
Multi-Programming-Language Commits in OSS:
An Empirical Study on Apache Projects

Zengyang Li†, Xiaoxiao Qi†, Qinyi Yu†, Peng Liang‡∗, Ran Mo†, Chen Yang§
†School of Computer Science & Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning,

Central China Normal University, Wuhan, China
‡School of Computer Science, Wuhan University, Wuhan, China
§IBO Technology (Shenzhen) Co., Ltd., Shenzhen, China

{zengyangli, moran}@ccnu.edu.cn, {qixiaoxiao, qinyiyu}@mails.ccnu.edu.cn, liangp@whu.edu.cn, c.yang@ibotech.com.cn

Abstract—Modern software systems, such as Spark, are usually
written in multiple programming languages (PLs). Besides ben-
efiting from code reuse, such systems can also take advantages
of specific PLs to implement certain features, to meet various
quality needs, and to improve development efficiency. In this
context, a change to such systems may need to modify source
files written in different PLs. We define a multi-programming-
language commit (MPLC) in a version control system (e.g., Git)
as a commit that involves modified source files written in two
or more PLs. To our knowledge, the phenomenon of MPLCs
in software development has not been explored yet. In light of
the potential impact of MPLCs on development difficulty and
software quality, we performed an empirical study to understand
the state of MPLCs, their change complexity, as well as their
impact on open time of issues and bug proneness of source files
in real-life software projects. By exploring the MPLCs in 20 non-
trivial Apache projects with 205,994 commits, we obtained the
following findings: (1) 9% of the commits from all the projects
are MPLCs, and the proportion of MPLCs in 80% of the projects
goes to a relatively stable level; (2) more than 90% of the MPLCs
from all the projects involve source files written in two PLs; (3)
the change complexity of MPLCs is significantly higher than
that of non-MPLCs in all projects; (4) issues fixed in MPLCs
take significantly longer to be resolved than issues fixed in non-
MPLCs in 80% of the projects; and (5) source files that have been
modified in MPLCs tend to be more bug-prone than source files
that have never been modified in MPLCs. These findings provide
practitioners with useful insights on the architecture design and
quality management of software systems written in multiple PLs.

Index Terms—Multi-Programming-Language Commit, Change
Complexity, Defect Density, Open Source Software

I. INTRODUCTION

Modern software systems, such as Apache Spark and Am-
bari, are usually written in multiple programming languages
(PLs). One of the main reasons for adopting multiple PLs
is to reuse existing code with required functionalities [1].
Another main reason is to take advantages of specific PLs to
implement certain features, to meet various software quality
needs, and to improve software development efficiency [1], [2],
[3], [4], [5], [6], [7]. Nowadays, multi-programming-language
(MPL) software development is increasingly prevalent with the
technology advances [8], [4], [9].

This work was partially funded by the National Natural Science Foundation
of China under Grant Nos. 61702377 and 62002129.
∗ Corresponding author

However, despite great benefits of MPL systems, they are
also facing various challenges. For example, static code analy-
sis is much more difficult in MPL systems than mono-language
systems since multiple PLs and cross-language communication
mechanisms need to be analyzed simultaneously [10], [11].

In an MPL system, there inevitably exist a certain proportion
of code changes that need to modify source files written in
different PLs. Intuitively, a code change in which the modified
source files are written in multiple PLs is likely to modify
more than one component in a software system, and thus
the complexity of such a change is relatively high. As a
result, such a code change may need more effort and time
to understand and analyze the impact on the parts affected by
the modified source files. We define an MPL commit (MPLC)
in a version control system (e.g., Git) as a commit that involves
modified source files written in two or more PLs.

Although there are a few studies that investigated the quality
of MPL systems [2], [4], [12], these studies took a project or
pull request as an analysis unit, which is at a relatively high
level and may not provide specific advice for software devel-
opment practice. In contrast, a commit is in a finer granularity
than a project or pull request, and developers deal with code
changes in commits in daily development practices. Hence,
we suggest to investigate MPL software development from
the perspective of commits (i.e., MPLCs). To our knowledge,
the phenomenon of MPLCs in software development has not
been explored yet. Considering the potential impact of MPLCs
on development difficulty (e.g., cross-language change impact
analysis [10]) and software quality (e.g., bug introduction [4],
[13]), we conducted an empirical study to understand the state
of MPLCs, their change complexity, as well as their impact
on open time of issues and bug proneness of source files in
real-life software projects, which provides a foundation for
improving the practices of MPL software development.

The main contributions are summarized as follows:
• This work is a first attempt to explore the phenomenon

of MPLCs in real-world settings.
• The state of MPLCs (including the proportion of MPLCs

and the number of PLs used in MPLCs) in MPL software
systems is explored.

• The change complexity of MPLCs, open time of issues
fixed in MPLCs, and bug proneness of source files

ar
X

iv
:2

10
3.

11
69

1v
1

 [
cs

.S
E

]
 2

2
M

ar
 2

02
1

modified in MPLCs in MPL systems are studied in depth.
The remaining of this paper is organized as follows. Section

II presents the related work; Section III describes the design
of the empirical study; Section IV presents the results of
the study; Section V discusses the study results; Section VI
identifies the threats to validity of the results; and Section VII
concludes this work with future research directions.

II. RELATED WORK

To the best of our knowledge, there has not been work
on MPLCs. Thus, the related work presented here is not
directly relevant to MPLCs, but related to the research on MPL
software systems in general. The related work is presented
in two aspects, including the phenomenon of MPL software
systems and quality of MPL software systems.

A. Phenomenon of MPL Software Systems

Mayer and Bauer studied the phenomenon of multi-
language programming using data mining technologies on
1,150 open source software (OSS) projects gathered from
GitHub [3]. They used the Poisson regression model to explore
the relationship between the number of PLs of the project
and the size, age, number of contributors, and number of
commits. They found that each project uses an average of
5 PLs with a clearly dominant PL; the median number of
general-purpose PLs and domain-specific PLs is 2 and 2,
respectively. The results also confirmed that the use of multiple
PLs is very common in OSS projects. The focus of our work is
different in that we investigated MPL software systems from
the perspective of commits, while the work of Mayer and
Bauer paid more attention at the level of project; in addition,
we went deeper and looked into the bug proneness and change
complexity of source files modified in MPLCs as well.

B. Quality of MPL Software Systems

In 2011, Bhattacharya and Neamtiu investigated the impact
of C and C++ on software maintainability and code quality of
four large OSS projects [14]. They found that C++ code has
higher internal quality than C code and C++ code is less prone
to bugs than C code, but they could not confirm that C++ code
needs less effort to maintain than C code. This work looked
into the impact of specific PLs on code quality, while our
work investigated the impact of MPLCs on the bug proneness
of source files in terms of defect density.

In 2014, Ray et al. studied the effect of PLs on software
quality using a large dataset of 729 projects in 17 PLs gathered
from GitHub [2]. They combined multiple regression modeling
with visualization and text analytics to study the impact of
language characteristics. They found that language design
indeed has a significant but modest effect on software defects.
In addition, they found that there is a small but significant
correlation between language set and software defects. Specif-
ically, they found that there are 11 PLs that have a relationship
with software defects. In 2019, Berger et al. [13] carried out
repeated experiments of the study of Ray et al. [2] and reduced
the number of defect-related languages down from 11 to only

4. These studies paid attention to the impact of language
features on bug proneness of software systems. In contrast,
our work is focused on the impact of MPLCs on the bug
proneness of source files.

In 2016, Kochhar et al. conducted a large-scale empirical
investigation of the use of multiple PLs and the combina-
tion of certain PLs on bug proneness [4]. They analyzed
a dataset comprised of 628 projects collected from GitHub,
in 17 general-purpose PLs (e.g., Java and Python). They
found that implementing a project with more PLs significantly
increases bug proneness, especially on memory, concurrency,
and algorithm bugs. The results also revealed that the use of
specific PLs together is more bug-prone in an MPL setting.
However, our work is focused on the development difficulty
and software quality in a finer granularity of commits.

In 2019, Abidi et al. identified six anti-patterns [15] and
twelve code smells [16] in MPL software systems. Six anti-
patterns were identified in OSS systems, including excessive
inter-language communication, too much scattering, and so
forth [15]. Twelve code smells were proposed, including
passing excessive objects, memory management mismatch,
and so on [16]. Abidi et al. subsequently proposed an approach
to detect aforementioned anti-patterns and code smells (both
called design smells according to the authors) in MPL systems
in which Java Native Interface (JNI) is used, and conducted
an empirical study on the fault proneness of such MPL design
smells in nine open source JNI projects [9]. They found that
MPL design smells are prevalent in the selected projects and
files with MPL design smells can often be more associated
with bugs than files without these design smells, and that
specific smells are more correlated to fault proneness than
other smells. These design smells provide useful suggestions
in practice to avoid design defects and implementation flaws
in software development.

In 2019, Kargar et al. proposed an approach to modular-
ization of MPL applications [11]. The results show that the
proposed approach can build a modularization close to human
experts, which may be helpful in understanding MPL software
systems. In 2020, the same authors proposed a method to
improve the modularization quality of heterogeneous MPL
software systems by unifying structural and semantic concepts
[17]. Admittedly, architecture quality (e.g., modularity) of
MPL software systems is worth further and deeper research.
This study provided an important viewpoint for the research on
MPL software systems. Based on the results of our work, we
will examine the architecture quality of MPL software systems
with a relatively high proportion of MPLCs.

In 2020, Grichi et al. performed a case study on the
impact of interlanguage dependencies in MPL systems [1].
They found that the risk of bug introduction gets higher
when there are more interlanguage dependencies, while this
risk remains constant for intralanguage dependencies; the
percentage of bugs found in interlanguage dependencies is
three times larger than the percentage of bugs identified in
intralanguage dependencies. Grichi et al. also conducted a
study on the impact of MPL development in machine learning

frameworks [12]. They found that mono-language pull requests
in machine learning frameworks are more bug-prone than tra-
ditional software systems. Their work investigated the impact
of MPL code changes on software systems in a granularity
of pull requests, while our work studied the bug proneness of
MPL code changes on software systems in a finer granularity
of commits. In addition, our work demonstrates a higher bug
proneness of source files modified in MPLCs than source files
modified in only non-MPLCs, which is a dramatic difference
from the results obtained by the work of Grichi et al.

III. STUDY DESIGN

In order to investigate the state of MPLCs and their impact
on development difficulty and software quality, we performed
a case study on Apache OSS projects. The main reason for
conducting a case study is that, through using OSS projects,
and more specifically their commit records and issues, we can
examine the phenomenon in its real-life context (i.e., OSS
development), since both the commit records and issues cannot
be monitored in isolation, and their environment cannot be
controlled. In this section we describe the study, which was
designed and reported following the guidelines proposed by
Runeson and Höst [18].

A. Objective and Research Questions

The goal of this study, described using the Goal-Question-
Metric (GQM) approach [19], is: to analyze commits and their
involving source files and corresponding fixed issues for the
purpose of investigation with respect to the state of MPLCs
as well as their impact on development difficulty and software
quality, from the point of view of software developers in the
context of MPL OSS development.

Based on the abovementioned goal, we have formulated
five research questions (RQs), which are classified into three
categories and described as follows.

Category I: State of MPLCs.
RQ1: What is the proportion of MPLCs over all commits of
a project?
Rationale: With this RQ, we investigate the frequency of
MPLCs occurred in software projects and how the proportion
of MPLCs evolves, so as to get a basic understanding on the
state of MPLCs in MPL software projects.
RQ2: How many programming languages are used in the
modified source files of MPLCs?
Rationale: This RQ is focused on the number of PLs used
in source files modified in MPLCs, which enables us to
understand the tendency of the use of multiple PLs.
Category II: Impact of MPLCs on development difficulty.
RQ3: What is the code change complexity of MPLCs? Is there
a difference on the code change complexity between MPLCs
and non-MPLCs?
Rationale: To explore the development difficulty of MPLCs,
we look into the code change complexity of MPLCs. Intu-
itively, the complexity of code changes in MPLCs may be
different from that in non-MPLCs. With this RQ, we intend

TABLE I
PROGRAMMING LANGUAGES EXAMINED.

PL # PL # PL
1 C/C++ 7 Haskell 13 PHP
2 C# 8 Java 14 Python
3 Clojure 9 JavaScript 15 Ruby
4 CoffeeScript 10 Kotlin 16 Scala
5 Erlang 11 Objective-C 17 TypeScript
6 Go 12 Perl 18 Swift

to calculate the complexity of code changes in MPLCs and
further validate if the complexity of code changes in MPLCs
is significantly higher than that in non-MPLCs. In addition,
the complexity of code change in a commit can be measured
by the number of lines of code, source files, and directories
that are modified in the commit, and by the entropy [20] of
the modified files in the commit. These change complexity
measures are adopted from [21].
RQ4: Do the issues fixed in MPLCs tend to take longer to be
resolved than issues fixed in non-MPLCs?
Rationale: With this RQ, we further investigate the time taken
to resolve issues that were fixed in MPLCs and non-MPLCs.
The time taken to resolve an issue can, to some extent, reflect
the development difficulty of MPL software systems.
Category III: Impact of MPLCs on software quality.
RQ5: Are source files that have been modified in MPLCs more
bug-prone than source files that have never been modified in
MPLCs?
Rationale: MPLCs may influence the quality of software
systems. With this RQ, we are concerned with the impact of
MPLCs on software systems in terms of the likelihood of bugs.

B. Cases and Unit Analysis

According to [18], case studies can be characterized based
on the way they define their cases and units of analysis. This
study investigates multiple MPL OSS projects, i.e., cases, and
each commit and the corresponding issue fixed is a single unit
of analysis.

C. Case Selection

In this study, we only investigated Apache MPL OSS
projects. The reason why we used Apache projects is that the
links between issues and corresponding commits tend to be
well recorded in the commit messages of those projects. For
selecting each case (i.e., MPL OSS project) included in our
study, we applied the following inclusion criteria:

• C1: No less than 3 out of the 18 PLs listed in TABLE
I are used in the project. All the 18 listed PLs are
general-purpose languages. Sixteen out of the 18 PLs
were adopted from [4], in which C and C++ are different
PLs. However, we combined C and C++ into a single
PL in this work since we cannot determine a header file
with the extension of “.h” as a source file of C or C++
by only checking the commit records. Besides, we added
two general-purpose PLs, i.e., Kotlin and Swift.

• C2: The source code written by the main PL is no more
than 75% of the code of the project.

• C3: The project has more than 2,000 commits.
• C4: The project has more than 20 contributors.
• C5: The project has more than 1,000 issues.
• C6: The issues of the project are tracked in JIRA.
Selection criteria C1 and C2 were set to ensure the number

of MPLCs in each selected project is not too small. Criteria
C3-C5 were set to ensure that the selected projects are non-
trivial and the resulting dataset is big enough to be statistically
analyzed. The criterion C6 was set to ensure the same format
of all issues of different projects so that we can handle the
issue in the same way.

D. Data Collection

1) Data Items to be Collected: To answer the RQs, we
took a commit as the unit of analysis and the data items to
be collected are listed in TABLE II; and to answer RQ5, we
also needed to collect the data items described in TABLE III
of each source file, which can be extracted from the commits
containing the source file. Considering all the data items to
be collected except for D10 are straightforward, we only
explain the definition of the entropy of the modified source
files in a commit (i.e., D10) in detail [20]. Suppose that the
modified source files of commit c are {f1, f2, · · · , fn}, and file
fi (1 ≤ i ≤ n) was modified in mi commits during a period
of time before the commit. Let pi = mi/

∑n
i=1 mi. Then,

the entropy H(n) = −
∑n

i=1 pilog2pi. Since the number
of modified source files differs between different periods,
we need to normalize the entropy to be comparable. The
normalized entropy H̃(n) = H(n)/log2n if n > 1, and
H̃(n) = 0 if n = 1. In this study, the period is set to 60
days (including the day when commit c happened), which is
chosen according to [21].

2) Data Collection Procedure: The data collection proce-
dure for each selected project consists of seven steps (shown
in Fig. 1). The details of the steps are described as follows.
Step 1: Clone the repository of the project using TortoiseGit.
Step 2: Extract commit records from the repository to a
text file for further parsing. In this step, we only exported
the commit records of the master branch and the commit
records merged to the master branch, but excluded the commit
records corresponding to the MERGE operations of Git. A
commit record corresponding to the MERGE operation in Git
is duplicate with the merged commit records, in the sense
that the file changes in the MERGE commit record are the
same as the file changes in the merged commit records. In
addition, the committer of the MERGE commit record is
different from the committers of the merged commit records.
Thus, the MERGE commit record should not be included to
prevent double counting code changes.
Step 3: Export the issue reports. We manually exported all
issues of the project from JIRA – deployed by the Apache
Software Foundation.
Step 4: Store the exported issues in Step 3 to a Microsoft
Access file.
Step 5: Parse commit records. If a commit is conducted to fix
an issue, the committer would mention the issue ID explicitly

TABLE II
DATA ITEMS TO BE COLLECTED FOR EACH COMMIT.

Name Description RQ
D1 CmtID The hashcode of the commit. -

D2 CmtDT The date and time when the commit
happened. -

D3 Committer The committer of the commit. -

D4 IsMPLC Whether the commit is an MPLC. RQ1-
RQ5

D5 PL The programming languages used in the
modified source files of the commit. RQ2

D6 PLNo
The number of programming languages
used in the modified source files of the
commit.

RQ2

D7 LOCM The number of lines of source code
modified in the commit. RQ3

D8 NOFM The number of source files modified in
the commit. RQ3

D9 NODM The number of directories modified in
the commit. RQ3

D10 Entropy The normalized entropy of the modified
files in the commit [20]. RQ3

D11 IssueID The ID of the issue fixed (i.e., mentioned)
in the commit if applicable.

RQ4,
RQ5

D12 IssueRT The reporting time of the issue. RQ4

D13 IssueCT The closing or resolving time of the
issue. RQ4

D14 IssueType The type (e.g., bug) of the issue. RQ5

TABLE III
DATA ITEMS TO BE COLLECTED FOR EACH SOURCE FILE.

Name Description RQ
D15 Path The path of the source file. RQ5
D16 LOC The number of lines of code in the source file. RQ5

D17 NOB The number of bugs that the source file
experienced. RQ5

in the commit message. The path and the number of lines of
code changed of each modified source file can also be obtained
in the commit record.
Step 6: Filter out abnormal commit records. Some commits
contain changed source files with a large number of modified
lines of code. For instance, if the involved source files are
generated automatically, such files may be modified with tens
of thousands of lines of code. Such commits should be filtered
out. In this step, we filtered out commits in which more than
10,000 lines of code were modified.
Step 7: Calculate data items. We calculated the data items
listed in TABLE II and TABLE III.

E. Data Analysis

The answers to RQ1 and RQ2 can be obtained by descriptive
statistics. To answer RQ3 – RQ5, in addition to descriptive
statistics, we performed Mann-Whitney U tests [22] to exam-
ine if two groups are significantly different from each other.
Since the data of the variables to be tested do not necessarily
follow a specific distribution, it is reasonable to use the Mann-
Whitney U test – a non-parametric test – in this study. The test
is significant at p-value < 0.05, which means that the tested
groups have a significant difference.

TABLE IV
DEMOGRAPHIC INFORMATION OF THE SELECTED PROJECTS.

Project Name Age (yr) #LOC #Commit #Contributor #Issue #Bug #PL Main PL %Main PL
P1 Airavata 9 1,057K 9,290 45 3,364 1,535 5 Java 74.7
P2 Ambari 9 1,093K 24,588 134 25,261 17,881 11 Java 45.9
P3 Arrow 5 635K 7,575 476 10,058 3,410 9 C/C++ 45.0
P4 Avro 11 222K 2,412 174 2,926 1,324 8 Java 45.1
P5 Beam 5 1,053K 29,021 676 11,019 4,608 8 Java 72.3
P6 Carbondata 4 321K 4,705 171 4,019 2,199 5 Scala 57.8
P7 Cloudstack 10 912K 32,644 329 10,312 7,854 7 Java 59.5
P8 Couchdb 12 123K 12,376 162 3,292 1,878 6 Erlang 68.0
P9 Dispatch 6 117K 2,769 23 1,800 1,080 5 Python 42.3

P10 Ignite 6 2,056K 27,056 241 12,727 5,575 8 Java 74.6
P11 Impala 9 640K 9,429 146 10,168 5,630 5 C/C++ 54.5
P12 Kafka 9 653K 7,990 702 10,551 5,809 10 Java 73.2
P13 Kylin 6 284K 8,404 177 4,120 2,115 6 Java 71.3
P14 Ranger 6 327K 3,371 77 3,013 2,048 4 Java 68.9
P15 Reef 8 283K 3,873 68 2,063 498 6 Java 52.9
P16 Spark 10 973K 28,142 1,634 28,983 12,402 6 Scala 73.6
P17 Subversion 20 860K 59,809 28 4,503 3,233 6 C/C++ 65.8
P18 Thrift 14 258K 6,101 340 5,283 2,923 14 C/C++ 33.7
P19 Usergrid 9 243K 10,953 74 1,339 349 11 Java 66.3
P20 Zeppelin 7 222K 4,675 327 5,068 2,581 6 Java 59.3

Mean 9 617K 14,759 300 7,993 4,247 7 - 60.2

Start

(1) Clone the code

repository

(3) Export issues

from JIRA

(2) Export commit

records

(4) Store issues in

a Microsoft Access

file

(5) Parse commit

records

End

(7) Calculate data

items

(6) Filter out

abnormal commit

records

Fig. 1. Procedure of data collection.

IV. STUDY RESULTS

We collected data items described in TABLE II and TABLE
III from 20 non-trivial Apache MPL OSS projects that were
selected following the criteria presented in Section III-C. The
data of the selected projects were collected around the begin-
ning of December of 2019. TABLE IV shows the demographic
information of the selected projects. The mean age of the
projects is 9 years, the mean number of lines of code is 617K,

the mean number of commits is 14,759, the mean number of
contributors is 300, the mean number of issues is 7,993, and
the mean number of bugs is 4,247. The number of PLs used in
the projects ranges from 4 to 14, and the mean number of PLs
used is 7. The percentage of code in the main PL (i.e., %Main
PL) of the projects ranges from 33.7% to 74.7%, and the mean
percentage is 60.2%. The details of the use of PLs for each
project are available online1. In the rest of this section, we
will present the results for each research question.

A. Proportion of MPLCs in the Selected Projects (RQ1)

As shown in TABLE V, the total number of commits of
all projects is 205,994, the total number of MPLCs is 18,469,
and thus the percentage of MPLCs is 9.0% when taking all
projects as a whole. Please note that the number of commits
for each project in TABLE V is different from the number in
TABLE IV. This is because we only considered the commits
of and the commits merged into the master branch of the
project repository. As presented in TABLE V, the proportion
of MPLCs over all commits of each project ranges from 0.7%
to 41.0%. In projects Avro and Usegrid, the number of MPLCs
is even only around 50, much less than the other projects.

We further investigated the trend of the proportion of
MPLCs in each selected project over time. To clearly display
the trends of all the 20 projects in one diagram, we selected 30
evaluation points for each project to calculate the proportion
of MPLCs. At the kth evaluation point, we calculated the
proportion of MPLCs based on the first k thirtieth of all
commits of the project. As shown in Fig. 2, after relatively
strong fluctuations in the early development stage of the
projects, the proportion of MPLCs of most (16 out of
20, 80%) of the projects tends to be stable in the late
development stage, while the proportion of MPLCs shows

1https://github.com/ASSMS/ICPC2021/blob/main/PL.pdf

https://github.com/ASSMS/ICPC2021/blob/main/PL.pdf

TABLE V
PERCENTAGE OF MPLCS IN THE SELECTED PROJECTS (RQ1).

Project Name #Commit #MPLC %MPLC
P1 Airavata 5,562 269 4.8
P2 Ambari 19,667 1,491 7.6
P3 Arrow 4,947 1,073 21.7
P4 Avro 1,637 52 3.2
P5 Beam 14,875 251 1.7
P6 Carbondata 3,330 1,366 41.0
P7 Cloudstack 23,285 1,786 7.7
P8 Couchdb 7,114 560 7.9
P9 Dispatch 2,107 381 18.1
P10 Ignite 17,565 888 5.1
P11 Impala 7,485 1,975 26.4
P12 Kafka 6,915 1,029 14.9
P13 Kylin 5,587 126 2.3
P14 Ranger 2,445 203 8.3
P15 Reef 2,520 163 6.5
P16 Spark 21,782 2,772 12.7
P17 Subversion 44,993 3,113 6.9
P18 Thrift 4,409 512 11.6
P19 Usergrid 6,791 45 0.7
P20 Zeppelin 2,978 414 13.9

Total 205,994 18,469 9.0

a long-term upward trend for Carbondata and a long-term
downward trend for Avro, Cloudstack, and Couchdb.

B. Number of PLs Used in the Source Files Modified in
MPLCs (RQ2)

Fig. 3 shows the average number of PLs used in the source
files modified in MPLCs. Among the projects, on average,
project Airavata has 3.2 PLs used in the source files that are
modified in each MPLC, and this project is the only project
with no less than 3.0 PLs used in the source files modified in
each MPLC. Most (16 out of 20, 80%) of the projects have
around 2.0 (i.e., 2.0-2.2) PLs for each MPLC on average.

We further explored how the number of PLs used distributes
over MPLCs, and the results are shown in TABLE VI. In
this table, #Ci denotes the number of commits in which the
modified source files are written in i PLs, %Ci denotes the
percentage of #Ci over #MPLC, and #C5+ denotes the number
of commits in which the modified source files are written in 5
or more PLs. As shown in TABLE VI, taking all the projects as
a whole, 91.7%, 7.1%, and 1.0% of the MPLCs involve source
files written in 2, 3, and 4 PLs, respectively; and only 0.2%
of the MPLCs involve source files written in 5 or more PLs.
This means that most MPLCs involve source files written
in only 2 PLs, and it is not common for MPLCs to modify
source files in more than 4 PLs.

TABLE VI also shows that most (14 out of 20, 70%) of the
projects do not have MPLCs with 5 or more PLs, and about
one third (7 out of 20) of the projects do not have MPLCs
with more than 3 PLs.

C. Change Complexity of MPLCs (RQ3)

Change complexity can be measured by the number of
lines of code modified (LOCM), number of source files
modified (NOFM), number of directories modified (NODM),

Fig. 2. Trend of the proportion of MPLCs over time for each project (RQ1).

Fig. 3. Number of PLs used in the modified source files of MPLCs of the
selected projects (RQ2).

TABLE VI
DISTRIBUTION OF THE NUMBER OF PLS USED IN THE MODIFIED SOURCE FILES OF MPLCS OF THE SELECTED PROJECTS (RQ2).

Project Name #MPLC #C2 %C2 #C3 %C3 #C4 %C4 #C5+ %C5+
P1 Airavata 269 59 21.9 86 32.0 124 46.1 0 0.0
P2 Ambari 1,491 1,383 92.8 105 7.0 2 0.1 1 0.1
P3 Arrow 1,073 1,013 94.4 59 5.5 1 0.1 0 0.0
P4 Avro 52 39 75.0 9 17.3 1 1.9 3 5.8
P5 Beam 251 212 84.5 39 15.5 0 0.0 0 0.0
P6 Carbondata 1,366 1,365 99.9 1 0.1 0 0.0 0 0.0
P7 Cloudstack 1,786 1,706 95.5 79 4.4 1 0.1 0 0.0
P8 Couchdb 560 547 97.7 10 1.8 3 0.5 0 0.0
P9 Dispatch 381 378 99.2 3 0.8 0 0.0 0 0.0
P10 Ignite 888 788 88.7 94 10.6 5 0.6 1 0.1
P11 Impala 1,975 1,606 81.3 368 18.6 1 0.1 0 0.0
P12 Kafka 1,029 992 96.4 37 3.6 0 0.0 0 0.0
P13 Kylin 126 125 99.2 1 0.8 0 0.0 0 0.0
P14 Ranger 203 199 98.0 4 2.0 0 0.0 0 0.0
P15 Reef 163 115 70.6 47 28.8 1 0.6 0 0.0
P16 Spark 2,772 2,491 89.9 277 10.0 4 0.1 0 0.0
P17 Subversion 3,113 3,039 97.6 53 1.7 17 0.5 4 0.1
P18 Thrift 512 436 85.2 31 6.1 14 2.7 31 6.1
P19 Usergrid 45 43 95.6 1 2.2 0 0.0 1 2.2
P20 Zeppelin 414 396 95.7 16 3.9 2 0.5 0 0.0

Total 18,469 16,932 91.7 1,320 7.1 176 1.0 41 0.2

and entropy of source files modified (Entropy) [21]. In TA-
BLE VII, AveM and AveN denote the average value of the
corresponding change complexity measure of MPLCs and
non-MPLCs, respectively; %Diff denotes the percentage of
the difference between AveM and AveN (i.e., %Diff =
((AveM− AveN)/AveN)× 100%)). As shown in TABLE VII,
for all the projects, on average, these four change complexity
measures of MPLCs are much larger than those of non-
MPLCs, respectively. Specifically, on average, the LOCM,
NOFM, and NOFM of MPLCs are larger than those of non-
MPLCs by more than 100.0% for most (85%+) of the projects,
and the Entropy of MPLCs is larger than that of non-MPLCs
by 40.6% at least. We further ran Mann-Whitney U tests on
the four measures of MPLCs and non-MPLCs for each project,
and the p-value for each measure of each project is less than
0.001 (except for the p-value for the Entropy of project P4,
which is 0.015) as shown in TABLE VII. This indicates that all
the four measures of MPLCs of each project are significantly
larger than the measures for non-MPLCs, respectively. In other
words, the change complexity of MPLCs is significantly
higher than that of non-MPLCs for each selected project.

D. Open Time of Issues Fixed in MPLCs (RQ4)

We studied the open time (i.e., the time from when an issue
report is created to when the issue is resolved) of issues fixed
in MPLCs, and the results are shown in TABLE VIII, in which
AveOTM and AveOTN denote the average open time of issues
fixed in MPLCs and non-MPLCs respectively, %Diff denotes
the difference between AveOTM and AveOTN (i.e., %Diff =
((AveOTM − AveOTN)/AveOTN)× 100%), and p-value
denotes the result of the Mann-Whitney U test on the open
time of issues fixed in MPLCs and non-MPLCs. As shown in
TABLE VIII, 16 out of 20 (80%) projects have longer open
time of issues fixed in MPLCs than that of issues fixed in non-

MPLCs, and the other 4 projects (which corresponding cells
of column p-value are filled in grey) do not show a significant
difference between the open time of issues fixed in MPLCs
and that of issues fixed in non-MPLCs. The average open time
of issues fixed in MPLCs is 8.0% to 124.7% longer than that
of issues fixed in non-MPLCs for the 16 projects. It indicates
that issues fixed in MPLCs likely take longer to be resolved
than issues fixed in non-MPLCs.

E. Bug proneness of source files modified in MPLCs (RQ5)

Bug proneness of a source file can be measured by defect
density (DD) of the file, i.e., NOB/LOC of the file [23]. We
calculated the defect density of the source files modified in
MPLCs and that of the source files modified only in non-
MPLCs. The results are shown in TABLE IX, in which
#FileAll denotes the number of all source files of a project,
Ave. LOC denotes the average number of lines of code of all
source files of a project, #FileM denotes the number of source
files modified in MPLCs, #FileN denotes the number of source
files modified only in non-MPLCs, DDM denotes the defect
density of a source file modified in MPLCs, DDN denotes the
defect density of a source file modified only in non-MPLCs,
and %Diff denotes the percentage of the difference between
Ave. DDM and Ave. DDN (i.e., %Diff = ((Ave. DDM −
Ave. DDN)/Ave. DDN)× 100%)). We ran the Mann-Whitney
U test to compare the DDM and DDN of source files in each
project, and the p-value is shown in TABLE IX. As we can see
from the table, DDM is significantly larger than DDN with p-
value < 0.05 in 16 out of 20 (80%) projects, and the difference
between DDM and DDN ranges from 17.2% to 3681.8%;
DDM is significantly smaller than DDN with p-value < 0.05
in 2 projects (marked with * following the corresponding p-
values in TABLE IX); and there is no significant difference
between DDM and DDN in the other 2 projects (with p-value

TABLE VII
CHANGE COMPLEXITY OF MPLCS AND NON-MPLCS (RQ3).

Project Name LOCM NOFM NODM Entropy
AveM AveN %Diff p-value AveM AveN %Diff p-value AveM AveN %Diff p-value AveM AveN %Diff p-value

P1 Airavata 1,645 313 425.6 <0.001 31 5 520.0 <0.001 12 3 300.0 <0.001 0.93 0.50 86.0 <0.001
P2 Ambari 541 187 189.3 <0.001 13 5 160.0 <0.001 7 3 133.3 <0.001 0.88 0.58 51.7 <0.001
P3 Arrow 517 262 97.3 <0.001 10 6 66.7 <0.001 4 2 100.0 <0.001 0.91 0.64 42.2 <0.001
P4 Avro 780 264 195.5 <0.001 32 6 433.3 <0.001 7 3 133.3 <0.001 0.97 0.69 40.6 0.015
P5 Beam 578 226 155.8 <0.001 20 6 233.3 <0.001 8 3 166.7 <0.001 0.90 0.57 57.9 <0.001
P6 Carbondata 636 264 140.9 <0.001 15 5 200.0 <0.001 10 3 233.3 <0.001 0.89 0.59 50.8 <0.001
P7 Cloudstack 411 156 163.5 <0.001 7 4 75.0 <0.001 5 2 150.0 <0.001 0.87 0.34 155.9 <0.001
P8 Couchdb 266 95 180.0 <0.001 5 2 150.0 <0.001 2 1 100.0 <0.001 0.87 0.27 222.2 <0.001
P9 Dispatch 456 145 214.5 <0.001 9 3 200.0 <0.001 4 2 100.0 <0.001 0.90 0.42 114.3 <0.001
P10 Ignite 1,019 292 249.0 <0.001 40 7 471.4 <0.001 16 4 300.0 <0.001 0.90 0.53 69.8 <0.001
P11 Impala 455 156 191.7 <0.001 12 4 200.0 <0.001 5 2 150.0 <0.001 0.90 0.53 69.8 <0.001
P12 Kafka 709 202 251.0 <0.001 18 5 260.0 <0.001 9 3 200.0 <0.001 0.91 0.57 59.6 <0.001
P13 Kylin 274 193 42.0 <0.001 7 5 40.0 <0.001 5 3 66.7 <0.001 0.86 0.51 68.6 <0.001
P14 Ranger 563 262 114.9 <0.001 11 5 120.0 <0.001 7 3 133.3 <0.001 0.92 0.51 80.4 <0.001
P15 Reef 530 254 108.7 <0.001 23 8 187.5 <0.001 9 4 125.0 <0.001 0.92 0.61 50.8 <0.001
P16 Spark 404 126 220.6 <0.001 11 4 175.0 <0.001 6 3 100.0 <0.001 0.88 0.54 63.0 <0.001
P17 Subversion 235 75 213.3 <0.001 7 2 250.0 <0.001 3 1 200.0 <0.001 0.86 0.25 244.0 <0.001
P18 Thrift 451 128 252.3 <0.001 8 3 166.7 <0.001 4 1 300.0 <0.001 0.90 0.38 136.8 <0.001
P19 Usergrid 555 259 114.3 <0.001 10 5 100.0 <0.001 4 3 33.3 <0.001 0.92 0.50 84.0 <0.001
P20 Zeppelin 541 167 224.0 <0.001 10 4 150.0 <0.001 6 2 200.0 <0.001 0.90 0.46 95.7 <0.001

TABLE VIII
AVERAGE OPEN TIME OF ISSUES FIXED IN MPLCS OF THE SELECTED

PROJECTS (RQ4).

Proj. Name AveOTM(day) AveOTN(day) %Diff p-value
P1 Airavata 95.22 58.95 61.5 0.005
P2 Ambari 13.52 8.13 66.3 <0.001
P3 Arrow 55.83 38.94 43.4 0.000
P4 Avro 60.00 128.16 -53.2 0.225
P5 Beam 96.08 87.59 9.7 0.007
P6 Carbondata 24.07 22.28 8.0 <0.001
P7 Cloudstack 113.71 50.60 124.7 <0.001
P8 Couchdb 165.91 154.39 7.5 0.792
P9 Dispatch 55.82 34.30 62.7 <0.001
P10 Ignite 71.11 56.03 26.9 <0.001
P11 Impala 160.51 78.66 104.1 <0.001
P12 Kafka 98.26 67.84 44.8 <0.001
P13 Kylin 123.40 61.64 100.2 0.006
P14 Ranger 37.05 21.44 72.8 <0.001
P15 Reef 41.99 29.24 43.6 <0.001
P16 Spark 59.55 40.73 46.2 <0.001
P17 Subversion 711.54 704.09 1.1 0.388
P18 Thrift 159.95 119.91 33.4 <0.001
P19 Usergrid 69.42 83.38 -16.7 0.811
P20 Zeppelin 48.30 35.64 35.5 <0.001

> 0.05, the corresponding cells of column p-value are filled
in grey in TABLE IX). In other words, the defect density of
source files that have been modified in MPLCs is likely
larger than the defect density of source files that have
never been modified in MPLCs.

V. DISCUSSION

In this section, we interpret the results of the study accord-
ing to the RQs and discuss the implications of the results for
both practitioners and researchers.

A. Interpretation of Study Results

RQ1: Only 9.0% of the commits are MPLCs when taking
all projects as a whole, and the other 91.0% of the commits are
non-MPLCs. It indicates that developers tend to make mono-
language changes despite the MPL development. However,
from the perspective of individual projects, the proportion of
MPLCs may differ greatly. As we can see from TABLE IV
and TABLE V, a greater number of PLs used and a lower
percentage of code in the main PL do not necessarily mean a
larger proportion of MPLCs in a project. One possible reason
is that design quality may play an important role. For instance,
higher modularity may reduce the likelihood of MPLCs.

Although the proportion of MPLCs of the selected projects
differs from one to one, the proportion of MPLCs goes to a
relatively stable level for most (80%) of the selected projects.
This is an interesting phenomenon, which may indicate certain
balanced status in the development, e.g., stable architecture
design. It is worth further investigation to explore what factors
play dominant roles in this phenomenon.

RQ2: Most of MPLCs involve source files written in two
PLs, which may be a natural choice of developers. Source
files in more PLs to be modified in a commit may lead
to higher complexity of the code change, which requires
more comprehensive consideration of the potential influence
of the code change on the quality of the software systems.
However, there lack effective tools to automatically analyze
change impact in an MPL context, and MPL code analysis
still remains a rather challenging problem [10].

RQ3: Change complexity of MPLCs is significantly higher
than change complexity of non-MPLCs, which is not sur-
prising. MPLCs involve source files written in multiple PLs,
and source files in different PLs are usually distributed over
different components. Therefore, MPLCs tend to exert rela-
tively global impact on the software system, and the change

TABLE IX
DEFECT DENSITY OF SOURCE FILES MODIFIED IN MPLCS AND NON-MPLCS (RQ5).

Project Name #FileAll Ave. LOC #FileM #FileN Ave. DDM Ave. DDN %Diff p-value
P1 Airavata 993 1,065 450 543 0.00174 0.00325 -46.5 0.381
P2 Ambari 5,645 194 2,272 3,373 0.03636 0.01848 96.8 <0.001
P3 Arrow 2,851 223 1,757 1,094 0.01041 0.00604 72.4 <0.001
P4 Avro 1,134 196 976 158 0.00775 0.00340 127.9 <0.001
P5 Beam 5,812 181 2,344 3,468 0.01034 0.00325 218.2 <0.001
P6 Carbondata 1,484 216 1,244 240 0.00770 0.00290 165.5 <0.001
P7 Cloudstack 2,395 381 1,346 1,049 0.00256 0.00247 3.6 0.071
P8 Couchdb 557 221 173 384 0.00038 0.00009 322.2 0.007
P9 Dispatch 332 351 261 71 0.02112 0.00517 308.5 <0.001

P10 Ignite 12,270 168 4,924 7,346 0.01085 0.01212 -10.5 <0.001*
P11 Impala 2,364 271 1,784 580 0.01549 0.00486 218.7 <0.001
P12 Kafka 3,341 195 2,365 976 0.01395 0.01190 17.2 <0.001
P13 Kylin 1,831 155 328 1,503 0.01165 0.00784 48.6 <0.001
P14 Ranger 1,480 221 579 901 0.01861 0.01394 33.5 <0.001
P15 Reef 3,590 79 499 3,091 0.01271 0.00421 201.9 <0.001
P16 Spark 4,854 201 3,759 1,095 0.01499 0.00711 110.8 <0.001
P17 Subversion 1,571 548 1,296 275 0.00416 0.00011 3,681.8 <0.001
P18 Thrift 1,322 195 839 483 0.01307 0.00742 76.1 <0.001
P19 Usergrid 1,884 129 128 1,756 0.00022 0.00031 -29.0 0.028*
P20 Zeppelin 1,197 185 716 481 0.00945 0.00445 112.4 <0.001

complexity of MPLCs is likely to be higher. In addition,
the results of all the four change complexity measures (i.e.,
LOCM, NOFM, NODM, and Entropy) are perfectly consis-
tent, which increases the confidence in the finding that changes
in MPLCs are more complex than changes in non-MPLCs.
Finally, the information on whether a code change is an MPLC
can facilitate effort estimation in project management.

RQ4: The results on the open time of issues show that
issues fixed in MPLCs likely take longer to be resolved
than issues fixed in non-MPLCs. The open time of issues
generally depends on two factors: the priority of issues and
the difficulty of resolving issues. We looked into whether there
is a significant difference on the priority of issues fixed in
MPLCs and non-MPLCs, and found that there is no significant
difference between the priority of issues fixed in MPLCs and
non-MPLCs for most (12/20) of the selected projects. The
results on the issue priority are not presented in this paper
due to the space limit, but have been available online2. Thus,
the main reason for issues fixed in MPLCs taking longer to
be resolved may be that such issues are more difficult to be
fixed, which is evidenced by the results on RQ3.

RQ5: Source files modified in MPLCs are likely to be
more bug-prone, thus, the proportion of source files that have
been modified in MPLCs can be used as an indicator of
risk of bug introduction in MPL software systems. Source
files in various PLs modified in an MPLC indicate that these
source files are linked together due to (in)direct dependencies.
In addition, source files in different PLs are communicated
through dedicated mechanisms (e.g., JNI) and there lack cross-
language analysis tools, which increases the difficulty of bug
fixing and consequently results in higher bug proneness of the
involved source files in MPLCs.

2https://github.com/ASSMS/ICPC2021/blob/main/issuepriority.pdf

B. Implications for Practitioners

Prevent too many MPLCs by architecture design of
MPL software systems. Since the change complexity of
MPLCs is significantly higher than non-MPLCs, too many
MPLCs happening in an MPL system will result in a con-
siderable increase of effort for making changes to the system.
An MPLC tends to be at the architecture level in light of
that multiple components are modified in the MPLC. Thus,
it is wise to design a more maintainable architecture for an
MPL system. When a relatively high proportion of commits
are MPLCs in an MPL system, there is a necessity to assess
the maintainability (especially modularity) of the architecture
of this system [24], [25], and then to improve the architecture
design through e.g., refactoring.

Pay special attention to source files modified in MPLCs.
As the results of RQ5 revealed, the source files modified
in MPLCs are likely to have a higher defect density than
that of source files only modified in non-MPLCs. Therefore,
practitioners should pay more attention to the former. For
instance, designers may improve the modularity of source
files modified in MPLCs, in order to lower the likelihood of
such source files being modified together; developers need to
investigate deeper on the impact of MPLCs; and developers
and testers can invest more effort to test such source files.

C. Implications for Researchers

Take MPLCs into account when constructing defect
prediction models for MPL software systems. Since whether
the source files have been modified in MPLCs plays a role
in the defect density of source files, it is reasonable to take
MPLCs as a factor in defect prediction for MPL systems.

Investigate the factors that influence the proportion of
MPLCs in MPL software systems. The change complexity
of MPLCs is much higher than that of non-MPLCs, which
implies that MPLCs will greatly increase the development

https://github.com/ASSMS/ICPC2021/blob/main/issuepriority.pdf

cost of MPL software systems. Therefore, it is necessary to
keep the proportion of MPLCs of an MPL system under a
reasonable level. However, it still remains unclear what factors
contribute to a relatively high proportion of MPLCs in an MPL
system, which is an interesting research question.

Need further studies on the relationship between MPLCs
and software architecture. Although intuitively MPLCs are
more related to the changes at the architecture level, there still
lacks evidence on how MPLCs relate to software architecture
and verse vice. We believe that this could be a promising
research topic to be further explored.

VI. THREATS TO VALIDITY

There are several threats to the validity of the study results.
We discuss these threats according to the guidelines in [18].
Please note that internal validity is not discussed, since we do
not study causal relationships.

A. Construct Validity

Construct validity is concerned with whether the values
of the variables (listed in TABLE II and TABLE III) we
obtained are in line with the real values that we expected.
A potential threat to construct validity is that not all issues
resolved are linked to corresponding commits. Due to different
developer habits and development cultures, committers may
not explicitly mention the ID of the issue resolved in cor-
responding commit message, which may negatively affect the
representativeness of the collected issues and further influence
the accuracy of defect density and the time taken to resolve
issues. Through our analysis (the analysis results are not shown
in this paper due to its deviation from the focus of this paper),
we confirmed that the committers who explicitly mention
the issue ID do not come from a small group of specific
developers. Therefore, this threat is to some extent mitigated.

B. External Validity

External validity is concerned with the generalizability of
the study results. First, a potential threat to external validity is
whether the selected projects are representative enough. As
presented in Section III-C, we applied a set of criteria to
select projects. We tried to include as many as possible the
Apache projects that meet the selection criteria. Furthermore,
the selected projects cover different application domains, and
differ in code repository size and development duration. This
indicates improved representativeness of the selected projects.

Second, another threat is that only Apache MPL OSS
projects were selected. The number of available projects is
relatively small, which may reduce the generalizability of the
study results.

Finally, since only 18 PLs are considered in this study, the
findings and the conclusions drawn are only valid for projects
using these PLs. Since only OSS projects were selected, we
cannot generalize the findings and conclusions to closed source
software projects.

C. Reliability

Reliability refers to whether the study yields the same
results when it is replicated by other researchers. A potential
threat is related to the implementation of related software tools
for data collection. The tools were mainly implemented by the
third author, and the code of the key functionalities had been
regularly reviewed by the first and second authors. In addition,
sufficient tests were performed to ensure the correctness of the
calculation of data items. Hence, the threat to reliability had
been alleviated.

VII. CONCLUSIONS AND FUTURE WORK

The phenomenon of MPLCs is prevalent in modern software
system development. To our knowledge, this phenomenon has
not been explored yet. In light of the potential influence
of MPLCs on development difficulty and software quality,
we conducted an empirical study to understand the state of
MPLCs, their change complexity, as well as their impact on
open time of issues and bug proneness of source files in real-
life software projects.

Following a set of predefined criteria, we selected 20 non-
trivial Apache MPL OSS projects, in which 205,994 commits
(including 18,469 MPLCs) were analyzed. The main findings
are that:

• The proportion of MPLCs for the selected projects ranges
from 0.7% to 41.0%, and 9.0% of the commits are
MPLCs when taking all projects as a whole. The pro-
portion of MPLCs goes to a relatively stable level for
80% of the selected projects.

• In most of the selected projects, the average number of
PLs used in each MPLC is around 2.0. Particularly, when
taking all selected projects as a whole, 91.7% of the
MPLCs involve source files written in two PLs.

• The change complexity (in terms of the number of lines
of code, source files, directories modified, and Entropy)
of MPLCs is significantly higher than that of non-MPLCs
in all selected projects.

• In 80% of the selected projects, the issues fixed in MPLCs
take longer (by 8.0% to 124.7%) to be resolved than the
issues fixed in non-MPLCs;

• In 80% of the selected projects, the source files that have
been modified in MPLCs are more bug-prone (by 17.2%
to 3681.8%) in terms of defect density than source files
that have never been modified in MPLCs.

Based on the results of this empirical study, our future
research will focus on the following directions: First, one
promising direction is to investigate how MPLCs and software
architecture interplay in MPL software systems. For instance,
we may look into whether MPLCs are related to architectural
technical debt [26], [27]. Second, we plan to use MPLCs as an
additional factor to enhance bug prediction models for MPL
systems based on existing models. Finally, we will replicate
this study by constructing a large-scale dataset, in which more
projects written in diverse PLs will be included to balance the
use of different PLs.

REFERENCES

[1] M. Grichi, M. Abidi, F. Jaafar, E. E. Eghan, and B. Adams, “On the im-
pact of interlanguage dependencies in multilanguage systems empirical
case study on java native interface applications (JNI),” IEEE Transac-
tions on Reliability, pp. 1–13, 2020. doi:10.1109/TR.2020.3024873.

[2] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in github,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE’14), pp. 155–165, ACM, 2014.

[3] P. Mayer and A. Bauer, “An empirical analysis of the utilization of mul-
tiple programming languages in open source projects,” in Proceedings
of the 19th International Conference on Evaluation and Assessment in
Software Engineering (EASE’15), p. article 4, ACM, 2015.

[4] P. S. Kochhar, D. Wijedasa, and D. Lo, “A large scale study of multiple
programming languages and code quality,” in Proceedings of the IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER’16), pp. 563–573, 2016.

[5] P. Mayer, “A taxonomy of cross-language linking mechanisms in open
source frameworks,” Computing, vol. 99, no. 7, pp. 701–724, 2017.

[6] P. Mayer, M. Kirsch, and M. A. Le, “On multi-language software
development, cross-language links and accompanying tools: a survey
of professional software developers,” Journal of Software Engineering
Research and Development, vol. 5, no. 1, pp. 1–33, 2017.

[7] M. Abidi, M. Grichi, and F. Khomh, “Behind the scenes: developers’
perception of multi-language practices,” in Proceedings of the 29th
Annual International Conference on Computer Science and Software
Engineering (CASCON’19), pp. 72–81, IBM Corp., 2019.

[8] K. Kontogiannis, P. Linos, and K. Wong, “Comprehension and mainte-
nance of large-scale multi-language software applications,” in Proceed-
ings of the 22nd IEEE International Conference on Software Mainte-
nance (ICSM’06), pp. 497–500, IEEE, 2006.

[9] M. Abidi, M. S. Rahman, M. Openja, and F. Khomh, “Are multi-
language design smells fault-prone? an empirical study,” ACM Trans-
actions on Software Engineering and Methodology, vol. 30, no. 3,
p. Article No. 29, 2021.

[10] A. Shatnawi, H. Mili, M. Abdellatif, Y.-G. Guéhéneuc, N. Moha,
G. Hecht, G. E. Boussaidi, and J. Privat, “Static code analysis of
multilanguage software systems,” tech. rep., 2019.

[11] M. Kargar, A. Isazadeh, and H. Izadkhah, “Multi-programming language
software systems modularization,” Computers & Electrical Engineering,
vol. 80, p. 106500, 2019.

[12] M. Grichi, E. E. Eghan, and B. Adams, “On the impact of multi-
language development in machine learning frameworks,” in Proceedings
of the 36th IEEE International Conference on Software Maintenance and
Evolution (ICSME’20), pp. 546–556, IEEE, 2020.

[13] E. D. Berger, C. Hollenbeck, P. Maj, O. Vitek, and J. Vitek, “On
the impact of programming languages on code quality: A reproduction
study,” ACM Transactions on Programming Languages and Systems,
vol. 41, no. 4, p. Article 21, 2019.

[14] P. Bhattacharya and I. Neamtiu, “Assessing programming language
impact on development and maintenance: a study on C and C++,” in Pro-
ceedings of the 33rd International Conference on Software Engineering
(ICSE’11), pp. 171–180, 2011.

[15] M. Abidi, F. Khomh, and Y.-G. Guéhéneuc, “Anti-patterns for multi-
language systems,” in Proceedings of the 24th European Conference on
Pattern Languages of Programs (EuroPLoP’19), p. Article 42, ACM,
2019.

[16] M. Abidi, M. Grichi, F. Khomh, and Y.-G. Guéhéneuc, “Code smells
for multi-language systems,” in Proceedings of the 24th European Con-
ference on Pattern Languages of Programs (EuroPLoP’19), p. Article
12, ACM, 2019.

[17] M. Kargar, A. Isazadeh, and H. Izadkhah, “Improving the modulariza-
tion quality of heterogeneous multi-programming software systems by
unifying structural and semantic concepts,” Journal of Supercomputing,
vol. 76, no. 1, pp. 87–121, 2020.

[18] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[19] V. R. Basili, “Software modeling and measurement: The
goal/question/metric paradigm,” tech. rep., 1992.

[20] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proceedings of the 31st International Conference on Software Engi-
neering (ICSE’09), pp. 78–88, IEEE, 2009.

[21] Z. Li, P. Liang, D. Li, R. Mo, and B. Li, “Is bug severity in line
with bug fixing change complexity?,” International Journal of Software
Engineering and Knowledge Engineering, vol. 30, no. 11&12, pp. 1779–
1800, 2020.

[22] A. Field, Discovering Statistics using IBM SPSS Statistics. Singapore:
Sage Publications Ltd., fourth ed., 2013.

[23] Z. Li, P. Liang, and B. Li, “Relating alternate modifications to defect
density in software development,” in Proceedings of the 39th Inter-
national Conference on Software Engineering Companion (ICSE’17),
pp. 308–310, IEEE, 2017.

[24] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Decoupling level: A
new metric for architectural maintenance complexity,” in Proceedings of
the 38th International Conference on Software Engineering (ICSE’16),
pp. 499–510, ACM, 2016.

[25] S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software modu-
larity violations,” in Proceedings of the 33rd International Conference
on Software Engineering (ICSE’11), pp. 411–420, IEEE, 2011.

[26] Z. Li, P. Liang, and P. Avgeriou, “Architectural technical debt iden-
tification based on architecture decisions and change scenarios,” in
Proceedings of the 12th Working IEEE/IFIP Conference on Software
Architecture (WICSA’15), pp. 65–74, IEEE, 2015.

[27] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on
technical debt and its management,” Journal of Systems and Software,
vol. 101, no. 3, pp. 193–220, 2015.

http://dx.doi.org/10.1109/TR.2020.3024873

	I Introduction
	II Related Work
	II-A Phenomenon of MPL Software Systems
	II-B Quality of MPL Software Systems

	III Study Design
	III-A Objective and Research Questions
	III-B Cases and Unit Analysis
	III-C Case Selection
	III-D Data Collection
	III-D1 Data Items to be Collected
	III-D2 Data Collection Procedure

	III-E Data Analysis

	IV Study Results
	IV-A Proportion of MPLCs in the Selected Projects (RQ1)
	IV-B Number of PLs Used in the Source Files Modified in MPLCs (RQ2)
	IV-C Change Complexity of MPLCs (RQ3)
	IV-D Open Time of Issues Fixed in MPLCs (RQ4)
	IV-E Bug proneness of source files modified in MPLCs (RQ5)

	V Discussion
	V-A Interpretation of Study Results
	V-B Implications for Practitioners
	V-C Implications for Researchers

	VI Threats to Validity
	VI-A Construct Validity
	VI-B External Validity
	VI-C Reliability

	VII Conclusions and Future Work
	References

