain to create a Cell type variable

variables in the context and return value of method calls,
cover 43% and 37% cases separately. For completion of
method call type, we observe that they often appear in the
form of method call chain, such as a().b().c(). Figure
4 shows a code example to create a Cell type variable in
apache-poi. Such a long method call chain is difficult for
users to understand and synthesize.

This problem arise the direction for our work: provide a
comprehensive integration solution for users to complete the
missing variables in API usage patterns. We consider two
ways to help users under such situations. First, we observe
that a common senario in API-centric code completion is
that users have defined some variables, but don’t know how
to get a variable with the desired type. Thus, we view the
defined variables as the starting points to synthesize candidate
expressions and divide the expressions according to their
syntax type (among five types in this section). Second, we
dynamically update a list of real-world API usage examples
to users, to enhance their confidence that the recommended
completion can work.

IV. APPROACH

Figure 5 shows the framework of our approach, which
can be divided into four steps. (1) API knowledge graph
construction, (2) hole clustering, (3) expression synthesis,
and (4) expression and code example recommendation. Given
an API usage pattern, we first parse the API source code
to construct a knowledge graph. Since holes in a pattern
may have data dependency, we further cluster the holes by
analyzing the client code corpus. The two phases are finished
in the offline part. In the online part, our goal is to guide
users to complete the pattern into an executable code snippet.
By searching the knowledge graph, we synthesize well-typed
expressions for each hole. Also, a list of recommended code
examples is shown for users to learn similar API usage. After
users select certain expression from our synthesis result, the
code examples will be reranked to ensure the top examples
are the most related to the current context. The rest of this
section will introduce the details in our approach.



Fig. 5. Framework of our approach

A. API knowledge graph construction

Source code of a library contains abundant semantic knowl-
edge, we focus on Java libraries in this paper:
• class abstracts real-world entity, method corresponds to

operation on certain entity
• mechanism like inheritance and java.lang.Iterable inter-

face models semantic relations between entities
Our approach organizes such semantic knowledge as the API
knowledge graph (API KG). Given the source code of a library,
the construction of API KG is completely automatic and works
in offline part of our system.

API KG is a directed graph G = (V,E). The node
set V contains five types of nodes, which correspond to
five types of API elements. All the nodes are components
available for later expression synthesis. We use ASTParser
in org.eclipse.jdt.core2 to extract code elements and their
semantic relations for a given API.

The edge set E of API KG consists of six types of edges.
Extend and implement edges describe the inheritance property.
In Java, when we need an object of father class, we can
provide a child class object. The operation is called upcast
and the reverse operation is called downcast. We treat the
implement edge in a similar way as the extend edge, which
is also used to synthesize cast operations in the program. The
only difference is the target node of the implement edge is
an interface, which can not be instantiated as an object. For
the iterable edge, java.lang.Iterable is a built-in interface of
Java. If type A implemented Iterable interface with type B as
parameter, variable with type A can be iterated in a for-each

2https://mvnrepository.com/artifact/org.eclipse.jdt/org.eclipse.jdt.core

loop. Each element in the iteration has type B. An iterable
edge starts from a class/interface node and ends with another
class/interface node. It means the source node implements the
Iterable interface with the target node as a parameter. Details
of the nodes and edges are shown in Table II and III.

TABLE II
FIVE TYPES OF NODE IN API KG

Node Type Description Properties
Class a java class name, comment
Interface a java interface name, super interface,

comment
Method a member method name, parameter list,

static or not, constructor
or not, comment

Enum Class an enum class name, comment
Enum Constant an enum constant name

TABLE III
SIX TYPES OF EDGE IN API KG

Edge Type From To Description
haveMethod class/

interface/
enum class

method a class/interface to its
member methods

return method class/interface a method to its return type
haveConstant enum class enum

constant
an enum class to its mem-
ber constants

implement class/interface interface a class/interface to inter-
faces it implements

extend class/interface class/interface inheritance of a class/in-
terface to class/interface it
extends

iterable class/interface class/interface container class/interface to
element class/interface



B. Hole Clustering

To integrate an API usage pattern into the local program-
ming context, developers have to construct variables for all the
receivers and parameters of the API methods. It’s common that
variables in the API usage pattern have strong relationships
with each other, which indicates that we can reduce the
number of variables to be filled through investigating real-
world usages.

Given an API usage pattern, we first view all receivers and
parameters of methods are holes. Then we extract the actual
receivers and parameters from real-world usages. By analyzing
all actual parameters for a given hole, we can classify different
holes into fixed or changeable. Only holes with a constant type
such as string literals, numbers, and enums can be considered
as fixed, so long as the frequency of the most frequent actual
parameter exceeds a predefined threshold. Once a hole is
considered as a fixed hole, the most frequent actual parameter
will be filled in the hole. This process will repeat until all
holes in the snippet skeleton are changeable.

Furthermore, we summarize relationships between the
changeable holes and utilize them to reduce the number of
changeable holes further. One of the simplest but important
relationships is co-reference, which means that two different
holes should refer to a single entity, or share the same
expression as the parameter. A co-reference group is a set of
holes in which the co-reference relationship exists between
any two different holes in this group. We aim to find as
many maximal co-reference groups as possible. As a result, a
maximal co-reference group can be viewed as a single hole
and needs only a single expression as the parameter.

Definition 3 (Co-reference degree): Co-reference degree
between two different holes represents the frequency that the
two holes are completed with identical expressions in the real-
world usage. Co-reference degree between two groups of holes
represents the minimal value of co-reference degrees between
holes in the two groups.

In the process of discovering maximal co-reference groups,
a co-reference matrix was used as the key data structure. Each
line of this matrix refers to a co-reference group in the API
usage pattern, and so do the columns. The i-th line and the
i-th column represent the same group, and it makes the co-
reference matrix a symmetric matrix. At first, each group has
only a single hole, and any two groups in different lines
contain different holes. The number resides in the i-th line
and j-th column represents the co-reference degree between i-
th group and j-th group. Based on the co-reference matrix, we
discover maximal co-reference groups in an iterative, bottom-
up way. In each iteration, our approach scans the matrix
and find a grid in which the number exceeds a predefined
threshold. Suppose the grid resides in the i-th line and j-th
column, and it means that i-th group and j-th group have a
co-reference relationship. Then we combine the two groups
into a new group that contains all holes in the original two
groups, and the co-reference matrix should be modified to
reflect the combination. Specifically, the lines and columns

corresponding to the combined two groups will be removed,
and a new line and a new column will be inserted to the
matrix, which represents the co-reference degrees between
the new group and other remaining groups. According to
the definition of co-reference degree, the new line can be
computed as follows: the k-th entry in the new line is the
minimum value between the k-th entries in the removed two
lines. The computation of the new column is similar to the new
line. After an iteration, the size of the co-reference matrix is
reduced by one. The process will be repeated until there is
no value in the co-reference matrix exceeds the predefined
threshold. At that time, no groups can be combined any more,
so all the groups in the matrix are maximal.

C. Expression synthesis

Now we get a set of maximal co-reference groups for each
API usage pattern, but there are no descriptions for these
groups of holes. Without that, developers may have no idea
what these groups represent, and thus they can not formulate
appropriate expressions to complete the pattern. Therefore, it’s
necessary to find a suitable description for each of the co-
reference groups.

Our approach extracts descriptions from the Javadocs of
the specified libraries. To be more specific, if a co-reference
group corresponds to a parameter of a method invocation, we
extract the parameter descriptions in the Javadocs (i.e., content
after @param marks). Otherwise, the group is a receiver of a
method call, we use the class name as its description.

Even when there is a description for each group, devel-
opers sometimes still can not figure out how to formulate
an appropriate expression for the group. For instance, to
specify the red color in apache-poi, developers should use
IndexedColors.RED.getIndex(). Such an expression
is difficult to be synthesized if the developer is not familiar
with the library. To address the problem, we proposed a
method to synthesize expressions for each group, making use
of both the source code and client code of the target library.

Recall we construct the API knowledge graph for a library
in our offline approach. We change the problem of synthesiz-
ing well-typed expressions to the problem of searching paths
on the graph. Specifically, when a developer needs to formulate
an expression for a given group, we firstly parse the local
programming context to extract a list of local variables. Then
we synthesize expressions according to the data type of the
group in a top-down way. Algorithm 1 shows the detailed
procedure. For a given target type and maximal depth, we
first add all local variables and static fields whose type equals
to target type into the recommendation list. As for the non-
static fields with target type, we then utilize Algorithm 1
with maxDepth-1 as a parameter to construct the objects
which contain target non-static fields, then take the target
fields from the objects. For methods that return target type, we
also utilize the algorithm with maxDepth-1 as a parameter
to get subexpressions for all parameters and callers of the
methods, then combine the subexpressions and methods into
a list of well-typed expressions. In this way, all expressions



with target type can be synthesized, and the maxDepth
parameter can be used to control the maximal complexity
of synthesized expressions. In our current implementation,
we set maxDepth to 4. If the algorithm can not find any
expression within maxDepth complexity, it will return only
a placeholder expression of the target type.

Algorithm 1 Algorithm to synthesize a expression with a
given type

Input
localVariables, targetType, maxDepth

Output
expressions

expressions = []
if maxDepth≤ 0 then return expressions
end if
methods = getMethodsByReturnType(targetType)
for each method in methods do

subTargetType = method.parameters + [method.caller]
subExpressionsSequence = []
for each subTargetType : subTargetTypes do

subExpressions = synthesizeExptressions
(localVariables, subTargetType, maxDepth-1)

subExpressionsSequence.append(subExpressions)
end for
methodCalls = synthesizeMethodCallExpressions

(method, subExpressionsSequence)
expressions.append(methodCalls)

end for
if expressions.length == 0 then

expressions.append(placeHolder(targetType))
end if

D. Expression recommendation and code example update

After synthesizing a list of candidate expressions for each
hole group, we need to recommend the expressions in a user-
friendly way. We divide the recommendation into two parts.

The first part is completion type selection, which is based
on the conclusion of our empirical study. Users will first select
the desired completion type (i.e., enumerations, constants,
class instantiations, method calls, and defined variables). For
enumerations, we let the user select among a fixed set of
possible enumeration constants. For example, for the missing
parameter of method setFillPattern, our API KG shows
that there are 19 patterns defined in apache-poi. Thus,
a drop-down selection box is displayed for users to choose
the desired pattern. For constants such as a user-specified
string or magic number, an input box is displayed for the
user to type the content. For class instantiations, we combine
the constructors and some classic design patterns for class
instantiation under the category. Users simply choose which
one they need in a selection operation, just like working with
enumerations. For method calls and defined variables, we treat
them as the same because they all start from defined variables
and try to synthesize the desired type.

The second part is expression ranking. Among expressions
of the same completion type, the following two metrics are
used to rank them.

Completeness For API-centric code completion, a common
scenario is that the programmer knows what type of object
he needs, but does not know how to get the object with vari-
ables already defined [32]. Thus, according to the number of
undefined variables in an expression, we rank more complete
expressions higher.

Popularity Since the completeness metric often brings two
expressions to a tie, we utilize the client code of the library to
view the popularity of the synthesized expressions. The score
of an expression is computed as the product of the scores of its
components. The basic elements of an expression are methods,
fields, constructors, local variables, and placeholders. To get a
variable of a given type, developers can utilize a constructor,
a method that returns a variable with the given type, or a
field of that type. We analyze the client code and estimates
the probabilities of the three ways to create a variable. This
also implies that the scores of all methods, constructors, and
fields with the same return type will add up to one. As for
local variables, we do not penalize their existence and set
their scores to one. In this fashion, the expressions are ranked
according to their occurring probabilities.

V. EVALUATION

We focus on the following two research questions:
• RQ1. Given a specified code example among the code

corpus, can CODA recommend it effectively with user
interaction?

• RQ2. Can CODA save time and help developers compre-
hend the API usage better during integrating real-world
API usages?

We conducted two evaluations to answer the questions. For
the first research question, we randomly pick a program from
the corpus for API usage pattern mining as our goal example.
We suppose the user wants to do the same thing as the goal
program, and simulate the user’s completion process. The
ranking of the goal example is recorded for analysis. This
evaluation gives a feel for the accuracy of the algorithm. The
second question is evaluated in a user study. We prepare five
curated API usage examples from Stack Overflow and ask
participants to use CODA to integrate them. The user study
shows how our tool works in real-world development and
detects how it can promote the efficiency of API integration.

A. Datasets

We use 3 Java libraries in our evaluation, which include:
Apache POI, a library manipulating Microsoft files like Word
and PowerPoint. Joda-time, a library process time, which is
later integrated into the JDK. JFreeChart, a library to generate
different kinds of charts.

Table IV shows how many class files and non-blank lines
of code each project contains. We also reported the time cost
to generate our API knowledge graphs.



TABLE IV
PROJECT AND THE CORRESPONDING API KG STATISTICS

Project #Classes #Methods API KG time(s)
Apache POI 3430 32274 268
Joda time 449 9785 14
JfreeChart 908 11017 60

B. RQ1. Code example recommendation study

1) Methodology: To evaluate our approach, we feed our
tool with API usage examples from the official tutorial of
each library. We choose examples from the official tutorials
as input because they are widely adapted to the client code
and make the process of mining API usage patterns easy.
We first construct the adaptation corpus for each example by
detecting the same API call sequence in Github. We apply
Baker [33], a tool to automatically complete the fully-qualified
names of the API methods. For each example, we construct a
corpus containing 100 adaptation examples. We further select
a specific adaptation for each example as our goal. We feed the
corpus to our tool and check whether our tool can promote the
ranking of the goal example after several rounds of interaction.
To be specific, the goal example is randomly ranked in the 100
adaptation examples at the beginning. For each hole of the API
usage pattern, the goal example has its way to construct the
missing variable. Iteratively, we solve each hole in the pattern
by providing how it is filled in the goal example. This is a
simulation of how developers use CODA to view their desired
code examples. We also first tell CODA the syntax type to
fill one hole, then we automatically select the best completion
way from CODA’s synthesized expression list. The iteration
process repeats until all the holes are filled.

2) Result: Table V shows the result for the three Java
libraries. The #patterns column shows that the number of
code examples in the tutorial for each library. In total, we
collected 93 code examples. Each code example has 100
adapted examples, we randomly select 10 out of them as
the set of goal examples. That is to say, our artificial corpus
evaluated CODA on integrating 930 API usage examples.

The Rank@Hole1, Rank@Hole2, and Rank@Hole3
columns show how CODA promotes the ranking of the
goal example. (e.g., Rank@Hole1 is the ranking of the goal
example after the user fills the first hole, Rank@Hole2 is the
ranking after two holes are filled.) Finally, the Final Rank
column represents the ranking after filling all the holes. As
we can see, each iteration significantly promotes the ranking.
After the user correctly fills all the holes, the desired code
examples are displayed in top-5 on average. For JfreeChart,
the final ranking is 2.7, which means the users can expect to
see the goal example in the top-3 recommendation of CODA.
Consider that there are 100 candidate code examples in the
code corpus, CODA’s performance of recommending related
code examples is effective.

3) Discussion: The goal of our first research questions is
to determine whether CODA can work on real-world Java
libraries. The results suggest that the problem is tractable: our

TABLE V
HOW THE RANKING OF THE GOAL EXAMPLES ARE PROMOTED BY CODA

Library #Patterns Rank Rank Rank Final
@Hole1 @Hole2 @Hole3 Rank

Apache POI 46 48.2 31.4 12.8 3.9
Joda time 28 43.3 27.8 14.6 4.3
JFreeChart 19 46.1 25.5 10.8 2.7

search and synthesis process on API KG achieves a modest
speed and can effectively bring the goal code example to
users. On average, the recommendation for a hole can be
solved in less than 800 milliseconds, which is acceptable for
an autocomplete tool. Note that we didn’t include the time to
build the API KG since the model can be constructed in the
offline process.

C. RQ2. User study
The purpose of this study is to test the usefulness of CODA

in real-world programming with human interactions. We con-
ducted a user study with eight Java programmers to evaluate
whether participants could grasp a more comprehensive view
of API usage using CODA, in comparison to a realistic
baseline of Codota, which is a widely-used deep learning
based code completion plugin. Codota can also recommend
relate code examples if users give a specific API method
name, which is commonly used in real-world programming
workflows.

1) Participants: We invited eight participants to solve real-
world programming tasks using CODA. All the participants
were familiar with the Java syntax. Four of them come from
the industry, with at least four years of experience in industrial
software development. The other four participants are graduate
students majoring in software engineering.

2) Tasks: We designed a set of API integration tasks to
assess how much knowledge about API usage participants
could extract from our tool. Prototypes of the tasks were
selected from Stack Overflow posts, which are displayed in
Table VI. In fact, adapting existing code snippets from Stack
Overflow is a common scenario in software development.
Related works [7], [8] show that the utilization of curated code
examples from online forums is low due to multiple problems
like incompleteness, incomprehensive.

Formally, each task in our user study consists of four
components:
• A code snippet to be integrated. Participants need to

integrate the snippet into a given programming context.
The code snippets are carefully selected to ensure that
they display the correct API usage.

• A textual description of the task. We extract the title and
surrounding sentences of the code snippet from Stack
Overflow. We further concretize the description to give
participants necessary information to integrate the snippet
(e.g., for Q4, we specify the position of the cell and the
color to set).

• A programming context. One solution is that we can
leave an empty context for participants to adapt the code



TABLE VI
STUDY QUESTIONS FROM STACK OVERFLOW

Task Descriptions
Q1. How to create hyperlink within an excel cell
Q2. How to set time zone with Joda-time
Q3. How to create an excel drop down list
Q4. How to set the background color of an Excel cell
Q5. How to display value in pie chart

snippets. However, to estimate a real-world programming
environment, we collect the adaptations of the code
snippet from Github. All the five snippets are internal
calls in a single method, and we use the most frequent
method signature from the adaptations as the context in
the study.

• A testing program. For each task, we manually compose a
testing program to validate the correctness of integration.
For example, after specifying the position of the cell
and the color to set, our testing program reads the color
information of the specified cell and check whether it is
corrected configured. The testing process is completely
automatic.

During the selection of the tasks, we follow the following
two principles. First, the integration should focus on API usage
instead of other configuration. For example, APIs related to
database connection requires users to correctly configure a
database before composing a piece of correct code, which is
not the target of this user study. Second, we avoid APIs that
participants are already familiar with before the study. Thus,
we select API usages from third-party libraries instead of JDK
methods.

Finally, we use the EduTools of IntelliJ IDEA to implement
the environment of our user study. All the participants are
given a static method foo without a method body, and they
are asked to complete the method by integrating a set of APIs
from the task. Figure 6 shows the user interface of our user
study. A task is considered to be finished if the user can pass
the testing program in a limited time (15 minutes), otherwise,
the task fails.

3) Methodology: We design the user study as a controlled
study. Two industrial programmers and two students form the
experimental group, use CODA to integrate code snippets,
while the control group consisting of the rest four participants
don’t use our tool. Instead, the control group’s coding environ-
ment is equipped with Codota, a widely-used deep learning
based code completion plugin. Codota can also recommend
a list of code examples if the user types in the interested
API method name. We allowed all participants to visit online
resources such as Q&A forums and search engines when
solving tasks.

During the user study, we record information of four aspects
for later analysis, which are: (1). the rank of the correct
expression in our recommendation list, (2). the times of user
interaction to finish a task, (3). the total time a participant
used to finish a task, and (4). the response time of our

TABLE VII
RESULT FOR THE EXPERIMENTAL GROUP

Task ID #Holes #Interactions MRR Total time(s) Response time(s)
Q1 9 4 0.75 377 0.67
Q2 10 3 0.83 456 0.86
Q3 9 9 0.25 768 0.29
Q4 10 4 0.75 143 0.55
Q5 13 8 0.56 123 0.43

tool to recommend expressions and examples. The metric
we use to evaluate the recommendation accuracy is MRR
(Mean Reciprocal Rank), which is a typical metric used in
IR (information retrieval) works. In our scenario, completing
a hole is an IR task. For a set of holes H , the values of MRR
is calculated as follows:

score(hole) =

{
1

rank(answer(hole)) answer is synthesized

0 else
(1)

MRR(H) =

∑
h∈H score(h)

|H|
(2)

For the user interaction times, we consider the following five
actions as user interaction: (1). fill in a method parameter, (2).
fill in the receiver of a method, (3). fill in a method name,
(4). fill in a class name, (5). instantiate an object. Response
time refers to the time spent by our tool for synthesizing and
ranking expressions, starts from when the developer triggers
CODA and finishes when the recommended expressions are
returned to the user.

4) Result: Table VII shows the result for the experimental
group in our user study.

The #Ele column represents the number of code elements
that need to be completed to generate a complete code from
the code skeleton without using CODA. The #Interact column
represents the number of interactions required to generate a
complete code from the code skeleton using CODA. It can be
seen that using this tool can reduce the number of interactions
by 50%-67% in most cases, and can greatly improve the
efficiency of software developers.

From the MRR column, we can see that our tool has a
high precision of recommending related expressions. However,
we notice that Q3 has a significantly poor result on the
MRR metric, that is because the task requires initializing an
array, which is currently out of the ability for our expression
synthesizer.

Figure 7 compares the average time (minutes) used between
the two groups. On average, the control group spent 535.2
seconds for each task, which is significantly larger than the
number for the experimental group (373.4 seconds). For Q3,
two of the participants using Codota fails to pass the testing
program, the other two almost spent all the limited 15 minutes.
We address the main advantage of CODA is that it can
automatically update the related code examples, in contrast to
Codota, which asks the user to type in a specific API method
name and return a fixed list of API usage examples.



Fig. 6. User interface of our user study. In this task, user are provided with a method signature, containing a parameter with the type Workbook. After user
integrate the code snippets on the right side, a click on ”Check” will return the verdict result.

Fig. 7. Comparison of average time spent by the two groups

D. Threats to validity

Internal validity Due to the high cost of user study, we
select only five tasks from Stack Overflow in our evaluation.
The performance of CODA may vary in other scenarios or real-
world development. To issue the problem, we automatically
simulate the user’s behavior on integrating 930 real-world API
usage examples. However, we cannot cover all the aspects of
CODA in the automatic evaluation, instead, we only analyze
how the recommended code examples change.

External validity We select three Java libraries from differ-
ent domains to evaluate the usefulness of CODA. The number
of libraries is relatively small and may not be representative
for all Java APIs. The scale of a library and its client code
may have effect on CODA’s performance. First, if a library
contains too many code elements, not only the time for offline
API KG construction will be longer, the speed of online
expression synthesis and recommendation may be extended
as well. In our datasets, apache-poi is the largest library,

which consists of more than 3,000 classes and 30,000 methods.
For library of such size, CODA’s speed is acceptable (268
seconds for offline API KG construction, 800 milliseconds for
each online recommendation). Second, the scale of the client
code is also an important factor. Notice that not all open-
source libraries are actively reused in platforms like GitHub.
If CODA is constructed for a relatively unpopular library, it
may not find enough usage examples for recommendation.
CODA is designed to help developers quickly locate desired
code examples by synthesizing missing variables interactively.
However, if the number of code examples is small at the
beginning, the benefits of CODA will not be that significant.

VI. CONCLUSION

In this paper, we promote an approach to integrate a set of
API methods by synthesizing their receivers and parameters.
Furthermore, our tool CODA can update a list of recommended
real-world code examples according to the user’s current
context. Our work is complementary to existing works on
mining API usage patterns or synthesizing incomplete API
usage patterns. Instead of view the completion of method
receivers and parameters as a straightforward code completion
task, we address that users’ comprehension of the APIs is
important during the process. Our tool gives a more com-
prehensive solution that existing AI-based completion tools
because it classifies the recommended expressions according
to their syntax, accompanied with a dynamically-updated code
example list.
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