

Delft University of Technology

The Effect of a Block-based Language on Formula Comprehension in Spreadsheets

Jansen, Bas; Hermans, Felienne

DOI
10.1109/ICPC52881.2021.00035
Publication date
2021
Document Version
Accepted author manuscript
Published in
Proceedings - 2021 IEEE/ACM 29th International Conference on Program Comprehension, ICPC 2021

Citation (APA)
Jansen, B., & Hermans, F. (2021). The Effect of a Block-based Language on Formula Comprehension in
Spreadsheets. In Proceedings - 2021 IEEE/ACM 29th International Conference on Program
Comprehension, ICPC 2021 (pp. 288-299). Article 9462970 (IEEE International Conference on Program
Comprehension; Vol. 2021-May). https://doi.org/10.1109/ICPC52881.2021.00035
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICPC52881.2021.00035
https://doi.org/10.1109/ICPC52881.2021.00035

The Effect of a Block-based Language on Formula
Comprehension in Spreadsheets

Bas Jansen
Delft University of Technology

The Netherlands
Email: b.jansen@tudelft.nl

Felienne Hermans
Leiden University
The Netherlands

Email: f.f.j.hermans@liacs.leidenuniv.nl

Abstract—The use of spreadsheets in industry is widespread. It
is known that spreadsheets have an average life span of five years,
and during this life span, they are used on average by thirteen
different persons. Consequently, spreadsheets need maintenance,
and knowledge about the spreadsheet needs to be transferred
from one user to another. To minimize the risk of introducing new
errors, a thorough understanding of the spreadsheet’s formulas
is needed during maintenance and knowledge transfer tasks.

Research on the use of block-based languages has shown
that they positively affect the comprehension of program code.
We hypothesize that using a block-based representation of a
spreadsheet formula will positively affect formula comprehension.

Hence, we extended XLBlocks, a block-based formula editor
for spreadsheets, with the functionality to generate a block-based
representation of an existing formula. We conduct a think-aloud
study with twenty-one experienced spreadsheet users from indus-
try and ask them to perform a set of spreadsheet comprehension
tasks using XLBlocks. During an interview, we ask them, using
the Cognitive Dimensions of Notations framework, to reflect on
the use of XLBlocks.

We found that participants preferred to use the block-based
representation of formulas when analyzing or explaining for-
mulas or to implement non-trivial changes. Named function
parameters and the absence of parentheses and commas make
functions easier to understand. Furthermore, the visualization
enables the user to separate smaller parts in the formula, which
improves comprehension. Finally, the possibility to navigate from
formula to formula makes it clear how formulas work together
and improve the understanding of the spreadsheet as a whole.

I. INTRODUCTION

Spreadsheets are ubiquitous in industry and often used
for critical business decisions. Unfortunately, spreadsheets are
also known for their error-proneness. Almost all spreadsheets
contain non-trivial errors [1]. Consequently, companies are at
risk of basing their decisions on inaccurate information, which
can lead to significant loss of money or reputation.1

A major part of spreadsheet research is focused on improv-
ing spreadsheets by applying software engineering methods.
For example, the concept of testing in spreadsheets was studied
by Rothermel et. al. [2] and more recently by Roy et. al. [3].
Hermans et. al. [4] and Cunha et. al [5] introduced the idea of
reverse engineering of spreadsheets and designed methods for
extracting class diagrams from spreadsheets. Several studies
[6] [7] [8] define and investigate code smells in spreadsheets.
Refactoring is closely related to code smells, and both Badame

1http://www.eusprig.org/horror-stories.htm

and Dig [9] and Hermans and Dig [10] developed tools for
refactoring in spreadsheets.

The common denominator in these studies is that they
provide methods and techniques that support users in im-
proving spreadsheets. Nevertheless, a focus on spreadsheet
comprehension is lacking. According to Hermans et. al. [11],
spreadsheets have an average life span of five years and are on
average used by thirteen different users. This means that during
a spreadsheet’s lifetime, maintenance is needed, and for that,
knowledge needs to be transferred from one user to another.
During these ‘transfer scenarios’, a thorough understanding of
the spreadsheet minimizes the risk of introducing new errors.

Therefore, we focus in this paper on formula comprehen-
sion. In an earlier study [12] we introduced XLBlocks, a
block-based formula editor for spreadsheets. With this editor,
it is possible to create formulas with a block-based language
instead of the default textual formula language and translate
them automatically into valid spreadsheet formulas. However,
in our first implementation of XLBlocks, it was impossible to
generate a block-based representation from a formula, making
it less suitable for formula comprehension. For this study, we
have extended XLBlocks with the functionality to generate
from a textual formula a block-based representation of that
formula. This enables users to analyze existing spreadsheet
formulas in a block-based language.

In this paper, we want to understand the effect of a block-
based language for spreadsheets on formula comprehension.
To answer this question, we conduct a think-aloud study
in which we ask participants to perform a set of formula
comprehension tasks with a new version of XLBlocks. When
they have completed these tasks, we interview them and ask
them to reflect on their experience with XLBlocks. To guide
the interview, we use the Cognitive Dimensions of Notation
(CDN) Framework [13].

II. RELATED WORK

A. Spreadsheets and Visual Languages

Related to our study is the work of Burnet et. al.
[14]. They introduced the visual research language Forms/3.
This language’s goal was to eliminate some of the spread-
sheet systems’ limitations without abandoning the spreadsheet
paradigm. The language describes a complete spreadsheet

Highlighted Cells

Formula bar

Inspect formula

Selected function

Fig. 1. Left the traditional view with the formula bar at the top, right the XLBlocks interface showing the block representation of the formula

model. This in contrast to XLBlocks, where we focus on an
individual formula.

Abraham et. al. [15] also introduced a visual language for
spreadsheets called ViTSL. With ViTSL, it is possible to define
a spreadsheet template. From such a template, a spreadsheet
can be generated automatically. Based on this work, Engels
and Erwig [16] introduced ClassSheet. A ClassSheet repre-
sents both the structure and the relation between (business)
objects within the spreadsheet. With ClassSheets, the problem
domain and spreadsheet domain are brought closer together.
The ClassSheets needed to be developed in a stand-alone
application, and for that reason, real-time synchronization
between the ClassSheet and the spreadsheet was not possible.
Cunha et. al. [17] integrated ClassSheets in the spreadsheet
and enabled two-way synchronization between the ClassSheet
and the spreadsheet.

Leitão and Roast [18] developed a visual language for
formulas. It is not a block-based language but a data-flow
language. They worked on two different variants: Explicit
Visualization (EV) and Data flow Visualization (DV). In the
EV, the visualization is a direct match of the spreadsheet
formula. Operators, cell references, constants, and functions
have been replaced by symbols. The DV uses the same
symbols, but they are presented as a syntax tree.

Finally, Sarkar et al. [19] introduced Calculation View,
which is also an alternative representation of the spreadsheet.
Formulas are presented in a textual calculation view adjacent
to the standard grid view. One of Calculation View features
is ‘range assignments’, which allows the user to assign the
same formula to a range of cells. This is more efficient and
less maintenance intensive than manually dragging the formula
down to a range of cells. Furthermore, with Calculation View,
it is possible to name cells easily and refer to those names in
other formulas.

B. Block-based languages

BLOX can be considered the first block-based language
and was introduced by Glinert [20]. After the introduction
of several block-based languages, like Alice [21], Scratch

[22], and Blockly [23] the body of research on block-based
languages started to grow.

Most related to our research is a study of Weintrop et.
al. [24]. In this study, they introduce CoBlox, a block-
based language to program a one-armed industrial robot. They
demonstrate that block-based languages are not only suitable
for children in an educational environment but also useful
for adult novice programmers in an industrial setting. Adult
programmers successfully implemented robot programs with
CoBlox faster and with no loss in accuracy than similar
programmers using one of two widely-used industrial robot
programming approaches. They also scored better on usability,
learnability, and overall satisfaction.

Weintrop et. al. also conducted a study on block-based
comprehension [25]. They asked participants to answer twenty
program comprehension questions using two variants (text-
based and block-based) of pseudocode developed for the
Advanced Placement CS Principles course. They concluded
that learners performed better on questions presented in the
block-based modality.

Finally, Hermans and Holwerda [26] conducted a user study
with ArduBlockly. Using a user study, they demonstrate a us-
ability analysis of block-based editors based on the Cognitive
Dimensions of Notation (CDN) framework. Furthermore, they
give an overview of several design maneuvers to improve
programming time and effort, program comprehension, and
programmer comfort.

III. ANALYZING FORMULAS WITH XLBLOCKS

A. XLBlocks Interface

Figure 1 shows the XLBlocks interface. The spreadsheet is
displayed on the left side of the screen, the XLBlocks editor
on the right side. At the top of the screen is the formula bar,
which is the Excel default tool to enter formulas. A formula
can be analyzed in XLBlocks by selecting the cell with the
formula and using the inspect formula button to generate the
formula’s block-based representation. A video demonstrating
the user interface of XLBlocks is available on-line.2

2https://doi.org/10.6084/m9.figshare.14268017.v1

(a) Syntax tree (b) Block representation of SUM
function

(c) XML Definition of block

Fig. 2. Generation of block-based formula

B. Generate Block-based Formulas

We extended XLBlocks with the functionality to generate a
block-model of a formula from the textual formula. To do so,
we use XLParser, a parser developed by Aivaloglou et. al [27]
[28] that produces a parse tree for spreadsheet formulas. In
XLBlocks, this parse tree is converted into an XML definition
of the block model, which is then translated to the formula’s
block-based representation (see Figure 2).

C. Highlighting and scrolling

Spreadsheet formulas often use the outcome of other formu-
las in their calculation. To completely understand a formula,
users need to trace the formula’s precedents. To support
users in understanding the formula and tracing its precedents,
XLBlocks highlights cells in the spreadsheet that are referred
to in the formula. In Figure 1 a part of the formula in
XLBlocks is selected (highlighted by a yellow border). The

cells referred to in this selected part of the formula are also
highlighted in the spreadsheet.

Some cells might be out of the user’s field of view. To
inspect these cells, a user can select a single range block, and
XLBlocks will automatically scroll the cursor to that cell and
make it the active cell. If needed, the user can immediately
inspect that formula and navigate from precedent to precedent
to analyze the complete calculation chain. For comprehension,
the user must see the cell, its content, and, preferable, the
corresponding label. In most spreadsheet models, the label can
be found to the left or above the cell. Therefore, XLBlocks
ensures that the columns to the left and the rows above the
cell are visible when a user scrolls to a cell.

D. Implementation

XLBlocks has been implemented as an Excel Add-in. It
has been developed with the Excel JavaScript API [29].
The Blockly Library [30] [23] is used to develop the visual
programming editor and was extended with custom blocks
and code generators for the definition and generation of
spreadsheet formulas. Twenty-tree different spreadsheet func-
tions have been implemented in the research prototype of
XLBlocks. Among these twenty-three functions are the fifteen
most frequently used functions of the Enron Corpus [31].
The current research prototype of XLBlocks can only analyze
formulas on the same worksheet.

IV. DESIGN THINK-ALOUD STUDY

A. Research Questions

Spreadsheets have a long lifespan, and thus spreadsheets
need maintenance. Furthermore, there will be several transfer
moments during their lifespan where knowledge about the
spreadsheet needs to be exchanged between different users. For
both maintenance tasks and the transfer scenarios, a thorough
understanding of the formulas is essential.

Therefore we focus in this study on the effect of a block-
based formula language on formula comprehension in spread-
sheets. In this paper, we will answer the following research
questions:

:
• RQ1: What is the effect of a block-based formula editor

on the users’ ability to understand a formula?
• RQ2: What is the effect of a block-based formula editor

on the users’ ability to explain a formula to somebody
else?

• RQ3: What is the effect of a block-based formula editor
on the users’ ability to understand the spreadsheet model
as a whole?

B. Participants

We invited forty-three professional Excel users by e-mail
from twenty-eight different companies. We were looking for
experienced Excel users that use Excel in their professional
lives. Twenty-one of them, working for thirteen companies,
accepted the invitation (see Table I). Five of them had partic-
ipated in our earlier study [12].

TABLE I
OVERVIEW OF THINK-ALOUD STUDY’S PARTICIPANTS

Nr. Gender Age Functional Domain La Fb Ec

P1 M 52 Engineering 7 D 35
P2 F 48 Controlling 8 D 25
P3 M 38 Controlling 8 D 25
P4 M 44 IT 8 D 20
P5 M 59 Finance & Control 7 D 35
P6 M 38 Consultancy 9 D 25
P7 M 43 Finance 8 D 20
P8 M 60 Finance 6 D 30
P9 M 38 Finance 8 D 18
P10 M 64 Finance 8 D 30
P11 M 55 Data analytics 8 W 30
P12 F 46 Business Intelligence 8 D 20
P13 M 49 Finance & Control 7 D 25
P14 M 49 Consultancy 6 D 25
P15 F 60 Consultancy 7 D 25
P16 M 55 General Management 7 M 25
P17 M 45 Business Control 7 D 20
P18 M 44 Finance & Control 8 D 24
P19 M 48 Finance 8 D 25
P20 M 38 Finance 9 D 20
P21 M 55 Finance 8 D 29
Average 49 8 25

aExcel level, bFrequency: (D)aily, (W)eekly, (M)onthly,
cExperience (yrs)

All participants use Excel professionally, are accustomed to
working with formulas, and have on average twenty-five years
of experience with Excel. Most of them use Excel daily. We
asked them to assess their level of expertise with Excel on a
ten-point scale (one = low, ten is high). This form of rating
is widely used in (European) schools, and the participants are
more familiar with it than, for example, a five-point Likert
scale. On average, they rated themselves an eight out of ten.

TABLE II
PACIONE’S COMPREHENSION ACTIVITIES

Activity Description
A1 Investigating the functionality of the system
A2 Adding to or changing the system’s functionality
A3 Investigating the internal structure of an artifact
A4 Investigating dependencies between artifacts
A5 Investigating run-time interactions in the system
A6 Investigating how much an artifact is used
A7 Investigating patterns in the system’s design
A8 Assessing the quality of the system’s design
A9 Understanding the domain of the system

C. Comprehension Tasks and Think-Aloud Study

In a think-aloud study, we asked participants to perform
twelve comprehension tasks on an existing spreadsheet model.
We used the framework designed by Pacione et. al [32], com-
monly used for empirical evaluation of code comprehension
[33] [34] and used their set of nine comprehension activities
(see Table II)

In previous research [35] we have translated Pacione’s
software comprehension tasks to the spreadsheet domain. In
this study, we use similar tasks. Each tasks covers at least one
of the activities in Table II and all tasks combined to cover
all activities (see Table III).

Because of the liveness of a spreadsheet, there is no
clear distinction between coding and runtime. We, therefore,
excluded activities A5 and A7.

The spreadsheet we use for the study is defined by the Dutch
Primary Education Board. Schools can use it to calculate the
annual salary costs of their employees. We choose this model
because it is publicly available3, and contains twelve of the
fifteen most frequently used functions in the Enron Corpus
[31]. We adapted the model to incorporate the three missing
functions and moved all lookup tables to the same sheet as
the calculation model4.

D. Think-Aloud study

We organized on-line meetings with the twenty-one partic-
ipants. We used either Microsoft Teams or GoToMeeting to
facilitate these meetings. At the start of every meeting, we
checked the participants’ monitor and resolution, shared our
screen with them, and asked if the different interface elements
were readable. For one participant, we changed the zoom
factor of the XLBlocks interface from 80% to 110%.

Before the meeting, we sent each participant an instruction
video about XLBlocks, asking them to watch it before partic-
ipating in the study. Two participants were not able to do this.
At the start of their meeting, we provided the instruction live,
using the same script that was used for the video.

We shared our screen with the participants during the meet-
ing and gave them control over our keyboard and mouse. We
also recorded the meeting on video. We asked the participants
to perform the twelve comprehension tasks and to think-aloud
during the study. If they felt silent while performing the tasks,
we gave them a quick reminder to express their thoughts.

E. Interview

Immediately after the comprehension tasks, we conducted
a 45-minute interview. We used the Cognitive Dimensions
of Notation (CDN) framework to structure the interview.
The CDN Framework has been used in several usability
studies [15], [36]–[39], and Blackwell and Green developed
a questionnaire for it [40]. In our interview, we covered the
dimensions as defined in [13]. We excluded the dimension
Abstract Gradient because, in XLBlocks, users can not create
their own blocks.

We did not ask the participants to fill out the CDN ques-
tionnaire, but rather, we used the questions to structure our
interview5. It allowed us to clarify a question, and it enabled
us to probe participants for additional details.

We grouped all participants’ answers per cognitive dimen-
sion and complemented them with our observations and the
participant’s remarks from the think-aloud study. We used the
combined information to answer our research questions. These
findings will be presented in the next section.

3https://www.poraad.nl/files/themas/financien/werkgeverslasten po 2020.xlsx
4Adapted model available at: https://doi.org/10.6084/m9.figshare.14268017.v1
5Interview questions available at:https://doi.org/10.6084/m9.figshare.14268017.v1

TABLE III
OVERVIEW OF COMPREHENSION TASKS

Comprehension Activities
Nr. Task A1 A2 A3 A4 A6 A8 A9 Total
T01 Explain a calculation X X X 3
T02 Adapt a calculation X X 2
T03 Explain a key concept of the model X X X 3
T04 Find and correct an error X X 2
T05 Correct an error X X 2
T06 Determine relationships between two cells X X 2
T07 Find dependents of a cell X X 2
T08 Explain how the spreadsheet can be improved X X 2
T09 Assess adaptability of the spreadsheet X 1
T10 Assess transferability of the spreadsheet X 1
T11 Explain a calculation X X X 3
T12 Explain a calculation X X X 3
Total 4 3 8 2 2 3 4 26

V. RESULTS

In this section, we present the results of the think-aloud
study. First, we will cover the execution of the different
comprehension tasks, after that the findings from the CDN
interview, and we end this section by answering the research
questions.

A. Comprehension Tasks

All twenty-one participants were able to perform ten of the
twelve comprehension tasks. In the next paragraphs, we will
describe our findings in detail. We grouped the findings by the
comprehension activities as defined by Pacione et al. [32].

1) Investigating the functionality of (a part of) the system:
By design, XLBlocks displays a single formula. Nevertheless,
several features helped the participants to get an understanding
of the spreadsheet model as a whole.

Range Block

Fig. 3. Example of range blocks in XLBlocks

In the block-based representation of the formula, each cell
reference is represented by a range block (see Figure 3). If
a user clicks on any block in the formula, XLBlocks will
highlight all cells in the spreadsheet with a range block in
that part of the formula. This gives the user an overview of
the other cells in the spreadsheet that are involved in the
calculation of this formula. If users click on a single range
block, they can open that formula in XLBlocks to analyze it.
In this way, users are supported in understanding the working
of the spreadsheet model as a whole.

In the current implementation, XLBlocks highlights all cells
in the same color. Some participants suggested that it would
be helpful if the highlighted cells had a unique color and that
the selected range blocks would light up in the same color.

2) Adding or changing the system’s functionality: We con-
fronted the participants with two erroneous formulas, and all
participants were able to find and correct the errors in these
formulas. Furthermore, they were able to make a change in a
complex formula. They had to replace a nested IF structure
with a VLOOKUP function. According to the participants,
this was easier to perform in XLBlocks than in the formula
bar. In XLBlocks, it is possible to drag the complete IF
structure out of the formula and replace it with a VLOOKUP
function block. They did not need to consider the exact
placement of parentheses and commas’, making the change
more straightforward and quicker.

One of the errors the participants needed to find was a SUM
function in which some cells were omitted. The highlighting
of the involved cells in the spreadsheet helped to visualize the
mistake, but Excel offers the same functionality in the formula
bar. Eight participants remarked that for such a small change
(extending the range of a SUM function), the formula bar is
more efficient than XLBlocks.

The second error that participants had to correct was a
logic error in an IF formula. In this case, according to the
participants, it was easier to spot the error in XLBlocks
because the formula as a whole was easier to read.

3) Investigate the internal structure of an artifact: We
asked the participants to explain several formulas with XL-
Blocks. All participants were able to do that, even if they had
no domain knowledge of the spreadsheet model. In XLBlocks,
in contrast to the formula bar, the parameters of a function are
named. According to the participants, that makes it easier to
understand a formula. For example, P19 stated: ”In XLBlocks,
the IF, THEN, and ELSE parts of the formula are visible in
the IF Block. That is not the case in the Excel formula bar.”

When participants explained a formula, we observed that
it took significant time to look up a cell reference in the
spreadsheet to determine its meaning. If the same reference
is used more than once in the formula, it was not uncommon
that participants had to look up the meaning again. Some
participants suggested that formulas would be easier to read
if the cell references had meaningful names instead of the
abstract A1 naming style that is the default in Excel (see also

Section VI-B).
Several participants noted that in XLBlocks, a formula is

visually split into different components (instead of a long
string of characters in the formula bar), making it easier to
understand the formula.

4) Investigating dependencies between artifacts and how
much an artifact is used: The participants were asked to trace
the precedents of five different formulas. They were all able to
do that. XLBlocks provide two features that supported them
in these tasks:

1) When the formula is selected in XLBlocks, all cell
references used in the formula are highlighted in the
spreadsheet.

2) If a user selects a single cell reference in XLBlocks,
they can immediately inspect the formula in that cell
and quickly navigate from formula to formula.

5) Assessing the quality of the system’s design: We asked
the participants how they would improve the spreadsheet
model we used during the comprehension tasks. Two of
the twenty-one participants were not able to come up with
some improvements. The other participants mentioned im-
provements like:

• separating input, calculation, and output of the model to
different worksheets

• move all parameters and lookup tables to different work-
sheets

• in the current model, some calculation are based on
monthly amounts, other on yearly amounts. Several par-
ticipants proposed to make these calculations consistent.
Either all based on monthly or on yearly amounts, but
not mixing them.

6) Understanding the domain of the system: After working
with the spreadsheet model in XLBlocks, participants had a
better understanding of the functional domain (salary admin-
istration). One of the questions was if they could tell which
components make up the total salary costs. Furthermore, they
had to explain the calculation of several pension premiums.
To calculate this, you have to take into account an exemption
amount. If your income is lower than the exemption amount,
you do not have to pay a premium; however, if your income
is higher than the exemption amount, you pay a percentage
of your income minus the exemption amount. When the
participants had to explain these types of formulas, they first
read the formula aloud, and next, they would summarize the
logic of the formula in their own words, recognizing the
pattern described above.

B. CDN Interview

In the next paragraphs, we will present the results of the
interview. We will group the observations by the different
Cognitive Dimensions [13].

1) Viscosity: The dimension Viscosisty expresses the resis-
tance to change in a language and consequently has more
impact on maintenance than comprehension. We included it
in the interview because one of the comprehension activities

(A2 in Table II) involves adding or changing the system’s
functionality. XLBlocks has a drag and drop interface. The
mouse or trackpad is the primary input device. In general, this
slowed the user down, which several participants confirmed.
Because of this, participants would prefer to make small
changes in the formula bar instead of XLBlocks.

For complex formulas, this was different. In one of the tasks,
they had to replace a nested IF structure with a VLOOKUP
function. This is not easy in the formula bar and involves
careful placement of the cursor, ensuring that one is not
selecting one parenthesis too many or too few. Implementing
this change goes faster in XLBlocks. The user does not have to
bother about parentheses and can easily drag the IF structure
out of the formula and replace it with a VLOOKUP block.

Finally, some participants pointed out that it can be chal-
lenging to click on a range block, mostly when used in an
inline function block (for example, range E16 in Figure 3).
If the click is not precisely on the range block, the function
block is selected instead.

2) Visibility: All participants were able to see the complete
formulas at a glance. To understand the formula, it is also
essential to see which cells are referenced, which can be
problematic in a large spreadsheet. If users inspect a formula
in the formula bar, they have to scroll to the cells they
can not see. If a user selects a range block in XLBlocks,
it will automatically scroll to the corresponding cell in the
spreadsheet.

Several participants commented that multiple nested binary
operations (see, for example, the else clause in Figure 4b)
were difficult to understand. Function blocks have different
colors, depending on their category. All binary functions have
the same category (Math and Trigonometry) and, therefore,
the same color. Furthermore, each function block has its own
border, but it is thin and subtly colored. These issues combined
make it difficult to distinguish the individual functions.

3) Premature Commitment: In XLBlocks, the user can
build a formula in any order. Also, it is possible to change
the order of the functions within the formula at any given
time. The only requirement is that the output of the top-level
function is connected to a formula block.

Nevertheless, some participants had the feeling they had to
start with the formula block and build the formula from there,
starting with the top-level function. They even said they liked
how the blocks would force them to build the formula in a
structured manner. For example, P1 said: ”You are somewhat
forced in a structure, and I actually like that.”, and P7: ”I
think, because it is visual, you are forced to think about the
formula you are building.”

Other participants recognized that they could start anywhere
in the formula. All participants agreed that it is easy to change
the order of functions in the formula.

4) Hidden Dependencies: In a spreadsheet, there are depen-
dencies between functions in a formula and between cells in
the spreadsheet. Participants indicated that it is easy to see the
dependencies between functions in a formula. Each function

is visualized as a puzzle piece, and the connection between
two pieces visualizes the dependency between the functions.

Concerning the spreadsheet level, participants liked that
XLBlocks would highlight all cells in the spreadsheet used
in the formula. Also, the possibility to automatically scroll
to a precedent cell in the spreadsheet by clicking on the
corresponding range block was appreciated. P6 said: ”Clicking
on highlighted cells and jumping from one formula to another
makes it easier to explain the spreadsheet”, or according to P7:
”You can click on a cell and immediately jump to that formula,
that for me is one of the biggest advantages.” Furthermore,
they liked the option that once a precedent cell was selected in
XLBlocks, they could inspect that cell’s formula in XLBlocks.

Unfortunately, once they jumped to one of the precedent
cells, it was impossible to jump back to the original formula.
They also indicated that it was not possible in XLBlocks to
see depending cells of a formula. When they had to trace
dependents during the comprehension tasks, they had to fall
back to Excel’s native trace dependents function.

5) Role-Expressiveness: Participants said that in XLBlocks,
they could ‘see’ the formula. They named the IF function as
an example. ”I think you will make fewer logic errors because
you really see the formula” (P6), ”The structure is clear, it is
more transparent, you see it immediately.” (P11), and ”It is
very easy to read the IF, THEN, ELSE formula.” (P21). In the
formula bar (see Figure 4a), the IF function is displayed as a
single string. A comma separates the THEN and ELSE parts,
and by convention, the second argument is the THEN part, and
the third argument the ELSE part. In XLBlocks (see Figure
4b), the IF, THEN, and ELSE parts are labeled and visualized
on three different lines. Furthermore, each block has a thin
border that acts as the equivalent of parentheses. According
to the participants, these features combined made it easier to
understand the formula.

(a) The IF function as a long string in the formula bar

(b) The IF function split over several lines with named parameters in XLBlocks

Fig. 4. Two variant of the IF Function

XLBlocks, like the formula bar, does not provide an ex-
planation about the function parameters. When working with
the VLOOKUP function, participants indicated that they were
unsure about the meaning of some of the parameters, and
explanation would have helped. This could easily be solved
in XLBlocks by adding tool-tips to the parameters.

6) Error-Proneness: As was already mentioned at Prema-
ture Commitment, some participants pointed out that the blocks
guide you through a function’s structure. It is not possible to

forget a parameter and, because they are labeled, one can not
confuse them. As a consequence, this leads to fewer errors.
Additionally, most participants noted that XLBlocks places the
parentheses and commas automatically, which further reduces
possible errors.

Some participants remarked that the operators in the binary
function blocks (see Figure 7b) are hard to read, and it is easy
to forget to change the default operator. Both cases would lead
to an incorrect formula.

7) Secondary Notation: XLBlocks has a dedicated com-
ment block (see Figure 5) that can be used to annotate a
formula. Multiple comment blocks can be added to a formula,
and they can be placed freely on the canvas.

Fig. 5. Example of a comment block

Participants said that they would use the comment block
to document the formula, describe its purpose, explain the
calculation, and describe the meaning of the cells used in the
calculation. The current comment block has been designed
to accommodate short comments, but several participants
indicated they would like to enter larger text blocks.

8) Closeness of Mapping: Cells used in a formula are
visualized in XLBlocks with range blocks (see Figure 3).
The cells are identified by their cell address in A1 notation.
When participants had to explain formulas, they had to look
up the cell by their address in the spreadsheet to see its
functional meaning. While explaining a complex formula, it
occurred more than once that they forgot the meaning of a
cell and had to look it up again, which would slow down the
explanation. Several participants mentioned they would prefer
the possibility to give the range blocks a meaningful name.
An example can be found in Figure 6. Figure 6a shows the
formula as it is currently visualized in XLBlocks, and in Figure
6b the cell addresses are replaced by meaningful names.

(a) Cell references in A1 style

(b) Cell references with meaningful names

Fig. 6. Different styles for cell references

9) Consistency: Participants recognized that blocks with
the same purpose have the same color. Constants have a
different color than cell references, and Lookup functions have
a different color than logical functions. The use of color helped
them to understand the formulas better. Some participants
remarked that it would be even better if the colors would be
repeated in the toolbox menu. In that case, it is easier to derive
the meaning of a specific color.

There are over 450 functions in Excel. It is not feasible to
give every function a unique color. For that reason, functions
of the same type (as defined by Microsoft6, such as math
and trigonometry, logical, and lookup and reference) have the
same color. If in a formula several functions of the same
type are nested (for example, the addition, multiplication, and
comparison in the IF clause of Figure 6a), this will lead to
a group of blocks with the same color. According to the
participants, this makes it less easy to read and interpreter
the formula. Some participants argued that maybe the color
of a function block should depend on the formula’s level of
nestedness.

If a user selects (a part) of a formula in XLBlocks, the used
cells are highlighted in the spreadsheet. These cells get all the
same highlight color. Some participants suggested giving each
highlighted cell its own color and using that color to highlight
the formula’s corresponding range block.

10) Diffuseness: According to the participants, the size of
the formulas is adequate. This is remarkable because block-
based languages tend to be more diffuse [41] and programmers
value that as a negative because less code will fit on the
screen. However, spreadsheet users are accustomed to entering
their formulas in a tiny formula bar. They are relieved that
in XLBlocks, they have more space available, and because
XLBlocks focuses on one formula at a time, even complex
formulas will fit on the canvas and do not require additional
scrolling.

(a) External (b) Inline

Fig. 7. Different input types

XLBlocks handles the input of a function block in two
different ways: external (Figure 7a) and inline (Figure 7b).
Basic functions such as addition, subtraction, and division
use the inline variant. The inline variant is more natural to
read, but if several of these functions are concatenated, one
ends up with a wide formula block (see, for example, the
else clause in Figure 4b). The participants confirmed that
several binary operations after each other take more space than
needed. According to the participants, also the constant blocks

6https://support.microsoft.com/en-us/office/excel-functions-alphabetical-
b3944572-255d-4efb-bb96-c6d90033e188

(number, text, and boolean) are relatively large in relation to
their importance in the formula (see, for example, the number
block in Figure 4b).

11) Hard Mental Operations: According to the partici-
pants, working with XLBlocks does not require more mental
effort than working with formulas in the formula bar. They
provide two reasons for this:

• Because of the visualization in blocks, the formula is
split into smaller components. This makes it easier to
understand the formula. Participants do not have to un-
derstand the formula at once but can focus on a smaller
component. For example, P1 noted: ”I do not have to
split the formula into smaller parts, XLBlocks does that
for me, which makes it easier to understand.”

• In XLBlocks, the user does not have to think about the
placement of parentheses, quotes, or commas.

12) Provisionality: Participants loved the fact that they
could play with formulas in XLBlocks. P13: ”Dragging a part
of formula out of the formula is very easy” and P19: ”It is
very visual, you can drag a part out of it and paste it back in
very easily, I really like that.”

They could easily drag components out of the formula
onto the canvas and replace them with other functions or
components. A component that is dragged out of a formula
can be parked and saved on the canvas. It will not influence
the generation of the spreadsheet formula. If they were not
satisfied with their changes, they could quickly revert to the
previous state. It gave them also the opportunity to evaluate
two or more variations of the same formula. Finally, they
liked the opportunity to change the order of functions within
a formula easily.

13) Progressive Evaluation: Participants indicated that it is
possible to stop working on a formula at any time. The formula
does not need to be correct before it can be saved, which is not
the case in Excel’s formula bar. It is possible to test a part of
a formula as long as it will lead to a valid formula expression.
Seeing if a formula was finished was easy, according to the
participants. As long as there are no missing puzzle pieces, the
formula is finished. In Excel’s formula bar, it is much harder
to see if an argument of a function, a parenthesis, or comma
is missing.

Intermediate
results

Fig. 8. Formula wizard in Excel displaying intermediate results

The participants indicated that they were missing intermedi-
ate results in XLBlocks. This is possible in the formula wizard
in Excel (see Figure 8), and they would like to see similar
functionality in XLBlocks.

C. Research Questions

In the final paragraphs of this section, we will answer the
research questions.

1) RQ1 understand a formula: Participants believe that,
for complex formulas, it is easier to understand them with
XLBlocks than with the formula bar. They have several argu-
ments for this. First, the formula’s block-based representation
splits the formula into smaller components, making it easier
to comprehend. Secondly, the parameters of a function are
named. Less knowledge of the function syntax is needed to
understand it, and lastly, if the user clicks on the formula in
XLBlocks, all cells used in the formula are highlighted in the
spreadsheet. This enables them to see which numbers are used
in the calculation.

2) RQ2 explain a formula to somebody else: According
to the participants, XLBlocks supports the user in explain-
ing the formula. When they click on a part of a formula,
XLBlocks highlight the blocks in that part of the formula.
This helps in focusing the explanation on a specific part of
the formula. Furthermore, comment blocks can be used to
document the purpose of a formula and explain components
in the formula, such as explaining the test performed in an IF
statement. Finally, by clicking on the individual range blocks
in the formula, participants could navigate the spreadsheet,
highlighting the cells used in the formula and explaining the
numbers’ functional meaning in these cells.

3) RQ3 understand the spreadsheet model as a whole:
XLblocks focuses on a single formula at a time. Nevertheless,
participants were able to get an understanding of the working
of the spreadsheet as a whole. Even if they were not familiar
with the functional domain of the spreadsheet (payroll admin-
istration). Participants could easily click from one formula to
another to see how the different formulas were related to each
other and form an opinion about the workings of the model.
Also, the possibility of automatically scrolling to the different
cells and quickly reading the labels helped to understand the
functional meaning of the calculation.

VI. DISCUSSION

A. Confusing IF statement

During the think-aloud study, several participants got con-
fused when explaining a formula that contained an IF function
(see Figure 9). In this formula, the outcome of an IF function
is multiplied with the addition of two percentages. Because
of how the blocks are visualized, the multiplication of the
sum of two percentages is displayed at the same height as
the IF statement. This led the participants to believe that the
multiplication was a part of the IF statement, leading to a
logical test that did not make any sense when translated into
business terms.

Several factors are causing this misconception.

• Both the operand and the arguments of the binary func-
tion are aligned at the top. If the multiplication symbol
and the addition of the two percentages had been aligned

multiplyIF Statement Addition

Fig. 9. Several participants struggled to explain this formula

at the middle of the block, the formula would be less
confusing.

• Except for the IF function itself, all other functions in
the formula are binary functions and have the same color,
making it difficult to distinguish them from each other.

• Each function has its own border, but it is very thin with
a light gray color to simulate a 3D effect. This makes it
challenging to see where one function ends, and another
begins.

Aligning the operands and arguments at the middle of a
block and making the borders of function a fraction thicker
with a more contrasting color would prevent this kind of
misconception.

B. Giving Range Blocks Meaningful Names

As described in the previous section, several participants
suggested that the readability of formulas would benefit if
range blocks got meaningful names instead of an abstract
cell address (see also Figure 6b). In Excel, it is possible to
assign names to ranges, and several authors have advocated
the use of range names [42], [43]. However, other studies
indicate that there are inherent risks in using named ranges.
Panko and Ordway [44] identify the risk that named ranges
can appear correct in the formula but refer to the wrong
range, and McKeever [45], [46] found that the use of named
ranges decreases the ability of novice spreadsheet users to
find and correct errors. The question, if it would be possible
to implement range names in XLBlocks in such a way that it
would not hinder the debugging process and makes it easy to
see to which range the name refers, would make for interesting
future work.

C. Navigating Formulas

While performing task T06 Determine relationships between
two cells, participants noted that it is easy to navigate in
XLBlocks to a direct precedent of the current formula but
not to navigate back. This could be solved in XLBlocks by
displaying a breadcrumb trail at the top of XLBlocks’ canvas.
It would show a horizontal list of formulas that the user has
analyzed, and by clicking on any of the formulas in the list,
the user would navigate back to that formula. Another solution
that could be implemented complementary to the breadcrumb
trail would be a browser-like navigate back button.

D. Intermediate Results

When answering questions about the cognitive dimension
Progressive Evaluation (see Section V-B), participants indi-

cated that it would be even easier to evaluate formulas if,
in XLBlocks, they could see the intermediate results of the
calculation. Inspired by the work of Leber et. al [47], Figure
10 shows an example of how this could be implemented in
XLBlocks.

Intermediate resultTextual representation of formula

Selected part of formula

I20 < U9 / 12 TRUE

Fig. 10. Showing textual formula and intermediate results in XLBlocks

If the user selects a part of a formula, a textual represen-
tation of that part of the formula is displayed at the bottom
left of the XLBlocks interface, while on the bottom right, the
result of the calculation is displayed. One could even consider
making the textual representation of the formula also editable.
We keep this as a point for future work.

E. Threats to Validity

A threat to the external validity of our think-aloud study
concerns the representativeness of the participants. Additional
studies are necessary to generalize our findings.

Furthermore, there is a risk of aptitude treatment interaction
since participants of a previous study were also invited to
participate in this study. It could be the case that only the
most positive ones responded to this request. Eventually, only
five of the twenty-one participants were also a participant in
the previous study, and judging by the number of points of
criticism we received from them during the think-aloud study
and the interview, we believe our finding were not impacted
by the aptitude treatment.

Another threat to the external validity is the representative-
ness of the comprehension tasks. We mitigated this by using
a validated set of comprehension tasks defined by Pacione et.
al [32].

Participants were selected from our network, which is a
threat to the internal validity of our study. However, we believe
the current group serves as a useful reference group, as the
persons were experienced professional spreadsheet users, came
from different companies, and worked in different functional
domains.

We fulfill the role of both developer of XLBlocks and an
interviewer during the think-aloud study. This is a threat to
the internal validity of the study. We lessened this risk by
using a validated set of comprehension tasks and using the
CDN Framework to guide our questions during the interview,

ensuring that all aspects of the usability of the XLBlocks
interface were covered.

VII. CONCLUDING REMARKS

The purpose of this paper is to research the effect of a block-
based language on formula comprehension in spreadsheets. We
extended the block-based formula editor XLBlocks with func-
tionality to generate block-based representations of existing
spreadsheet formulas. We asked participants in a think-aloud
study to perform twelve comprehension task and immediately
after they finished these tasks, interviewed them about their
experience with XLBlocks.

Participants believed that XLBlocks helped them to under-
stand formulas better. They argued that the formula’s visual-
ization in blocks helped separate smaller parts in the formula,
making it easier to comprehend. Furthermore, in XLBlocks,
each function argument had a descriptive label, making the
formula more comfortable to read. Finally, the formula’s cells
were also highlighted in the spreadsheet, making it easier to
see what was calculated by the formula.

During the study, participants had to explain three dif-
ferent formulas using XLBlocks. According to participants,
XLBlocks made it easier to do so. They could select a part
of a formula during an explanation, and XLBlocks would
highlight the relevant blocks. This helped both the participants
and the listener to focus their attention on this part of the
formula. Participants also noted that it is possible to document
a formula’s workings with the dedicated comment blocks of
XLBlocks. Finally, if a formula was part of a larger calculation
chain, users could easily navigate the formula’s precedents to
show how the formulas worked together.

This mechanic of navigating between formulas was, ac-
cording to the participants, also instrumental in gaining an
understanding of the spreadsheet’s workings. The possibility
of quickly navigating to cells in the spreadsheets by selecting
a cell reference in XLBlocks and looking up the corresponding
labels in the spreadsheet helped to gain more insight into the
spreadsheet’s problem domain.

This research gives rise to several directions for future
work. Tracing relations between formulas is instrumental in
understanding the workings of a spreadsheet. We have seen
that XLBlocks can help in finding precedents of a formula but
lacks functionality in tracing dependents. We will investigate
what would be the best way to extend XLBlocks with this
functionality. Furthermore, we will extend XLBlocks with the
possibility to show the textual representation of (a part of)
the formula and the corresponding intermediate results of the
calculation in real-time. It will enable users to receive direct
feedback on changes they make in the formula. Finally, we will
explore the possibility of giving cell references in XLBlocks
a meaningful name.

VIII. DATA AVAILABILITY

A video of XLBlocks, the source code of XLBlocks, the
spreadsheet model used during the Think-Aloud study, and
the interview questions used are available on figshare, DOI
10.6084/m9.figshare.14268017

REFERENCES

[1] R. R. Panko, “Spreadsheet errors: What we know. what we think we
can do,” arXiv preprint arXiv:0802.3457, 2008.

[2] K. J. Rothermel, C. R. Cook, M. Burnett, J. Schonfeld, T. R. Green,
and G. Rothermel, “Wysiwyt testing in the spreadsheet paradigm: An
empirical evaluation,” in Software Engineering, 2000. Proceedings of
the 2000 International Conference on. IEEE, 2000, pp. 230–239.

[3] S. Roy, F. Hermans, and A. van Deursen, “Spreadsheet testing in
practice,” in Software Analysis, Evolution and Reengineering (SANER),
2017 IEEE 24th International Conference on. IEEE, 2017, pp. 338–
348.

[4] F. Hermans, M. Pinzger, and A. Deursen, ECOOP 2010 –
Object-Oriented Programming: 24th European Conference, Maribor,
Slovenia, June 21-25, 2010. Proceedings. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, ch. Automatically Extracting
Class Diagrams from Spreadsheets, pp. 52–75. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-14107-2 4

[5] J. Cunha, M. Erwig, and J. Saraiva, “Automatically inferring classsheet
models from spreadsheets,” in Visual Languages and Human-Centric
Computing (VL/HCC), 2010 IEEE Symposium on. IEEE, 2010, pp.
93–100.

[6] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and refactoring
code smells in spreadsheet formulas,” Empirical Software Engineering,
pp. 1–27, 2014.

[7] J. Cunha, J. P. Fernandes, H. Ribeiro, and J. Saraiva, “Towards a catalog
of spreadsheet smells,” in Computational Science and Its Applications–
ICCSA 2012. Springer, 2012, pp. 202–216.

[8] D. W. Barowy, D. Gochev, and E. D. Berger, “Checkcell: Data debugging
for spreadsheets,” in ACM SIGPLAN Notices, vol. 49, no. 10. ACM,
2014, pp. 507–523.

[9] S. Badame and D. Dig, “Refactoring meets spreadsheet formulas,” in
Software Maintenance (ICSM), 2012 28th IEEE International Confer-
ence on. IEEE, 2012, pp. 399–409.

[10] F. Hermans and D. Dig, “Bumblebee: a refactoring environment for
spreadsheet formulas,” in Proceedings of the 22nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering. ACM,
2014, pp. 747–750.

[11] F. Hermans, M. Pinzger, and A. van Deursen, “Supporting professional
spreadsheet users by generating leveled dataflow diagrams,” in Proceed-
ings of the 33rd International Conference on Software Engineering.
ACM, 2011, pp. 451–460.

[12] B. Jansen and F. Hermans, “Xlblocks: a block-based formula editor for
spreadsheet formulas,” in 2019 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE, 2019, pp. 55–63.

[13] A. F. Blackwell, C. Britton, A. Cox, T. R. Green, C. Gurr, G. Kadoda,
M. Kutar, M. Loomes, C. L. Nehaniv, M. Petre et al., “Cognitive
dimensions of notations: Design tools for cognitive technology,” in
International Conference on Cognitive Technology. Springer, 2001,
pp. 325–341.

[14] M. M. Burnett, J. W. Atwood, R. W. Djang, J. Reichwein, H. J. Gottfried,
and S. Yang, “Forms/3: A first-order visual language to explore the
boundaries of the spreadsheet paradigm,” Journal of functional program-
ming, vol. 11, no. 2, pp. 155–206, 2001.

[15] R. Abraham, M. Erwig, S. Kollmansberger, and E. Seifert, “Visual
specifications of correct spreadsheets,” in Visual Languages and Human-
Centric Computing, 2005 IEEE Symposium on. IEEE, 2005, pp. 189–
196.

[16] G. Engels and M. Erwig, “Classsheets: automatic generation of spread-
sheet applications from object-oriented specifications,” in Proceedings
of the 20th IEEE/ACM international Conference on Automated software
engineering. ACM, 2005, pp. 124–133.

[17] J. Cunha, J. Mendes, J. Saraiva, and J. P. Fernandes, “Embedding
and evolution of spreadsheet models in spreadsheet systems,” in 2011
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), Sep. 2011, pp. 179–186.

[18] R. Leitão and C. Roast, “Developing visualisations for spreadsheet
formulae: towards increasing the accessibility of science, technology,
engineering and maths subjects,” in 9th Workshop on Mathematical User
Interfaces, 2014.

[19] A. Sarkar, A. D. Gordon, S. P. Jones, and N. Toronto, “Calculation view:
multiple-representation editing in spreadsheets,” in 2018 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC),
Oct 2018, pp. 85–93.

[20] E. P. Glinert, “Towards second generation interactive graphical pro-
gramming environments,” in Proceedings of IEEE Workshop onVisual
Language. IEEE CS Press, Silver Spring, MD, 1986, pp. 61–70.

[21] M. Conway, R. Pausch, R. Gossweiler, and T. Burnette, “Alice: a
rapid prototyping system for building virtual environments,” in CHI
Conference Companion. Citeseer, 1994, pp. 295–296.

[22] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
and Y. Kafai, “Scratch: Programming for all,” Commun. ACM,
vol. 52, no. 11, pp. 60–67, Nov. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1592761.1592779

[23] N. Fraser, “Ten things we’ve learned from blockly,” in 2015 IEEE Blocks
and Beyond Workshop (Blocks and Beyond), Oct 2015, pp. 49–50.

[24] D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd,
and D. Franklin, “Evaluating coblox: A comparative study of robotics
programming environments for adult novices,” in Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, ser.
CHI ’18. New York, NY, USA: ACM, 2018, pp. 366:1–366:12.
[Online]. Available: http://doi.acm.org/10.1145/3173574.3173940

[25] D. Weintrop, H. Killen, T. Munzar, and B. Franke, “Block-based
comprehension: Exploring and explaining student outcomes from a
read-only block-based exam,” in Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’19. New
York, NY, USA: Association for Computing Machinery, 2019, pp. 1218–
1224. [Online]. Available: https://doi.org/10.1145/3287324.3287348

[26] R. Holwerda and F. Hermans, “Towards blocks-based prototyping of
web applications,” in 2017 IEEE Blocks and Beyond Workshop (B B),
Oct 2017, pp. 41–44.

[27] E. Aivaloglou, D. Hoepelman, and F. Hermans, “Parsing
excel formulas: A grammar and its application on 4 large
datasets,” Journal of Software: Evolution and Process, vol. 29,
no. 12, p. e1895, 2017, e1895 smr.1895. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1895

[28] XLParser web demo. Accessed: 2021-01-29. [Online]. Available:
https://xlparser.perfectxl.nl/demo/

[29] Javascript API for Office. Accessed: 2021-01-29. [On-
line]. Available: https://docs.microsoft.com/en-us/office/dev/add-
ins/reference/javascript-api-for-office

[30] Blockly. Accessed: 2021-01-29. [Online]. Available:
https://developers.google.com/blockly

[31] F. Hermans and E. Murphy-Hill, “Enron’s spreadsheets and related
emails: A dataset and analysis,” in Proceedings of the 37th International
Conference on Software Engineering-Volume 2. IEEE Press, 2015, pp.
7–16.

[32] M. J. Pacione, M. Roper, and M. Wood, “A novel software visualisation
model to support software comprehension,” in Reverse Engineering,
2004. Proceedings. 11th Working Conference on. IEEE, 2004, pp.
70–79.

[33] F. Hermans and E. Aivaloglou, “Do code smells hamper novice pro-
gramming? a controlled experiment on scratch programs,” in Program
Comprehension (ICPC), 2016 IEEE 24th International Conference on.
IEEE, 2016, pp. 1–10.

[34] B. Cornelissen, A. Zaidman, and A. Van Deursen, “A controlled experi-
ment for program comprehension through trace visualization,” Software
Engineering, IEEE Transactions on, vol. 37, no. 3, pp. 341–355, 2011.

[35] B. Jansen and F. Hermans, “The effect of delocalized plans on spread-
sheet comprehension: a controlled experiment,” in Proceedings of the
25th International Conference on Program Comprehension. IEEE
Press, 2017, pp. 286–296.

[36] M. Kauhanen and R. Biddle, “Cognitive dimensions of a game scripting
tool,” in Proceedings of the 2007 conference on Future Play. ACM,
2007, pp. 97–104.

[37] M. Bellingham, S. Holland, and P. Mulholland, “A cognitive dimensions
analysis of interaction design for algorithmic composition software,”
2014.

[38] F. Turbak, D. Wolber, and P. Medlock-Walton, “The design of naming
features in app inventor 2,” in 2014 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). IEEE, 2014, pp.
129–132.

[39] R. Holwerda and F. Hermans, “A usability analysis of blocks-based pro-
gramming editors using cognitive dimensions,” in 2018 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), Oct
2018, pp. 217–225.

[40] A. F. Blackwell and T. R. Green, “A cognitive dimensions questionnaire
optimised for users.” in PPIG, vol. 13, 2000.

[41] T. R. G. Green and M. Petre, “Usability analysis of visual programming
environments: a ‘cognitive dimensions’ framework,” Journal of Visual
Languages & Computing, vol. 7, no. 2, pp. 131–174, 1996.

[42] S. Kruck, “Testing spreadsheet accuracy theory,” Information and Soft-
ware Technology, vol. 48, no. 3, pp. 204–213, 2006.

[43] P. L. Bewig, “How do you know your spreadsheet is right?” arXiv
preprint arXiv:1301.5878, 2013.

[44] R. R. Panko and N. Ordway, “Sarbanes-oxley: What about all the
spreadsheets?” arXiv preprint arXiv:0804.0797, 2008.

[45] R. McKeever, K. McDaid, and B. Bishop, “An exploratory analysis of
the impact of named ranges on the debugging performance of novice
users,” 2009.

[46] R. McKeever and K. McDaid, “How do range names hinder novice
spreadsheet debugging performance?” 2010.

[47] Ž. Leber, M. Črepinek, and T. Kosar, “Simultaneous multiple repre-
sentation editing environment for primary school education,” in 2019
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2019, pp. 175–179.

