
ar
X

iv
:2

10
3.

11
00

8v
1

 [
cs

.S
E

]
 1

9
M

ar
 2

02
1

Does Code Structure Affect Comprehension?

On Using and Naming Intermediate Variables

Roee Cates∗ Nadav Yunik∗ Dror G. Feitelson

Department of Computer Science

The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

Abstract—Intermediate variables can be used to break complex
expressions into more manageable smaller expressions, which
may be easier to understand. But it is unclear when and whether
this actually helps. We conducted an experiment in which
subjects read 6 mathematical functions and were supposed to
give them meaningful names. 113 subjects participated, of which
58% had 3 or more years of programming work experience.
Each function had 3 versions: using a compound expression,
using intermediate variables with meaningless names, or using
intermediate variables with meaningful names. The results were
that in only one case there was a significant difference between
the two extreme versions, in favor of the one with intermediate
variables with meaningful names. This case was the function
that was the hardest to understand to begin with. In two
additional cases using intermediate variables with meaningless
names appears to have caused a slight decrease in understanding.
In all other cases the code structure did not make much of a
difference. As it is hard to anticipate what others will find difficult
to understand, the conclusion is that using intermediate variables
is generally desirable. However, this recommendation hinges on
giving them good names.

Index Terms—Code comprehension, extract variable, inline
variable

I. INTRODUCTION

The ability to comprehend other software engineers’ code

is a key ingredient of software maintenance. Whether it is

debugging and fixing code, adapting and modifying it, reusing

code or leveraging its functionality, comprehension is an

imperative stage in the process. Both the comprehension itself

and the time it takes to understand some functionality can be

hampered by the code’s complexity and lack of readability.

In many cases, the same functionality can be expressed in

different ways. And some structures, more than others, may

increase engineers’ cognitive load. One example is the use of

compound expressions as opposed to breaking the expression

into separate sub-expressions, and tying them together using

intermediate variables. As a simple example, the distance

between two points A and B can be calculated as

d = sqrt((A.x-B.x)**2 + (A.y-B.y)**2)

Or alternatively as

dx = A.x - B.x

dy = A.y - B.y

d = sqrt(dx**2 + dy**2)

This research was supported by the ISRAEL SCIENCE FOUNDATION
(grant no. 832/18).

∗Authors contributed equally.

The first version contains a larger compound expression, but

overall it is shorter. In the second version each expression

is simpler, and has a name which reflects its essence. But

there are three of them, and one needs to mentally connect

them to get the full picture. The question, then, is whether

using simpler expressions connected by intermediate variables

is advantageous, or alternatively whether sticking with the

shorter more condensed version is perhaps better.

The idea of using intermediate (temporary) variables like

this is not new. In fact, the change from the first to the second

version above is an instance of an “extract variable” refactoring

(also known as “introduce explaining variable”) [12]. At the

same time, changing from the second version to the first is an

instance of an “inline variable” refactoring. The fact that both

refactorings exist implies that both are thought to be beneficial

in certain conditions. Our goal is to study this experimentally,

in the context of code comprehension.

In our experiments the participants are required to under-

stand short functions which are presented in either of three

styles: using compound expressions, with variables extracted

but given meaningless names, and with variables extracted and

given meaningful names. This design enables us to see whether

effects are due to the change in structure or to the introduction

of the names.

The results of executing such an experiment based on 6

mathematical functions suggest that the meaningful names are

the more important factor. Introducing intermediate variables

with meaningless names might even lead to making more com-

prehension errors. But we also find that intermediate variables

make a difference only in relatively complex cases, where

comprehending the code is a challenge. If it is straightforward

enough, it hardly matters whether intermediate variables are

used or not. Since it is hard to anticipate accurately what others

will find hard, using intermediate variables with meaningful

names seems the safe approach.

II. RELATED WORK

There has been very little work on the comprehensibility

of expressions, and more generally on the comprehensibility

of coding structures. Ajami et al. compared multiple code

snippets which expressed the same functionality in different

ways [1]. Among other things they compared compound

logical expressions with nested structures of ifs. The results

were that no significant differences in comprehensibility were

found. Such structures were also considered by Wiese et

http://arxiv.org/abs/2103.11008v1

al. [21], where it was accepted that expert opinion is that

compound expressions are preferable to nested if statements.

But when novices were confronted with such code differences,

it did not have a significant effect on their performance, even

though they said they found the compound version more

readable.

Removing intermediate variables and favoring compound

expressions is one of the transformations advocated in the

context of “Spartan” coding [13], [14]. The goal there is to

reduce all code metrics, including its size (as measured by the

number of characters in the program), the number of control

statements, and the number of variables. However, we do not

know of any empirical studies concerning the effect of these

transformations on comprehension.

There has been significantly more work on the effect of

variable names. Considerable attention has been devoted to

the issue of name lengths, and in particular to whether abbre-

viations cause a disadvantage relative to using full words [5],

[15], [16], [17], [19], [20]. Another favorite topic is controlling

the vocabulary used in variable names, and how this reduces

ambiguity [4], [7], [9], [10]

Feitelson et al. investigated how variables names are se-

lected [11]. One of their results was that naming is very vari-

able, with little chance that different developers would select

exactly the same name for the same variable. Arnaoudova et al.

investigated renaming of variables, and showed that renamings

most often modify the meaning of the names [2]. A possible

explanation for this is provided by Avidan and Feitelson, who

show that names may be misleading to the point of being

worse that meaningless names like consecutive letters of the

alphabet [3]. All these works testify to the difficulty of finding

good names that will convey the desired meaning without any

ambiguity.

Introducing intermediate variables with meaningful names

can serve as a form of inline documentation. Zabardast et al.

claim that this is one of the refactorings that are effective

in reducing technical debt, based on an analysis of 2286

commits in an unnamed financial services application [22].

Counsell et al. claim that an association exists between classes

in which this refactoring was applied and defect proneness,

based on 5 releases of 2 Eclipse projects [8]. This may

imply that the refactoring was applied to classes that were

known to be problematic. Our emphasis is on the effect on

code comprehension. In addition, we attempt to distinguish

between the contribution of the restructuring of the code and

the addition of a meaningful variable name.

III. RESEARCH QUESTIONS

Our overarching goal is to better understand how coding

practices affect code comprehension. In this paper we specif-

ically focus on the format of mathematical functions, and in

particular on the possible effect of using intermediate variables

to store the results of sub-expressions. To understand this

issue we need to distinguish between two interrelated factors.

The first is the partitioning of large compound expressions

into a set of smaller and simpler sub-expressions. The second

is giving meaningful names to these sub-expressions. These

considerations lead to the following two concrete research

questions:

1) Does compound code impair comprehension compared

to partitioned code which uses intermediate variables to

store sub-expression results?

2) Given such partitioned code, do meaningful intermediate

variable names support comprehension?

IV. METHODOLOGY

To study the effect of intermediate variables we conducted a

controlled experiment. We used 6 functions, each with 3 code

versions that differed in their use of intermediate variables.

The experimental subjects were tasked with understanding the

functions and giving them names.

A. Selection of Functions

We originally defined 10 fundamental mathematical func-

tions. The reason for choosing such functions was the desire to

avoid domain knowledge issues. Basic mathematical functions

are expected to be understandable by any competent program-

mer. To further reduce problems of domain knowledge, we

chose functions from different fields of mathematics, such

as geometry and probability. Note too that understanding

mathematical functions is highly relevant to developers, who

may face the need to understand such code in the context of

machine learning, data science, or statistics.

Another consideration was to include functions with dif-

ferent levels of complexity. This is somewhat ill-defined, as

a function that one experimental subject finds easy to com-

prehend may cause another subject to struggle. We therefore

conducted a small pilot study with 3 subjects (two Computer

Science BSc graduates and an algorithms developer). This

study showed that the experiment took more time than we

planned, and that some of the questions were harder than

we anticipated. We therefore eliminated 4 of the functions:

a function calculating the solution to a quadratic equation,

which was considered too easy, due to the iconic formula for

the discriminant (b**2 - 4*a*c); a function calculating the

sum of a geometric series which was too similar to another

calculating the arithmetic sum which we retained; a function

calculating the Manhattan distance between two points, that

led to excessive ambiguity in the answers; and a function

calculating the cosine similarity between two vectors, which

was too complex and was not understood by any of the pilot

participants.

The final experiment used the remaining 6 basic mathemat-

ical functions. These were:

• ARITHSUM: Assert that the elements of an array form

an arithmetic series (i.e. that they are equidistant), and

compute the sum of this series using the conventional

formula.

• VARIANCE: Compute the variance of the elements of an

array.

• PRIME: Establish whether a number is a prime, by

checking whether any smaller number divides it.

Version 1: single compound expression

def foo(arr):

return sum((x - (sum(arr) / len(arr)))**2 for x in arr) / len(arr)

Version 2: break using intermediate variables

def foo(arr):

tmp1 = len(arr)

tmp2 = sum(arr) / tmp1

return sum((x - tmp2)**2 for x in arr) / tmp1

Version 3: give them meaningful names

def foo(arr):

n = len(arr)

mean = sum(arr) / n

return sum((x - mean)**2 for x in arr) / n

Fig. 1. Versions of the VARIANCE function

• SORT: Sort an array of numbers using bubble sort.

• RIGHTTRIG: Check whether a triangle has a right angle

by checking whether any permutation of its sides is a

Pythagorean triple. The check for a Pythagorean triple is

done by a separate subroutine.

• PARALLEL: Check whether two lines, defined by 2 points

each, are parallel to each other, by checking whether they

are vertical, and if not, by comparing their slopes.

B. Code Versions

For each function we created three code versions:

1) The base version used a compound expression which

had no intermediate variables at all.

2) A version in which the compound expression is bro-

ken into sub-expressions, whose values were stored

in intermediate variables. These variables were given

meaningless names: tmp1, tmp2, and so on.

3) The last version was the same as the previous version,

but this time the intermediate variables were given

meaningful names such as mean or isGreater.

An example is shown in Fig. 1. These are the three versions

of the VARIANCE function (which calculates the variance

of an array of numbers). Version 1, with no intermediate

variables, employs a single compound expression embedded

in the return statement. In version 2 intermediate variables

are used to store the input array’s length and the average of the

input elements. These variables are then used in the expression

calculating the variance, thereby simplifying it. However, their

names do not reflect their meanings. Version 3 is the same,

but this time the names (n and mean) do reflect the meanings

of these variables.

By using these three versions we divide the difference

between using a compound expression and extracting ex-

planatory intermediate variables into two independent parts,

as required by our research questions. The difference between

versions 1 and 2 reflects a pure structural difference. Compar-

ing the performance on these two versions will show whether

using a single compound expression is better or worse than

using multiple simpler expressions. The difference between

versions 2 and 3 is a pure semantic difference, at the level

perceived by a human reader, reflected in the intermediate

variable names. Comparing the performance on these two

versions will show whether any changes in performance are

a result of the structural change or a result of giving the

intermediate variables meaningful names.

In realistic settings, we would expect functions to be similar

to versions 1 or 3. In this sense version 2 can be seen as an

experimental control. Comparing version 1 to 3 shows whether

explanatory variable extraction is beneficial, and comparing

both to version 2 shows whether this is due to the extraction

or to the explanatory power of their names.

Note that the functions are always named foo. This is

done so as not to give away what the function does, thereby

requiring the experimental subjects to read the code and try

to understand it.

C. The Experimental Task

The task which subjects are required to perform is to read

the functions and understand them. Recall that all functions

are presented with the name foo. In order to demonstrate their

understanding, subjects were required to suggest a better name

for each function. This task is straightforward, and it reflects

understanding because one can name a function correctly if

and only if it was comprehended (up to guesses). Subjects

may also answer “?” which indicates “I don’t know” to skip

a question.

The problem with this task is that we are required to

grade the selected names. The grading procedure we used is

described below. As an alternative we also considered using a

multiple choice question in which subjects would be required

to select the best name out of a number of options. This has

the advantage of avoiding the need to judge the quality of

the answers. However, it also has the prominent drawback

of guiding the subjects towards a limited set of possible

alternatives. This can suggest what to look for in the code, and

lead to a strong bias in the results, which would not reflect

the subjects’ independent understanding of the code.

D. Experiment Execution

The experiment was conducted online, using the LimeSur-

vey platform. This platform supported all the features we

needed: A/B/C testing via version randomization, questions

order randomization, and measuring the time it took partici-

pants to answer each question. No time limit was imposed.

Each configuration of a function and a version forms a trial.

The subjects received the six functions one after the other and

were asked to understand and name them. The function order

was randomized in order to avoid any systematic bias due to

learning or fatigue.

Each subject saw only one version of the code for each

function. The version shown was chosen at random. Thus the

comparison of the results obtained for the different versions

of the same function is a between-subjects comparison. At

the same time, each subject most probably saw instances of

all 3 versions, thereby reducing the effect of inter-personal

differences in performance.

The independent variable in this study is the code version.

In each trial we observe two dependent variables:

1) The name that the subject gave the function. This

enables us to judge whether the subject solved the task

correctly and understood the function.

2) The time it took the subject to solve the task. In the

analysis we focus on the times of those subjects who

named the functions correctly.

Both dependent variables are expected to correlate with the

difficulty of understanding a function [18].

V. RESULTS

A. Participants

The experiment was conducted in two waves (initially we

did not have enough subjects, so we conducted a second wave

to improve statistical validity). Participants were recruited

by posting notices in various facebook groups, such as the

group of Computer Science students as Hebrew University,

by posting on university whatsapp groups for 3rd year and

advanced students, and by personal contacts of the authors at

work. Participants were not paid, and could skip questions and

leave the experiment at any time. In total 191 subjects entered

the experiment. 36 were excluded from the analysis as they

did not claim experience with python, the language we used

to present the code. Of the reminder, 113 answered at least

one question, and 93 completed all 6.

The academic background of the participants is shown in

Fig. 2. Of those who answered, less than half did not have a

first degree: 2.7% had no academic background, and 43.4%

were BSc students (or which the majority, 25.7%, were in

their third and final year). 23.9% had completed their BSc,

another 21.2% were MSc students, and 8.8% had completed

their MSc.

none
3

BSc year 1

8

BSc year 2

12

BSc year 3

29

have BSc

27

MSc student

24 have MSc

10

Fig. 2. Academic beckground of survey participants.

none

15

1-2

33

3-5

37

≥6

28

Fig. 3. Years of programming work experience of survey participants.

The programming work experience of the participants is

shown in Fig. 3. 13.3% had none, 29.2% had up to 2 years

of experience, and 57.5% 3 years of experience or more.

Together these characteristics indicate that, while most of our

experimental subjects have an academic background, only a

minority are inexperienced students. And they can be expected

to be capable of understanding the codes we use in the

experiment.

B. Judging Name Correctness

Successful naming was judged by inclusion of specific

keywords (or concepts) in the given function names. This was

checked manually, thereby avoiding difficulties resulting from

different naming styles (camelCase or using under scores),

spelling errors, or using synonyms.

The procedure to assess name correctness was as follows:

1) One of the authors drew up a suggested key for what

constitutes a correct name in each case.

2) All 3 authors independently went over all the names

given to all the functions, tagging them as correct or

not based on the key. A special tag was used to indicate

cases that should be discussed.

3) We discussed cases that were flagged for discussion or

where we had given conflicting judgements, and reached

a joint agreement. There were 38 such individual cases

from a total of 601 names.

The final keys used for the different functions were as

follows. Examples of names from the experiment (identified by

typewriter font) are shown as written, including typos.

• ARITHSUM: We required the words “arithmetic”

and “sum” or equivalent. Thus names such as

sum_arithmetic_progresion, sum_linear_

array, and SumOfListWithFixedIntervals

were accepted as correct. The vast majority of names

given also included “series” or “progression”, but

we decided not to require this. A unique special

case was Get_gaus_series_sum, which was

accepted based on the story of Gauss coming up

with this formula as a schoolboy. Names such

as sumSeries were not accepted due to being

too general, and names like is_equal_diff or

calc_arithmetic_progresion were rejected

because they did not include the summing. sumSteps

was rejected because it implies summing the differences

between the elements rather than the elements

themselves.

• VARIANCE: We initially required the word “variance”,

or an abbreviation such as “var”. After discussing

this we decided to also accept names implying “stan-

dard deviation” (including just std) despite the fact

that the code did not include a square-root opera-

tion, as they too gave evidence to understanding the

essence of the calculation. However, mse (mean stan-

dard error) was rejected despite being close, as were

names like avrage_sqr_distance. We also rejected

var_iterator even though the variance part was

understood correctly, because this does not function as

an iterator.

• PRIME: We initially required the name isPrime or

close equivalent. However, after discussion, we decided to

also accept names indicating a check for being divisible,

as they too indicate an understanding of the essence

while the error is only in the direction of the check. At

the same time we rejected names such as the explicit

check_n_mod_number_smaller_is_zero which

lacks an indication of actual understanding.

• SORT: We required “sort” and did not insist on identifying

the specific algorithm. Thus wrong identifications of the

algorithm, such as InsertionSort, were accepted.

• RIGHTTRIG: In this case many diverse names were

used, so we manually verified that they were correct.

Examples include 90_degrees_in_triangle and

is_right_triangle. References to “straight angle”

were also accepted, as this is the actual translation

of the Hebrew term for “right angle”. We also de-

cided to accept names like IsPythagorianTriplet,

even though strictly speaking this actually describes

the service routine used by the function. As the

service routine appeared first, subjects might have

thought they were required to name this routine.

Names like is_equilateral_triangle were re-

jected. isPerp was rejected as being too general.

• PARALLEL: We required either an indication

of “parallel”, or the combination “same” and

“slopes”. Example include AreParallel and

are_of_equal_slopes. We also accepted

isParallelogram and even isRectangle

function
Sort

Prim
e

Variance

Arith
Sum

Parallel

RightTrig

co
rr

ec
t f

ra
ct

io
n

0

0.2

0.4

0.6

0.8

1
V1

V2

V3

Fig. 4. Fraction of correct answers for each question version.

despite not being strictly correct. We did not accept

isBothVertical as being too specific.

C. Success Rate

The success rate is the number of correct responses divided

by the number of total responses. The results for all versions

of all functions are shown in Fig. 4. Three patterns stand out:

• The first pattern is one of no large differences. This was

the case for the SORT, PRIME, and VARIANCE functions.

• In the ARITHSUM function and the PARALLEL function

the middle version (with intermediate variables with

meaningless names) caused a noticeable decrease in the

success rate. But the third version, with the meaningful

names, led to success rates that were higher than those

of the original compound-expression version.

• Finally, in only one function (RIGHTTRIG) was there a

substantial progression between the 3 versions. Breaking

the compound expression led to a noticeable increase in

the success rate, and adding meaningful names led to

another noticeable increase.

We tested whether any of these observations is statistically

significant using the ‘N-1’ Chi-squared test [6]. Only two of

the results were found to be statistically significant at the 0.05

level. These were the difference between versions 2 and 3 in

the PARALLEL question, and the difference between versions

1 and 3 in the RIGHTTRIG question. Importantly, this last

difference stays significant also after Bonferroni correction

for multiple tests. We conclude that RIGHTTRIG is the only

function where inserting explanatory variables really helped.

Note that while only one function produced a statistically

significant difference, in 4 others the difference was in the

same direction (more correct answers to version 3 than to

version 1). A possible alternative analysis is then to compare

version 1 to version 3 using the evidence from all 6 functions

together. We did this in two separate ways. The first was to

use the ‘N-1’ Chi-squared test as above. The result was highly

significant (p=0.002), and stays significant after Bonferroni

correction. The second is to compare the correctness results for

the 6 functions using a Wilcoxon signed-rank test. As there is

only one case where the different was in favor of version 1, and

this was the smallest difference (and therefore had the lowest

rank), this test too indicated that there exists a statistically

significant difference between versions 1 and 3.

To summarize, using intermediate variables with meaningful

names indeed appears to lead to better comprehension, but this

is largely due to one of the 6 functions we used.

D. Time to Correct Answer

The second dependent variable we measured was the time to

achieve a correct answer. The resulting cumulative distribution

functions (CDFs) for all correct answers to the 3 versions of

each question are shown in Fig. 5. We cut the distributions

at 300 seconds (5 minutes) and excluded results that took

longer. The justification is that they were obvious outliers,

based on the knee-shape of the CDFs: nearly all the data was

concentrated in the range of low values, and only few dispersed

values were higher. There were 15 such cases from a total of

417 correct answers.

Comparing the CDFs of versions 1 and 3, there are 3 func-

tions for which they are very close to each other: ARITHSUM,

SORT, and PRIME. For these functions it seems that adding

intermediate variables with meaningful names did not lead to

a systematic change in the time to achieve a correct answer.

In the other 3 functions the CDF of version 1 (compound ex-

pression) seems to dominate the CDF of version 3 (meaningful

names) for at least a large part of the range. Being a dominant

distribution means that for every value the probability to

observe this value or a larger one is higher than for the other

distribution. In terms of CDFs, this is manifest by the CDF

being shifted to the right. For VARIANCE it happens from

the 30th to the 95th percentile, for PARALLEL this happens

in the range from the 20th to percentile to the end, and for

RIGHTTRIG it occurs throughout the full range.

It is also interesting to observe the relationship between

the CDF of version 2 and the other two versions. In two

of the functions, ARITHSUM and SORT, it is similar to the

CDFs of the other versions (which are also similar to each

other). In three others the CDF of the version 2 seems to

dominate the other two, and is closer to the CDF of version

1: in PRIME, VARIANCE, and PARALLEL. This means that just

adding intermediate variables but without meaningful names

led to spending a bit more time. Surprisingly, in the last

function, RIGHTTRIG, the CDF of version 2 is similar to that

of version 3, and is dominated by that of version 1. So in

this case using intermediate variables — even when they had

meaningless names — led to spending a little less time.

We tested the differences between the distributions using

the Mann-Whitney non-parametric test, as most of the dis-

tributions appear to be skewed. 4 differences were found to

be statistically significant at the 0.05 level: PRIME versions

2 and 3, RIGHTTRIG version 1 relative to versions 2 and

3, and PARALLEL versions 2 and 3. However, none of them

remain significant after Bonferroni correction. Note, however,

that according to the binomial distribution the probability of

4 or more successes out of 18, when the probability of each

one is only 0.05, is 0.011. It is therefore unlikely that all 4

results are spurious.

E. Semantic Focus of Names

While this was not the original motivation for our study,

our results provide unique data about how different developers

name the same function. This can be used to analyze what

concepts they choose to include in the names, and what words

they use to represent these concepts.

Feitelson et al. define two metrics for naming [11]: focus

is the relative popularity of the most commonly used name,

and diversity is the tendency to use multiple different names.

A high focus can mean that the situation is clear-cut, and

many or most of the experimental subjects understand it the

same way — and consequently use the same name. But there

is always the possibility of small variations. We therefore

define a new metric which we call semantic focus. We first

identify the main repeated concepts that appear in the names

given to the different functions. The semantic focus is then the

fraction of names that contain all these concepts, implying that

semantically they are essentially the same even if syntactically

they are not.

The results of performing this analysis on the names

given in our experiment are shown in Table I. The three

highest-focus functions are SORT, PRIME, and VARIANCE.

The semantic focus values for these functions were above

0.85. The other three functions, RIGHTTRIG, ARITHSUM, and

PARALLEL, had focus in the range 0.66–0.73.

We also note that there are substantial differences in the

number of answers given to different questions. As the order of

the questions was randomized, this might imply that subjects

found some questions harder than others and skipped them. In

general, the high focus questions were also those that received

more answers, which agrees with the conjecture that they were

easier.

VI. DISCUSSION

A. Introducing Intermediate Variables

Our intention in using version 2 — introducing intermediate

variables but giving them meaningless names — was to

enable a distinction between the effect of the code struc-

ture (compound expressions vs. multiple simpler expressions)

and the naming. Assuming some version is in general more

comprehensible than another, then one might expect that this

version would take a shorter time to comprehend for all

functions, and that subjects would make fewer mistakes in

their understanding. The assumption implies that the relation

between the experimental subjects’ performance on the differ-

ent versions would be consistent: for example, performance on

version 2 would be between those of version 1 and version 3.

In particular, we expected that it would be consistently closer

to version 1 or to version 3.

The results indicate that our assumptions were wrong in

this respect. In terms of correctness, in 2 functions version

ArithSum

time [s]
0 50 100 150 200 250 300

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

0

0.2

0.4

0.6

0.8

1

V1 composite

V2 temp vars

V3 named vars

RightTrig

time [s]
0 50 100 150 200 250 300

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

0

0.2

0.4

0.6

0.8

1

Sort

time [s]
0 50 100 150 200 250 300

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

0

0.2

0.4

0.6

0.8

1 Prime

time [s]
0 50 100 150 200 250 300

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

0

0.2

0.4

0.6

0.8

1

Variance

time [s]
0 50 100 150 200 250 300

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

0

0.2

0.4

0.6

0.8

1 Parallel

time [s]
0 50 100 150 200 250 300

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

0

0.2

0.4

0.6

0.8

1

Fig. 5. Results of time to correct answer for the different functions and versions.

TABLE I
SEMANTIC FOCUS RESULTS FOR NAMING THE DIFFERENT FUNCTIONS IN THE EXPERIMENT.

function concept words number from focus

SORT sort 86 87 0.99
PRIME is + prime 83 91 0.91
VARIANCE variance 57 67 0.85
RIGHTTRIG right|90◦ + triangle 35 48 0.73
ARITHSUM arithmetic + series|progression|sequence + sum 33 48 0.69
PARALLEL parallel 40 61 0.66

TABLE II
METRICS REFLECTING THE DIFFICULTY OF UNDERSTANDING VERSION 1

OF DIFFERENT FUNCTIONS, AND THE IMPROVEMENT WHEN USING

VERSION 3.

median time [sec] correctness [%]
function v1 v3–v1 v1 v3–v1

SORT 51 10 94.7% –0.8%
PRIME 41 –6 85.7% 1.1%
VARIANCE 81 –17 64.7% 3.0%
ARITHSUM 102 –7 52.8% 4.4%
PARALLEL 123 –27 61.1% 12.7%
RIGHTTRIG 123 –44 31.0% 41.8%

2 led to a lower fraction of correct answers than versions

1 and 3 (ARITHSUM and PARALLEL), while in another it

was in between (RIGHTTRIG). In terms of time to correct

answer there was one case where the distribution for version

2 was similar to the distribution of version 3 (RIGHTTRIG),

and several where it was more similar to the distribution of

version 1 (PRIME, VARIANCE, and PARALLEL).

These findings lead to two conclusions. First, understanding

one version is not always easier than understanding another

version — it depends on the function. Second, the two metrics

— correctness and time to answer correctly — do not necessar-

ily always correlate with each other. They appear to measure

somewhat different aspects of comprehension performance.

B. Using Meaningful Names

It is well established that meaningful variable names con-

tribute to program comprehension, and our results corroborate

this. In 5 of 6 cases version 3 of the functions was better

understood, sometimes by a substantial margin. The distribu-

tion of time to understand version 3 was either similar to the

distributions for other versions, or dominated by them.

Based on these results we can suggest that using interme-

diate variables with meaningful names may be a generally

preferred practice. It either does not matter, or it improved the

code’s comprehensibility. However, at present this conclusion

rests on a relatively modest experiment.

C. Function Complexity

The functions we used in the experiment had different

levels of complexity. This does not necessarily refer to some

absolute metrics of complexity. It may also reflect subjective

complexity, e.g. when some participants find a function harder

because they lack some necessary background knowledge.

Table II shows two metrics for the difficulty of understand-

ing the different functions, and how it changed between the

versions. The first metric is the median time to understand

version 1 of the function. We use the median rather than the

average time because the distributions tend to be skewed, as

seen in Fig. 5. To estimate the change between versions 1 and

3 we use the estimated shift in location included in the results

of the Mann Whitney procedure used to compare the two

distributions. This is preferable to the difference between the

medians since the distributions may display local fluctuations.

The second metric is the percentage of names given to

version 1 that were judged to be correct. The change between

version 1 and version 3 is in this case just the difference in

percentage points.

As seen in Table II, the harder version 1 of a function

was — as reflected by taking longer to comprehend and

leading to more mistakes — the bigger the improvement

when intermediate variables with meaningful names were

introduced. The biggest improvement was achieved for the

RIGHTTRIG function. This is also the only improvement that

was found to be statistically significant for both metrics.

At the other end of the scale, the two easiest functions were

PRIME and SORT. These functions were understood quickly,

with few mistakes, and adding intermediate variables did not

cause much of a change. When writing version 3 of SORT

we chose to define a Boolean intermediate variable named

isGreater which indicated whether the next element in the

array is greater than the current one. In the next line there’s

an if clause consisting only of that variable. In retrospect we

believe that this is a rather artificial intermediate variable, and

that most programmers would not use such a variable. Also,

when iterating on the array, we used a rightBoundary

variable to hold the last index of the iteration. This form of

code is less “natural” for programmers, especially with python

familiarity. So version 3 was not really better than version 1.

VII. THREATS TO VALIDITY

We noticed a few threats to the validity of our research

which we could mitigate to different degrees.

One of them is a possible survivorship bias. Participants

may quit the experiment at any time or skip a question.

In particular, they may do so if they encounter a difficult

task. This means that the distribution of the answers is not

uniform, with the harder questions receiving fewer answers.

Such a bias may lead to inaccurate conclusions. Note, however,

that this bias implies that the results are conservative, as the

harder questions are answered preferentially by the stronger

participants. We mitigated this threat to some degree by

conducting a pilot study and eliminating the hardest questions,

and by reducing the length of the experiment. It is expected

that these actions reduced the dropout rate of participants.

An underlying assumption of most experimental research

on comprehension is that longer times and more errors reflect

difficulties in comprehension. While we attempted to use

questions that do not require any prior domain knowledge,

this is based on an assumption of what people know. For

example, some of the wrong answers about the RIGHTTRIG

function or the PARALLEL function might stem from confusion

about their geometrical properties rather than from difficulties

understanding the code. To reduce such effects we used the

pilot study to filter out candidate questions that were found

to be problematic, such as the function calculating the cosine

similarity between two vectors. We also accepted answers that

reflect basic understanding of the code even if they did not get

all the details right, for example identification of VARIANCE

as calculating the standard deviation, or claims that PARALLEL

identifies a parallelogram rather than two parallel lines.

Finally, all our functions are basic mathematical functions.

This choice was natural given the research questions, as we

need functions that may be written as compound expressions.

However, it may cause an external validity threat, and limit the

generalizability of our results. It is therefore desirable to repeat

this line of research using a more diverse set of functions, to

check whether similar effects exist in other domains, and also

to better characterize the distinction between easy and hard

cases.

VIII. CONCLUSIONS

Style wars like where to put curly braces are unlikely to be

settled. The problem is that this is mainly a matter of taste and

habit, and these factors overshadow any technical differences.

But more involved cases do in fact contain technical substance.

We believe that variable extraction is one such case. While

taste and style may enter into it, there is also a real difference

that can be measured experimentally.

We make two main contributions. The first is to establish an

experimental framework for studying this. This framework is

based on selecting specific functions, and creating 3 distinct

versions of each one: using a compound expression, parti-

tioned into simpler sub-expressions connected by intermediate

variable with meaningless names, and likewise with meaning-

ful names.

The second contribution is our results from applying this

framework to a set of basic mathematical functions, and how

they were understood by our experimental subjects. The results

suggest that test cases can be roughly divided into two: simple

cases where the intermediate variables do not make much

of a difference, and more complicated cases where they do.

In the complicated cases we find that the mere existence

of the intermediate variables is not necessarily enough, and

may even make things worse. Improved performance depends

on giving them meaningful names. This can be interpreted

as meaning that dividing the problem of comprehending a

compound expression into smaller problems does not help so

much. The decisive factor is elevating the level of abstraction

by giving the components appropriate names.

An immediate implication of our results is that aggressive

mechanized solutions like Spartanization [14] are ill-advised.

The motivation for Spartanization is the desire to find a simple

all-encompassing solution to the question of coding style. Our

results imply that there is no fit-all solution, and moreover,

that the solution preferred by Spartanization — to inline all

intermediate variables leading to dense compound expressions

— will often be a step in the wrong direction. For simple

cases it does not make much of a difference, but for the

complex ones extracting explanatory variables is probably

better. Taken together this implies that if a single rule is sought

after, it should be that practitioners should avoid compound

expressions and prefer to break them up into simpler sub-

expressions with meaningful names.

Note, however, that these results are based on a single mod-

est experiment based on only 6 functions from one domain.

Multiple reproductions, with many different test cases, are

required to establish a deeper understanding of the factors that

influence the degree to which intermediate variables indeed

help to comprehend code.

EXPERIMENTAL MATERIALS

Experimental materials are available at

https://doi.org/10.5281/zenodo.4619665.

REFERENCES

[1] S. Ajami, Y. Woodbridge, and D. G. Feitelson, “Syntax, predicates,
idioms — what really affects code complexity?” Empirical Softw. Eng.

24(1), pp. 287–328, Feb 2019, DOI:10.1007/s10664-018-9628-3.
[2] V. Arnaoudova, L. M. Eshkevari, M. Di Penta, R. Oliveto, G. Antoniol,

and Y.-G. Guéhéneuc, “REPENT: Analyzing the nature of identifier
renamings”. IEEE Trans. Softw. Eng. 40(5), pp. 502–532, May 2014,
DOI:10.1109/TSE.2014.2312942.

[3] E. Avidan and D. G. Feitelson, “Effects of variable names on comprehen-
sion: An empirical study”. In 25th Intl. Conf. Program Comprehension,
pp. 55–65, May 2017, DOI:10.1109/ICPC.2017.27.

[4] D. Binkley and D. Lawrie, “The impact of vocabulary normalization”.
Software: Evolution & Process 27(4), pp. 255–273, Apr 2015, DOI:
10.1002/smr.1710.

[5] D. Binkley, D. Lawrie, S. Maex, and C. Morrell, “Identifier length and
limited programmer memory”. Sci. Comput. Programming 74(7), pp.
430–445, May 2009, DOI:10.1016/j.scico.2009.02.006.

[6] I. Campbell, “Chi-squared and Fisher–Irwin tests of two-by-two tables
with small sample recommendations”. Statist. Med. 26, p. 3661–3675,
2007, DOI:10.1002/sim.2832.

[7] B. Caprile and P. Tonella, “Restructuring program identifier names”.
In Intl. Conf. Softw. Maintenance, pp. 97–107, Oct 2000, DOI:
10.1109/ICSM.2000.883022.

[8] S. Counsell, X. Liu, S. Swift, J. Buckley, M. English, S. Herold,
S. Eldh, and A. Ermedahl, “An exploration of the ‘introduce explaining
variable’ refactoring”. In XR ’15 Workshops, art. no. 9, May 2015,
DOI:10.1145/2764979.2764988. (Intl. Workshop Refactoring &
Testing).

[9] F. Deißenböck and M. Pizka, “Concise and consistent naming”. In 13th
IEEE Intl. Workshop Program Comprehension, pp. 97–106, May 2005,
DOI:10.1109/WPC.2005.14.

[10] S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The effect of
poor source code lexicon and readability on developers’ cognitive load”.
In 26th Intl. Conf. Program Comprehension, pp. 286–296, May 2018,
DOI:10.1145/3196321.3196347.

[11] D. G. Feitelson, A. Mizrahi, N. Noy, A. Ben Shabat, O. Eliyahu, and
R. Sheffer, “How developers choose names”. IEEE Trans. Softw. Eng.

DOI:10.1109/TSE.2020.2976920. (early access).
[12] M. Fowler, Refactoring: Improving the Design of Existing Code. Pearson

Education, Inc., 2nd ed., 2019.
[13] Y. Gil and M. Orrù, “The Spartanizer: Massive automatic refactoring”.

In 24th IEEE Intl. Conf. Softw. analysis, Evolution, & Reengineering,
pp. 477–481, Feb 2017, DOI:10.1109/SANER.2017.7884657.

[14] Y. Gil and M. Orrù, “Code Spartanization: One rational approach for
resolving religious style wars”. In Symp. Applied Computing, pp. 1615–
1622, Apr 2017, DOI:10.1145/3019612.3019748.

[15] J. C. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names
take longer to comprehend”. Empirical Softw. Eng. 24(1), pp. 417–443,
Feb 2019, DOI:10.1007/s10664-018-9621-x.

[16] G. J. Holzmann, “Code clarity”. IEEE Softw. 33(2), pp. 22–25, Mar/Apr
2016, DOI:10.1109/MS.2016.44.

[17] D. Lawrie, C. Morrell, H. Field, and D. Binkley, “What’s in a name?
a study of identifiers”. In 14th Intl. Conf. Program Comprehension, pp.
3–12, Jun 2006, DOI:10.1109/ICPC.2006.51.

[18] V. Rajlich and G. S. Cowan, “Towards standard for experiments in pro-
gram comprehension”. In 5th IEEE Intl. Workshop Program Comprehen-

sion, pp. 160–161, Mar 1997, DOI:10.1109/WPC.1997.601284.
[19] G. Scanniello and M. Risi, “Dealing with faults in source code: Abbre-

viated vs. full-word names”. In 29th Intl. Conf. Softw. Maintenance, pp.
190–199, Sep 2013, DOI:10.1109/ICSM.2013.30.

[20] A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, and
M. Beigl, “Descriptive compound identifier names improve source code
comprehension”. In 26th Intl. Conf. Program Comprehension, pp. 31–
40, May 2018, DOI:10.1145/3196321.3196332.

[21] E. S. Wiese, A. N. Rafferty, and A. Fox, “Linking code readability,
structure, and comprehension among novices: It’s complicated”. In 41st
Intl. Conf. Softw. Eng., pp. 84–94, May 2019, DOI:10.1109/ICSE-
SEET.2019.00017. (SEET track).

[22] E. Zabardast, J. Gonzalez-Huerta, and D. Šmite, “Refactoring, bug
fixing, and new development effect on technical debt: An industrial case
study”. In 46th Euromicro Conf. Softw. eng. & Advanced Apps., pp.
376–384, Aug 2020, DOI:10.1109/SEAA51224.2020.00068.

