
Using Non-Verbal Expressions
as a Tool in Naming Research
Omer Regev∗ Michael Soloveitchik∗ Dror G. Feitelson

Department of Computer Science
The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

Abstract—Variable and function names are extremely impor-
tant for program comprehension. It is therefore also important to
study how developers select names. But controlled experiments
on naming are hindered by the need to describe to experimental
subjects what it is they need to name. Words appearing in these
descriptions may then find their way into the names, leading to a
bias in the results. We suggest that this problem can be alleviated
by using emojis or other small graphics in lieu of key words in
the descriptions. A replication of previous work on naming, this
time including such emojis and graphics, indeed led to a more
diverse and less biased choice of words in the names than when
using English descriptions.

Index Terms—Variable and function naming, experimental
methodology, accessibility bias

There are only two hard things in Computer Science:
cache invalidation and naming things.

– Phil Karlton

I. INTRODUCTION

It is well-known that names of variables and functions
play a major role in programs’ source code. In large open
source projects about a third of the tokens are identifiers, and
they account for about two thirds of the characters in the
source code [15]. However, the importance of names is not
based only on their volume. Their main importance is that
they serve as implicit documentation, and convey the code’s
intended functionality [30]. In fact, sometimes names are the
only documentation. This is even advocated as part of the
“clean code” approach, which states that “if a name requires
a comment, then the name does not reveal its intent” [27].

The importance of variable and function names for com-
prehension has stimulated a considerable amount of research
on this topic. One favorite topic of research has been how the
length of variable names affects comprehension, and especially
the difference between using full words and abbreviations [28],
[20], [23], [31], [32], [33]. Research on actual usage has shown
that names are getting longer [21], and that longer names
are especially characteristic of “engineered” code [24], but
that single-letter names are also being used [6]. The strain
that longer names place on memory has also been studied
[11]. Another topic has been naming style [7], for example
using camelCase or under score [8] and the effect of naming
conventions [12].

This research was supported by the ISRAEL SCIENCE FOUNDATION
(grant no. 832/18).

∗ Authors contributed equally.

Attention has also been given to the quality of names, and
to how naming relates to the cognitive processes involved in
program comprehension [29], [25]. Several studies have dealt
with bad names and their ill-effects on comprehension [3],
[5], [26], including due to cognitive load [17]. Bad names
have also been linked with low code quality in general [13],
[2]. When developers encounter bad names they may change
them (a form of refactoring), so it is interesting to see what
replacements they choose [4]. There has also been work
on suggesting names automatically, e.g. based on machine
learning of code [1], [29].

Finally, several studies have suggested how practitioners
may create better names. This is usually based on either (or
both) of two methods. One is controlling the vocabulary used,
so as to avoid synonyms and homonyms and reduce ambiguity
[15], [10], [14], [16], [22]. The other is to formulate rules for
structuring names in a consistent manner [9], [14].

The majority of all these studies have used one of two
empirical methods: either controlled experiments where sub-
jects need to deal with code containing different variable
names, or repository mining to see what names were used
in real code. But there have been very few studies based on
experiments in which developers are presented with a situation
and are actually required to select names. This is unfortunate,
as naming is acknowledged to be hard, so it deserves to be
studied directly.

A major problem in studying spontaneous naming is that
the context needs to be explained to the experimental subjects.
But the description of the context, and the question regarding
the naming of variables in this context, necessarily use words.
Being exposed to these words makes them more accessible,
so subjects will tend to use words from the description
and question in the names they create. Therefore, providing
the description undermines the spontaneity we are trying to
characterize.

This accessibility bias was demonstrated in a recent study
about naming by Feitelson et al. [19]. In this study several
programming scenarios were drawn up, and programmers
were required to name variables and functions that were
expected to be used in them. As expected, the selected names
were strongly influenced by the words used in the scenario
descriptions and the naming questions. The suggested solution
was to use bilingual experimental subjects, and present the
naming context and questions in a language other then English
— in this case, in Hebrew. As English is typically the language

ar
X

iv
:2

10
3.

08
70

1v
1

 [
cs

.S
E

]
 1

5
M

ar
 2

02
1

used in programming, this creates a separation between the
experimental materials and the names. The results were that
indeed the bias was much reduced when the descriptions
and the questions were given in Hebrew, and experimental
subjects used a much wider variety of words in the names
they suggested.

However, This approach did not solve the problem com-
pletely, and suffered from several drawbacks. First, even the
Hebrew descriptions caused some bias on the chosen names,
which was manifested in the appearance of transcribed Hebrew
words or their direct translations into English. Second, this
research method can be applied only with developers that are
bilingual, something that is not true for many developers and
in particular is not true to most developers who live in English
speaking countries. It therefore has limited applicability. Third,
this approach is restricted only to subjects who speak the
second language (e.g. Hebrew) fluently. This implies a reduced
representativeness: the subjects represent second-language-
speaking (e.g. Hebrew-speaking) developers only.

As an alternative we suggest using a graphical notation
rather than a foreign language. Specifically, we suggest that
key words in the scenario description and questions be replace
by emojis or other small graphics. This could help reduce the
accessibility bias by providing a more direct indication of the
concept, without using any specific word as an intermediary.
And emojis are universally known and understood, making the
methodology applicable anywhere including with developers
who only speak English.

To check this idea we performed a replication of the Feit-
elson et al. study. We used the same scenarios and questions
as in the original study, but expressed them with the aid of
emojis and small graphics.

II. RESEARCH QUESTIONS

The general context of our work is the experimental method-
ology used is naming studies, where subjects are required to
choose names for variables in certain programming scenarios.
In such studies the description of the scenario might bias
the name choice. Our hypothesis is that by using emojis in
the description, instead of explicit words, the bias can be
much reduced. The goal of our work is therefore to assess
whether non-verbal expressions such as emojis can serve as
a tool that improves research on choosing names. This goal
will be achieved by answering the following concrete research
questions: leftmargin=10mm

RQ1) Are emojis expressive enough to describe programming
scenarios at a level comparable to that of verbal de-
scriptions? Are the concepts represented by the emojis
understood?

RQ2) Does using emojis to describe programming scenarios
reduce or eliminate the accessibility bias in naming
which exists when using verbal descriptions?

III. METHODOLOGY

We propose to alleviate the problem of accessibility bias
caused by using verbal descriptions by using emojis. To

evaluate this solution, we replicate the study of Feitelson et
al.: we translate the descriptions that were given in that study
into emoji-based descriptions, use (almost) exactly the same
experimental procedure, and analyze the results in comparison
to the previous results.

A. Sources for Emojis

It is not widely known that emojis constitute a font, and
are part of the Unicode character set. Defining new ones is
controlled by the Unicode Consortium. Interestingly, one of
the criteria for new emoji is “does the emoji add to what can
be said using emoji”. At the time of writing, 3521 emojis are
defined. Many of these are encoded as a sequence of more than
one Unicode characters, some of which are modifiers of the
basic form (e.g. to change skin color). The full list of emojis
version 13.1, specifically not including skin tone variations,
contains 1816 symbols.

Given that emojis are a font, the actual graphical image
used for each one may vary by platform. For example, the

image for “nerd face” (code 1F9D0) can be any of

and more. In particular, this means that
the recipient of a message may see a variation on what the
sender intended. We therefore used actual embedded images
rather than coded emojis in the experiments.

An obvious source for images of emojis is the full ta-
ble of Unicode emojis (https://unicode.org/emoji/charts/full-
emoji-list.html). Another good site is https://emojipedia.org/.
And of course one can simply look for various icons on Google
if there is no suitable emoji. Some of the images we used are
indeed not formally emojis, but we call all of them “emoji”
for short.

B. Translating Scenario Descriptions to Emojis

The translation of the descriptions using emojis was done
according to the following procedure. The description here is
slightly refined based on what we learned from the experiment.

1) Given a scenario and questions regarding the naming
of variables and functions that are expected to be used,
make a list of these target identifiers. The target identi-
fiers are the focus of the study, and we want to ensure
that the description and questions do not suggest specific
words for naming them.

2) Identify the key words in the description and questions
(which can be nouns, verbs, adjectives, etc.) that de-
scribe the target identifiers. These are words for which
one of the followings holds:

a) They appear as a direct description of a target
identifier in the description of the scenario or in
a question about a variable. Example: the words
“X coordinate” in the question “name the variable
holding the X coordinate of a location on the grid”.

b) They might reflect on a target identifier in some
way:

i) A synonym of a word that describes a target
variable. Example: “horizontal displacement”
instead of “X coordinate”.

ii) The word is often used in conjunction with a
target word, and might identify it. Exampe: if
we want to ask about the time that the bus
will arrive at the bus stop, using “ stop” is
too explicit, and will direct subjects to interpret

specifically as “bus” as opposed to any
other possible form of transport. So we need to
avoid using “stop” here.

iii) The word is often used in the same context
as the target word, and might cause a bias.
Example: in the context of mines in the well-
known minesweeper game, we need to avoid
not only “mine” but also “bomb”, “explode”,
etc. In particular, if suspicious locations on the
game board are marked by a , any of these
words may bias subjects towards a specific
interpretation as the location of a mine as
opposed to just marking a location or perhaps
some level of danger.

These are all words we will want to replace by emojis.
3) Expand each word with its synonyms. For each word in

the list write its general meaning and related words. For
instance, if the word in the description is “salary”, we
can add “wages”, “payment”, “money”, etc. This step
helps us in two ways:

a) Generalizing the notion of the word, which will
help us look for an emoji that reflects the general
meaning, so the experimental subjects will have
to think of a specific word by themselves. For
example, when we expand “salary” with “wages”,
“payment”, “money”, etc., we deduce that the gen-
eral idea we need to represent is “money transfer”.
Then an emoji which conveys this notion, e.g.

, is general enough to allow the subjects to

think of “salary”, “wages”, “payment”, etc.
b) Helping us beware of emojis that will remove bias

of the original word, but cause a bias to a different
specific word. For instance, in our experiment, we
wished to replace the word “benefits” in a credit-
card scenario with a more general indication, and
used . But then there was a new bias for the
word “diamonds”.

4) Map words to emojis: for each word in the expanded list
(original key words + synonyms), find 2–3 emojis which
reflect its general meaning or a close one (as explained
above). We look for generality — emojis that explain
the essence but not too much. At the same time we
need to be aware of words that will cause bias (e.g. the
“benefits”-“diamonds” case).

5) Rewrite each sentence by replacing key words with
emojis from the emojis list. An interesting issue is
whether to stick to a fixed translation for each key

word. We preferred to alternate between different emojis
that represent the same word. Iterating can ensure the
semantics are diverse enough, which makes the text less
verbal and more abstract. In places where a suggested
emoji might have a too specific meaning, one can use a
combination of 2 or 3 emojis as a whole word.

6) Make adaptations to the original descriptions wherever
no reasonable emoji exists, or the meaning will not be
clear with emojis. Example: in one of the scenarios there
was a variable representing the hourly wage of workers
in a candy factory. We represented this by - .
However, using may cause confusion, as it appears
more often as representing “time” or “clock” rather than
“hours”. A possible alternative to consider is to replace
hourly wage with daily wage, as represented by -

.
An example of a scenario description followed by two

questions from the experiment, after translation to emojis, is
shown in Fig. 1. Note that several changes were made to better
fit the emoji vocabulary. First, bubble-gum was replaced by

. Second, the reference to the company manager was
removed as we did not find a suitable emoji for “company
manager”. Likewise, referring to a 45-hour week explicitly as
a “full-time position” was also removed. Finally, the explicit
term “work overtime” was replaced by the more general “to
do more”.

The fact that we managed to present all the questions using
emojis provides part of the answer to RQ1: apparently emojis
are expressive enough, provided some adjustments are made.
But we still need to see if they are understood correctly. This
is done in Section IV-A.

C. Execution of the Experiment

The execution of the experiment comprised of the following
steps:

1) Taking the same descriptions used in the research con-
ducted by Feitelson et al. [19], and translating them into
emoji syntax according to the steps described above in
Section III-B. We made sure that all key words were
translated into emojis.

2) Creating a questionnaire using the Google Forms plat-
form. While the original study included 11 scenarios,
we only used six. Three were excluded because they did
not include naming, but only the interpretation of given
names. Two more were excluded because we wanted to
limit the length of the experiment, and not squander pre-
cious experimental subjects. In the original study, each
subject was also presented with six scenarios, which
were randomly chosen from the set of 11 scenarios. In
our version, all subjects saw the same six scenarios in
the same order.
In the original experiment, scenarios contained both
questions that ask subjects to give names to variables
and functions, and questions that ask them to interpret
given names. Interpretation questions are not relevant

In a large company, earn per . Every has a fixed - value.
Purim is right around the corner and causes an increased demand for . To overcome this the company

encourages to do more:

• A usually does 45 per

• After 45 , the - for the increases by $10.
To implement this some variables were added:

1) A constant containing the value 45
2) A variable for the - after 45 pass

Name these variables.
1) Name variable: A constant containing the value 45.
2) Name variable: A variable for the - after (1) passes.

In a large chewing gum company, workers earn hourly (NIS). Every employee has a fixed hourly wage value.
Purim is right around the corner and the Mishlochei Manot cause an increased demand for chewing gum. To
overcome this the factory manager encourages employees to work overtime as follows:

• A full-time position requires 45 weekly work hours.
• After 45 weekly work hours, the hourly wage for the employee increases by 10 ILS.

To implement this some variables were added:
• A constant containing the value 45
• A variable for the hourly wage during overtime pay
1) Name the constant containing the value 45.
2) Name the variable for the hourly wage during overtime pay.

Fig. 1. Example scenario and questions from the experiment, and the original version from which it was derived. Note changes in wording where there was no
suitable emoji, e.g. “to do more” instead of “work overtime”.

for our research agenda. However, we decided not to
remove them, so that our experiment will be as close as
possible to the original experiment.

3) Sending out invitations to participate in the experiment.
The target audience was similar to that of the original
study, and included professional developers and CS
students. Potential participants were incentivized by a
lottery for a gift card of 300 NIS (about $85).

4) Presenting the scenarios to subjects on the Google Forms
platform, and collection of the results.

5) Downloading the results, and tabulating the distribution
of the names given for each variable and function. This
was then compared with the results obtained in the
original study. Specifically we checked if there is a
difference in the main results in terms of bias reduction,
as reflected by the focus on the most popular answers.

46 people responded to our questionnaire, of which 39 were
students: 10 were studying for a BSc degree, 21 for an MSc,
and 8 and for a PhD. Nearly all were between 20–35 years
of age, with nearly half between 25–30. 15 had no industrial
programming experience, while 10 had 7 or more years of
such experience. This indicates, as is well-known, that many
students work in parallel with their studies, and the division
of experimental subjects into “students” and “professionals”
is overly simplistic [18].

D. Results Normalization
The last step of the execution of the experiment included a

manual cleaning up of the results. Specifically, the following
changes where made to the raw results before they were
analyzed:

• Indications that the participant did not understand what
to do were removed and treated as if no answer had been
given.

• Indications of a namespace, such as self., were re-
moved, leaving only the bare name.

• In questions where a function signature was requested,
the return type was removed, leaving only the function
name. In the analysis reported here we also ignored any
parameters that were given, as different participants used
different numbers of parameters with different semantics.

• In the elevator scenario we exchanged those cases where
participants confused the variable referring to the current
floor with the one referring to the destination floor, so as
to avoid confusing mistakes in semantics with variations
in naming (see below).

IV. EXPERIMENTAL RESULTS

A. Understanding Emojis
A premise of our work is that the experimental subjects

understand the scenarios and questions presented to them using
emojis. Checking this completes the answer to RQ1.

TABLE I
Results of explicit interpretation questions.

Emojis Interpretation n percent

-
hourly wage 33 77%
salary 3 7%
other 7 16%
calculate 37 90%
count 2 5%
other 2 5%
wrapper 30 75%
paper 3 8%
other 5 18%
ice-cream sandwich 30 73%
biscuit/cake 7 17%
ice-cream 4 10%

Two of the scenarios included questions that inadvertently
check this directly. These are questions about the interpreta-
tion of given names (a concept, a function name, and two
parameters), where these names happen to be represented by
emojis. However, note that such questions were retained from
the original experiment, and were not designed specifically to
test the understanding of emojis. The results of these questions
are shown in Table I. In one case 90% were completely right
and another 5% were close. In the other three cases about
3/4 were completely right, and a few more were close. These
results indicate that at least 80% of the participants and in
some cases perhaps up to 100% understood the emojis.

But it is more important to see whether the subjects un-
derstood the scenarios and questions, not individual emojis.
Looking at the questions where subjects were required to give
names to variable or functions, in the vast majority of cases the
names they gave indicated that they had understood the emojis
correctly. However, there was one case in which a sizeable
fraction did not understand our intent. The scenario was the
well-known minesweeper game (which we referred to as a
“pastime” in order to avoid the word “game”). One of the
questions in this scenario was:

Write a function signature for a function which

receives ..., and

and returns the of the pastime

The icon was supposed to reflect the dif-
ficulty of the game, and indeed 44% of the sub-
jects who answered this question understood this in-
tent, giving names such as get_difficulty and
calculate_challenge_level. But 15% thought that
we meant the construction or setup of a new game, giving
names such as createBoard, and another 21% thought
we meant playing or solving the game, giving names such
as play_mines or get_user_moves. In addition, 10%
explicitly indicated they did not understand what we meant.

Note, however, that not all mistakes or misunderstandings
were due to emojis. The most obvious example occurred in

the elevator scenario. One of the questions in this scenario
included the following code:

if (var1 > var2)
direction = "Up"
var3 = var1 - var2

(var3)

if (var1 < var2)
direction = "Down"
var3 = var2 - var1

(var3)

(where the icons replace the function names goUp and
goDown from the original version, and the subjects knew
that they represent function names but of course not the
names themselves). The question then was to give better
names to var1, var2, and var3. The answers revealed that
66% of those who answered this question understood that
var1 represents the destination floor and var2 represents the
current floor, but 26% got confused and mistakenly thought
it was the other way around. Consequently, just counting
mistakes is not a good way to assess the understanding of
emojis.

B. Name Choice

The goal of our work was to investigate whether using
emojis in lieu of key words in scenarios and questions can
reduce the accessibility bias caused by using such words. One
aspect of this issue is whether participants tended to use the
same names — presumably due to being influenced by the
scenario description and the question, or perhaps they tended
to come up with totally different names.

Feitelson et al. defined two related metrics for the distribu-
tion of names [19]:

• The degree of focus on using a particular name. This was
quantified as the fraction of times that the most popular
name was used.

• The diversity of names used. This was quantified as the
quotient of the number of different names given divided
by the total number of responses received.

The results for the 16 questions concerned with naming
variables and functions in the 6 scenarios we used are tabulated
in Table II. This includes both the raw results and the quotients
as defined above. In addition, the last column presents an
estimate of the probability that two different developers would
use the same name. Following Feitelson et al. this is calculated
as [19]

P2hit =

k∑
i=1

p2i (1)

TABLE II
Results of name reuse in all versions of questions concerned with giving names. Note that these results are for the complete names, not for concepts; using an

abbreviation or a different word order is counted as a different name. N : number of answers to this question; dif: number of different names given; div=dif/N :
diversity of names; max: maximal answers giving the same name; Pmax=max/N : probability of most popular name (focus); P2hit: probability of two

participants using the same name.

Scenario Question N dif div max Pmax P2hit
Candy constant specifying work hours per week 44 40 0.909 2 0.045 0.0268
factory variable holding hourly wage during overtime 42 37 0.880 4 0.095 0.0328
Elevator variable with requested floor 40 27 0.675 9 0.225 0.0775

variable with current elevator location 40 17 0.425 17 0.425 0.2124
variable with number of floors to move 39 26 0.666 5 0.128 0.0571
variable with state of elevator doors 40 16 0.400 15 0.375 0.1787

File field in file object describing file size 46 9 0.195 30 0.652 0.4669
system function checking if there is enough disk space to extend a file 46 39 0.847 3 0.065 0.0302
Mine- function calculating game’s difficulty level 35 27 0.771 4 0.114 0.0497
sweeper variable with game’s time 43 25 0.581 6 0.139 0.0665

data structure indicating mine or number of adjacent mines 39 32 0.820 6 0.153 0.0479
Benefits constant with value 4 (max benefits per month) 41 26 0.634 8 0.195 0.0719
card constant with value 2000 (shekels per benefits point) 41 37 0.902 5 0.121 0.0362

variable with entitled benefits this month 41 41 1.000 1 0.024 0.0243
function checking if balance of benefits is positive 41 41 1.000 1 0.024 0.0243

Ice cream function calculating how many sandwiches can be produced 41 40 0.975 2 0.048 0.0255

Fig. 2. Cumulative distribution of focus and diversity of names given in the
experiment questions.

where we observe k distinct names, and pi denotes the
probability of choosing name i (as estimated by its relative
popularity).

Fig. 2 shows the distribution of the focus and diversity
across the 16 questions. The median focus was 0.13, and in
75% of the cases the focus was less than 0.2. The maximal
focus was 0.65, which occurred when size was used to
name a field containing the size of a file in a data structure
representing the file. This was also the instance with the
highest focus in the original study.

The median diversity was 0.8, and in 75% of the cases the
diversity was higher than 0.6. In two cases the diversity was
1: all the names were different from each other. The lowest
diversity, 0.2, occurred in the same case as the highest focus,
and indeed there is a strong negative correlation between the
focus and the diversity with ρ = −0.93.

The median estimated probability for choosing the same
name was 0.049, lower than the 0.069 found in the original
study. In 75% of the cases the estimate was lower than 0.072.
The highest estimate, 0.47, occurred again in the case of the

size field. The next highest estimate was less than half this
value.

C. Accessibility Bias

Our main goal is to see whether using emojis can reduce the
accessibility bias, as reflected in RQ2. We therefore conducted
an in-depth investigation of the concepts and words used by
the experiment participants when answering each question.
Feitelson et al. [19] present a tool used to manually identify the
concepts embedded in each name and the words representing
each concept. We used this tool to do the same for our data,
and compare with the results of Feitelson et al. [19] (which
were not presented in detail in their paper).

Table III shows the identified concepts used by participants
in our experiment (based on emoji descriptions) compared
with the concepts used by participants in the original ex-
periment (based on descriptions in English and Hebrew). We
define concept importance levels as follows:

• Dominant = appears in at least 90% of the names
• Major = appears in at least 70% of the names
• Important = appears in at least 30% of the names
• unimportant = appears in less than 30% of the names

Unimportant concepts are shown only if they are important
in another experimental setting. For each concept, we also
calculate focus and diversity of its words, and show the top
words used to represent this concept.

Looking at the results, three classes of questions can be
identified. One class contains mainly questions that have an
obvious dominant answer. For example, when asking about the
field containing the file size in a file system context, practically
all participants used the word “size” and about half also used
“file”. In the question about overtime wages in the candy
factory scenario, a mix of different words were used, but the
top concepts were “overtime” and “salary”. In these cases the
presentation style (English, Hebrew, or emojis) does not make
a big difference.

TABLE III
Concept usage in the different questions of the experiment. Resuls based on emojis (Emj) are ours. Results about English and Hebrew versions are from the

experimental materials of Feitelson et al. [19].

Concept Importance Focus Div. Dominant words
Candy: constant specifying work hours per week
Eng hours 0.78 M 0.90 0.09 hours (90%)

full 0.36 I 1 0.06 full time (100%)
threshold 0.34 I 0.21 0.50 capacity (21%), min (21%), threshold (21%)
week 0.34 I 0.85 0.21 weekly (85%)
job 0.21 - 0.44 0.44 work (44%)
normal 0.19 - 0.37 0.62 base (37%)

Heb hours 0.72 M 0.96 0.06 hours (96%)
full 0.51 I 0.50 0.13 full time (50%), full (45%)
job 0.46 I 0.40 0.30 job (40%), work (30%), overtime (15%)
week 0.32 I 0.42 0.35 per week (42%), week (21%), weekly (21%)
threshold 0.20 - 0.44 0.44 max (44%), threshold (33%)
normal 0.16 - 0.42 0.42 base (42%)

Emj hours 0.78 M 0.62 0.06 hours (62%), time (37%)
weekly 0.54 I 0.40 0.15 week (40%), weekly (40%), per week (20%)
regular 0.48 I 0.22 0.72 base (22%)
work 0.45 I 0.88 0.17 work (88%)

Candy: variable holding hourly wage during overtime
Eng pay rate 1 D 0.39 0.14 wage (39%), rate (34%), pay (12%), salary (7%)

overtime 0.82 M 0.85 0.14 overtime (85%)
add 0.12 - 0.40 0.80

Heb overtime 0.83 M 0.27 0.25 extra hours (27%), overtime (27%), extra (11%), extra time (11%)
pay rate 0.74 M 0.65 0.25 rate (65%), payment (9%)
add 0.39 I 0.41 0.29 addition (41%), bonus (41%)

Emj salary 0.85 M 0.35 0.26 salary (35%), rate (20%), wage (11%), money (8%), payment (8%)
overtime 0.70 M 0.60 0.28 overtime (60%), extra hours (17%)
extra 0.25 - 0.30 0.60 bonus (30%), increase (30%)

Elevator: variable with requested floor
Eng destination 1 D 0.33 0.43 destination (33%), requested (10%), target (10%)

floor 0.87 M 0.91 0.08 floor (91%)
Heb destination 1 D 0.35 0.30 destination (35%), target (22%), requested (10%), desired (7%)

floor 0.90 D 0.88 0.11 floor (88%)
Emj destination 0.97 D 0.30 0.35 target (30%), destination (23%), requested (7%)

floor 0.80 M 0.90 0.09 floor (90%)
Elevator: variable with current elevator location
Eng current 1 D 0.91 0.11 current (91%)

floor 0.97 D 0.90 0.12 floor (90%)
Heb current 0.95 D 0.87 0.12 current (87%)

floor 0.92 D 0.84 0.10 floor (84%), level (7%)
Emj current 0.97 D 0.81 0.15 current (81%)

floor 0.87 M 0.88 0.11 floor (88%)
Elevator: variable with number of floors to move
Eng floor 0.87 M 0.91 0.11 floor (91%)

difference 0.58 I 0.47 0.26 difference (47%), delta (21%), distance (17%)
move 0.28 - 0.72 0.27 move (72%)

Heb floor 0.76 M 0.91 0.08 floor (91%)
difference 0.46 I 0.36 0.31 difference (36%), delta (27%), gap (13%)
move 0.38 I 0.61 0.16 move (61%), to go (22%), travel (16%)

Emj floors 0.79 M 0.96 0.06 floors (96%)
move 0.48 I 0.57 0.21 move (57%), travel (26%)
difference 0.48 I 0.52 0.31 difference (52%), distance (15%), delta (15%)

Elevator: variable with state of elevator doors
Eng door 0.67 I 1 0.03 door (100%)

state 0.50 I 1 0.05 state (100%)
open 0.47 I 0.89 0.10 open (89%)
current 0.47 I 0.84 0.10 is (84%), current (15%)

Heb door 0.79 M 1 0.02 door (100%)
current 0.55 I 0.96 0.07 is (96%)
open 0.53 I 0.84 0.07 open (84%), close (15%)
state 0.40 I 0.65 0.10 state (65%), status (35%)

Emj open 0.72 M 0.86 0.06 open (86%), closed (13%)
door 0.60 I 1 0.04 door (100%)
current 0.55 I 1 0.04 is (100%)
state 0.27 - 0.63 0.27 state (63%), status (27%)

TABLE III
Concept usage in the different questions of the experiment (continued).

Concept Importance Focus Div. Dominant words
Files: field in file object describing file size
Eng size 1 D 0.97 0.04 size (97%)

file 0.45 I 1 0.05 file (100%)
Heb size 1 D 1 0.01 size (100%)

file 0.52 I 1 0.03 file (100%)
Emj size 0.93 D 1 0.02 size (100%)

file 0.28 - 0.92 0.15 file (92%)
Minesweeper: variable with game’s time
Eng time 0.93 D 0.81 0.06 time (81%), timer (13%)

game 0.51 I 0.91 0.12 game (91%)
length 0.21 - 0.40 0.50 elapsed (40%), duration (30%)

Heb time 0.86 M 0.67 0.13 time (67%), timer (18%)
length 0.40 I 0.3 0.45 elapsed (30%), duration (25%)
game 0.38 I 0.89 0.10 game (89%)

Emj time 0.97 D 0.61 0.14 time (61%), timer (11%), seconds (11%), clock (9%)
length 0.34 I 0.40 0.40 elapsed (40%), passed (33%)
game 0.09 - 0.50 0.75

Minesweeper: data structure indicating mine or number of adjacent mines
Eng board 0.59 I 0.34 0.26 board (34%), grid (30%), map (15%)

mines 0.40 I 1 0.05 mines (100%)
cell 0.22 - 0.50 0.40 cell (50%), square (30%)
state 0.20 - 0.33 0.55 data (33%), value (33%)
number 0.04 - 1 0.50

Heb board 0.53 I 0.50 0.28 board (50%), field (10%), map (10%), matrix (10%)
mines 0.46 I 0.83 0.12 mines (83%), bomb (12%)
state 0.30 I 0.18 0.62 values (18%), info (18%)
cell 0.28 - 0.60 0.26 cell (60%), square (26%)
number 0.07 - 0.75 0.50 number (75%)

Emj count 0.44 I 0.52 0.35 values (52%), number (17%)
board 0.39 I 0.66 0.33 board (66%)
tiles 0.36 I 0.50 0.35 cell (50%), tile (28%)
mines 0.23 - 0.55 0.33 bomb (55%), mine (33%)

Card benefits: constant with value 4 (max benefits per month)
Eng benefit 0.94 D 0.98 0.03 benefit (98%)

max 0.88 M 0.89 0.06 max (89%), limit (8%)
month 0.38 I 0.71 0.14 per month (71%), monthly (19%)

Heb benefit 0.97 D 0.28 0.28 pinuk (28%), treat (21%), gift (14%), benefit (11%)
max 0.88 M 0.92 0.07 max (92%)
month 0.41 I 0.55 0.16 per month (55%), monthly (27%), month (16%)

Emj points 0.92 D 0.62 0.32 diamonds (62%), points (10%)
max 0.92 D 0.91 0.08 max (91%)
per month 0.37 I 0.66 0.20 per month (66%), monthly (20%)

Card benefits: constant with value 2000 (shekels per benefits point)
Eng amount 0.78 M 0.27 0.39 ils (27%), value (11%), amount (9%), sum (6%), money (6%)

benefit 0.78 M 0.97 0.04 benefit (97%)
threshold 0.32 I 0.27 0.55 min (27%), threshold (22%)

Heb benefit 0.90 D 0.30 0.30 pinuk (30%), treat (23%), gift (12%), benefit (7%)
amount 0.79 M 0.20 0.41 money (20%), price (14%), cost (11%), amount (8%), spending (8%)
threshold 0.34 I 0.33 0.53 threshold (33%), min (26%)

Emj points 0.87 M 0.64 0.29 diamond (64%), point (8%)
money 0.84 M 0.24 0.36 value (24%), dollar (15%), money (15%), shekel (12%), spending (9%)
ratio 0.74 M 0.37 0.34 per (37%), rate (13%), for (13%), to (10%)

Card benefits: variable with entitled benefits this month
Eng benefit 0.94 D 0.98 0.03 benefit (98%)

number 0.49 I 0.70 0.14 number (70%), count (22%)
current 0.41 I 1 0.04 current (100%)
month 0.3 I 0.94 0.11 month (94%)
available 0.3 I 0.58 0.41 entitlement (58%)

Heb benefit 0.97 D 0.28 0.26 pinuk (28%), treat (21%), gift (16%), benefit (9%), bonus (7%)
number 0.37 I 0.81 0.25 number (81%)
current 0.34 I 1 0.06 current (100%)
available 0.30 I 0.38 0.69 available (38%)
month 0.25 - 0.72 0.27 month (72%)

Emj points 0.97 D 0.65 0.27 diamonds (65%), points (12%)
have 0.53 I 0.18 0.50 earned (18%), entitled (18%), available (13%), accumulated (13%)
time 0.39 I 0.37 0.31 current (37%), current month (25%), monthly (18%)
number 0.36 I 0.80 0.26 number (80%)

Fig. 3. Comparison of the cumulative distributions of focus and diversity of
important concepts, for English and Hebrew descriptions from Feitelson et al.
[19] and emoji descriptions from our experiment.

Another class of questions are those where using emojis
did make a difference. In some cases different concepts were
used:

• In the question concerning the variable for holding the
playing time of the minesweeper game, the top concepts
in the original experiment were “time”, “game”, and
“length”. In our emoji version, “game” was very seldom
used leaving only two important concepts.

• For the data structure that maps cells to mines, in the
original experiment “board” and “mine” were the top
concepts, the concept of “cell” was used much less,
and the concept of “number” was hardly used. In the
emoji version “number” was the top concept, followed
by “board” and “tiles” (cells).

In other cases, different words were used. For example,
Around half the participants included the concept of “full-
time” in the constant specifying the working hours per week in
the candy factory scenario. In the original experiment this was
an extremely focused concept. With emojis it was extremely
diverse.

The third and final class is where the emoji used caused an
unintended accessibility effect of its own. We had one such
example: the credit card scenario, where benefit points accrued
by charging expenses to the credit card were represented by

. This choice caused more than half of the participants to

use the word “diamond”. The effect was not as strong as the
English version of the original experiment (where “benefits”
was used by nearly everyone), but stronger than in the Hebrew
version (where the transliteration of the Hebrew word “pinuk”
was used by about 30%).

Fig. 3 shows the cumulative distribution of the focus
and diversity of word use in all the important concepts
(importance≥0.3) from all the questions. The results when
using emojis is compared with the results from the original
experiment of Feitelson et al. [19]. It is easy to see that when
using English the focus is higher and the diversity is lower.
Emojis are similar to using Hebrew, perhaps even leading to
slightly higher diversity.

V. THREATS TO VALIDITY

a) Construct Validity: Our measurements may not mea-
sure the right thing for several reasons, e.g. if the questions
we used in the experiment were too simple or the text was not
rich enough. In the industry specifications are much longer and
exhausting to read. Short descriptions like ours may therefore
guide developers to the same variable name, even after the
text was translated to emojis.

It may also be that different cultures or genders will have
different perceptions of specific emojis, leading to a bias. For
instance, does represent the word “king”, “queen”, or
just “crown”? Moreover, there is a danger that emojis will be
misunderstood, as the vocabulary of emojis is rather limited.

b) Internal Validity: Our conclusions may not follow
from the experiments for several reasons. Our questionnaire
response rate was somewhat lower than the response rate of
the original study, which might have an effect on the results.

The translation to emojis may be problematic. The
vocabulary of emojis is limited and does not include may
concepts and nuances. In some cases we used somewhat
distorted language, or even modified the description and
questions, so as to avoid explicit key words that might cause
an accessibility bias. This may affect understanding, and
especially limit the comparability with the results of the
original experiment.

c) External Validity: Our research might not be general-
izable. Our experimental subjects were mostly from academia
and specifically from the Hebrew University, which might
cause a bias: they mostly underwent university education,
which might be different from college education or self-
education; many had limited or no industrial experience; they
have the free time for participating in an experiment; and they
might participate because they know us personally, further
reducing their representativeness.

VI. DISCUSSION AND CONCLUSIONS

We have replicated a study on variable and function naming
by Feitelson et al. [19]. In the original study the accessibility
bias was reduced by employing bilingual experimental sub-
jects, and providing scenario descriptions in Hebrew rather

than in English. In our replications the descriptions were in
English, but key words were replaced by emojis. The results
indicate that this reduced the accessibility bias to a similar
degree as using a foreign language. As a result names tended
to have a more diverse use of words.

However, in some cases not only the words but also the
concepts embedded in names when the descriptions used
emojis were somewhat different from the concepts when the
descriptions were verbal. Additional work is therefore needed
to better understand how developers select the concepts to
embed in names.

An important observation, both in the original experiment
of Feitelson et al. [19] and in our replication using emojis, is
the focus-diversity dichotomy. This occurs both at the level of
complete names and at the level of words used to represent an
individual concept within names. Focus means that a single
name or word dominates, and few others are used. Diversity
means that many different names or words are used, and none
of them dominates. The results indicate that in some cases we
find high focus and low diversity, while in others the focus is
low and the diversity high.

In terms of program comprehension research, focused sit-
uations are probably not very interesting. The focus testifies
that all participants understood the situation in the same way
and expressed themselves in the same way. It stands to reason
that the chosen names will be easily understood.

The diverse situations, on the other hand, are those that
deserve further study. The diversity in names and words
testifies that there may be different ways to understand the
situation. And even if not, using different words implies
different semantic nuances. Thus choosing different names and
words may cause misunderstandings and confusion.

Emojis can help studying diverse naming by helping to
eliminate, or at least decrease, the accessibility bias. By using
emojis we can avoid the use of specific words, and thereby
avoid implanting specific ideas in the minds of experimental
subjects. However, emojis are not a panacea. Problems that
can occur with emojis can lead either to high focus or to high
diversity, in both cases threatening the experimental validity.

• High focus can be a sign of a crisp, well-defined situation
as noted above. However, it can also reflect a problematic
description using emojis:

– Using too obvious emojis with a specific obvious
meaning. This is especially harmful if this meaning
is not exactly the intended one.

– Important key words were not translated, and the
description is still very verbal. In other words, an
explicit accessibility bias exists.

In these situations, the experiment does not expose the
potential diversity of names and the misunderstandings
that they may cause.

• High diversity can also be a result of problems with the
emoji representation:

– When the emoji is ambiguous, and can reasonably
be interpreted in different ways.

– When the whole descriptions becomes vague and
puzzling, due to modifications made as part of the
emoji translation.

In these situations the desired functionality of the vari-
able becomes less understandable, rendering experiments
concerning its naming invalid.

Both these cases show the importance a running a pilot on the
emojis descriptions. By conducting a pilot with an adequate
debriefing of the participants one can reduce the danger of
both over-specific emojis and ambiguous ones.

To conclude, we believe that non-verbal expressions such as
emojis should be considered as a tool that improves research
in naming. Descriptions with emojis are similarly expressive
as verbal text, and emojis are generally well understood. In
addition, emojis can reduce the accessibility bias. And this
approach has the advantage of not requiring experimental
subjects who are fluent in a foreign language, making it
suitable for English speaking experimental subjects.

EXPERIMENTAL MATERIALS

The experimental materials, including survey questions,
responses, analysis scripts, and results, are available using DOI
https://doi.org/10.5281/zenodo.4603985.

REFERENCES

[1] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions”. In 22nd Foundations Softw. Eng., pp. 281–293,
Nov 2014, DOI:10.1145/2635868.2635883.

[2] H. Aman, S. Amasaki, T. Sasaki, and M. Kawahara, “Empirical analysis
of change-proneness in methods having local variables with long names
and comments”. In Intl. Symp. Empirical Softw. Eng. & Measurement,
pp. 50–53, Oct 2015, DOI:10.1109/ESEM.2015.7321197.

[3] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipatterns:
What they are and how developers perceive them”. Empirical Softw. Eng.
21(1), pp. 104–158, Feb 2016, DOI:10.1007/s10664-014-9350-8.

[4] V. Arnaoudova, L. M. Eshkevari, M. Di Penta, R. Oliveto, G. Antoniol,
and Y.-G. Guéhéneuc, “REPENT: Analyzing the nature of identifier
renamings”. IEEE Trans. Softw. Eng. 40(5), pp. 502–532, May 2014,
DOI:10.1109/TSE.2014.2312942.

[5] E. Avidan and D. G. Feitelson, “Effects of variable names on comprehen-
sion: An empirical study”. In 25th Intl. Conf. Program Comprehension,
pp. 55–65, May 2017, DOI:10.1109/ICPC.2017.27.

[6] G. Beniamini, S. Gingichashvili, A. Klein Orbach, and D. G. Feitelson,
“Meaningful identifier names: The case of single-letter variables”. In
25th Intl. Conf. Program Comprehension, pp. 45–54, May 2017, DOI:
10.1109/ICPC.2017.18.

[7] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and B. Sharif,
“The impact of identifier style on effort and comprehension”. Empirical
Softw. Eng. 18(2), pp. 219–276, Apr 2013, DOI:10.1007/s10664-012-
9201-4.

[8] D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To CamelCase or
under score”. In 17th Intl. Conf. Program Comprehension, pp. 158–
167, May 2009, DOI:10.1109/ICPC.2009.5090039.

[9] D. Binkley, M. Hearn, and D. Lawrie, “Improving identifier in-
formativeness using part of speech information”. In 8th Working
Conf. Mining Softw. Repositories, pp. 203–206, May 2011, DOI:
10.1145/1985441.1985471.

[10] D. Binkley and D. Lawrie, “The impact of vocabulary normalization”.
Software: Evolution & Process 27(4), pp. 255–273, Apr 2015, DOI:
10.1002/smr.1710.

[11] D. Binkley, D. Lawrie, S. Maex, and C. Morrell, “Identifier length and
limited programmer memory”. Sci. Comput. Programming 74(7), pp.
430–445, May 2009, DOI:10.1016/j.scico.2009.02.006.

[12] S. Butler, M. Wermelinger, and Y. Yu, “Investigating naming convention
adherence in Java references”. In 31st Intl. Conf. Softw. Maint. & Evol,
pp. 41–50, Sep 2015, DOI:10.1109/ICSM.2015.7332450.

[13] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Exploring the
influence of identifier names on code quality: An empirical study”. In
14th European Conf. Softw. Maintenance & Reengineering, pp. 156–
165, Mar 2010, DOI:10.1109/CSMR.2010.27.

[14] B. Caprile and P. Tonella, “Restructuring program identifier names”.
In Intl. Conf. Softw. Maintenance, pp. 97–107, Oct 2000, DOI:
10.1109/ICSM.2000.883022.

[15] F. Deißenböck and M. Pizka, “Concise and consistent naming”. In 13th
IEEE Intl. Workshop Program Comprehension, pp. 97–106, May 2005,
DOI:10.1109/WPC.2005.14.

[16] S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The effect of
poor source code lexicon and readability on developers’ cognitive load”.
In 26th Intl. Conf. Program Comprehension, pp. 286–296, May 2018,
DOI:10.1145/3196321.3196347.

[17] S. Fakhoury, D. Roy, Y. Ma, V. Arnaoudova, and O. Adesope, “Mea-
suring the impact of lexical and structural inconsistencies on developers’
cognitive load during bug localization”. Empirical Softw. Eng. 2019,
DOI:10.1007/s10664-019-09751-4.

[18] D. Falessi, N. Juristo, C. Wohlin, B. Turhan, J. Münch, A. Jedlitschka,
and M. Oivo, “Empirical software engineering experts on the use of
students and professionals in experiments”. Empirical Softw. Eng. 23(1),
pp. 452–489, Feb 2018, DOI:10.1007/s10664-017-9523-3.

[19] D. G. Feitelson, A. Mizrahi, N. Noy, A. Ben Shabat, O. Eliyahu, and
R. Sheffer, “How developers choose names”. IEEE Trans. Softw. Eng.
DOI:10.1109/TSE.2020.2976920. (early access).

[20] J. C. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names
take longer to comprehend”. Empirical Softw. Eng. 24(1), pp. 417–443,
Feb 2019, DOI:10.1007/s10664-018-9621-x.

[21] G. J. Holzmann, “Code clarity”. IEEE Softw. 33(2), pp. 22–25, Mar/Apr
2016, DOI:10.1109/MS.2016.44.

[22] D. Lawrie, H. Feild, and D. Binkley, “Quantifying identifier quality:
An analysis of trends”. Empirical Softw. Eng. 12(4), pp. 359–388, Aug
2007, DOI:10.1007/s10664-006-9032-2.

[23] D. Lawrie, C. Morrell, H. Field, and D. Binkley, “What’s in a name?
a study of identifiers”. In 14th Intl. Conf. Program Comprehension, pp.
3–12, Jun 2006, DOI:10.1109/ICPC.2006.51.

[24] O. A. L. Lemos, M. Suzuki, A. C. de Paula, and C. Le Goes, “Comparing
identifiers and comments in engineered and non-engineered code: A
large-scale empirical study”. In 35th ACM Symp. Applied Computing,
pp. 100–109, Mar 2020, DOI:10.1145/3341105.3373972.

[25] B. Liblit, A. Begel, and E. Sweetser, “Cognitive perspectives on the role
of naming in computer programs”. In 18th Psychology of Programming
Workshop, pp. 53–67, Sep 2006.

[26] K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A. Koyuncu, S. Kim,
and Y. Le Traon, “Learning to spot and refactor inconsistent method
names”. In 41st Intl. Conf. Softw. Eng., May 2019.

[27] R. C. Martin, Clean Code: A Handbook of Agile Software Craftmanship.
Prentice Hall, 2009.

[28] C. D. Newman, M. J. Decker, R. S. Alsuhaibani, A. Peruma, D. Kaushik,
and E. Hill, “An empirical study of abbreviations and expansions in
software artifacts”. In Intl. Conf. Softw. Maintenance & Evolution, pp.
269–279, Sep 2019, DOI:10.1109/ICSME.2019.00040.

[29] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties
from “big code””. In 42nd Ann. Symp. Principles of Programming
Languages, pp. 111–124, Jan 2015, DOI:10.1145/2775051.2677009.

[30] F. Salviulo and G. Scanniello, “Dealing with identifiers and com-
ments in source code comprehension and maintenance: Results from
an ethnographically-informed study with students and professionals”. In
18th Intl. Conf. Evaluation & Assessment in Softw. Eng., art. no. 48,
May 2014, DOI:10.1145/2601248.2601251.

[31] G. Scanniello and M. Risi, “Dealing with faults in source code: Abbre-
viated vs. full-word names”. In 29th Intl. Conf. Softw. Maintenance, pp.
190–199, Sep 2013, DOI:10.1109/ICSM.2013.30.

[32] A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, and
M. Beigl, “Descriptive compound identifier names improve source code
comprehension”. In 26th Intl. Conf. Program Comprehension, pp. 31–
40, May 2018, DOI:10.1145/3196321.3196332.

[33] A. A. Takang, P. A. Grubb, and R. D. Macredie, “The effects of
comments and identifier names on program comprehensibility: An ex-
perimental investigation”. J. Prog. Lang. 4, pp. 143–167, Sep 1996.

