
Towards improving architectural diagram
consistency using system descriptors

Jalves Nicacio
Université du Québec à Chicoutimi

Chicoutimi, Québec, Canada
jalves.nicacio@ifal.edu.br

Fabio Petrillo
Université du Québec à Chicoutimi

Chicoutimi, Québec, Canada
fabio@petrillo.com

Abstract—Communication between practitioners is essential
for the system’s quality in the DevOps context. To improve
this communication, practitioners often use informal diagrams
to represent the components of a system. However, as systems
evolve, it is a challenge to synchronize diagrams with production
environments consistently. Hence, the inconsistency of architec-
tural diagrams can affect communication between practitioner
and their understanding of systems. In this paper, we propose
the use of system descriptors to improve deployment diagram
consistency. We state two main hypotheses: (1) if an architectural
diagram is generated from a valid system descriptor, then
the diagram is consistent; (2) if a valid system descriptor is
generated from an architectural diagram, then the diagram is
consistent. We report a case study to explore our hypotheses.
Furthermore, we constructed a system descriptor from the Netflix
deployment diagram, and we applied our tool to generate a
new architectural diagram. Finally, we compare the original
and generated diagrams to evaluate our proposal. Our case
study shows all Docker compose description elements can be
graphically represented in the generated architectural diagram,
and the generated diagram does not present inconsistent aspects
of the original diagram. Thus, our preliminary results lead to
further evaluation in controlled and empirical experiments to
test our hypotheses.

Index Terms—Architectural diagram consistency, System ar-
chitecture, System descriptors, Modelling process

I. INTRODUCTION

In the software architecture modelling process, several
abstraction levels can represent systems across different re-
sources, such as text or diagrams. Architectural diagrams are
useful for communication and understanding of systems, as
they motivate a more active discussion among participants as
facilitating the memorization of details about systems [1]. In
this sense, architectural diagrams play a relevant role in facili-
tating system comprehension. However, architectural diagrams
(as UML deployment diagrams) usually remain schematic and
disassociated from production reality. Furthermore, architec-
tural diagrams do not follow the evolution of the systems, and
there are challenges for engineers to synchronize the diagrams
with the system in production so that they always reflect the
current state of the system.

Informally, we analysed architectural diagrams from techni-
cal blog posts of Amazon, LinkedIn, or Netflix. The authors of
these posts are software engineers who designed and presented
architectural diagrams intending to communicate information
about the systems they described in their articles. We noticed

that engineers use general-purpose notations to create models
in tools such as Visio or previous draw.io1. However, the use
of general-purpose tools to draw architectural diagrams can
lead mistakes and inconsistencies [2].

In the context of systems modelling, Litvak et al. [3]
states that a consistency problem can arise because more than
one diagram can describe the same aspects of the model.
Furthermore, diagrams are not updated as the system evolves,
and there is no guarantee that diagrams are consistent with the
system in production.

In this paper, we propose the use of system descriptors
towards improving architectural diagrams consistency. System
descriptors are scripts used in DevOps for automation, stan-
dardization, and infrastructure management in production en-
vironments. We can mention Puppet, Chef, Docker Compose,
and Kubernetes Pods as some of the most well-known system
descriptors. The novelty of this research is the use of system
descriptors to validate architectural diagrams consistency.

Our main contributions are:

• We state two hypotheses: (1) if an architectural diagram
is generated from a valid system descriptor then the
diagram is consistent; (2) if a valid system descriptor is
generated from an architectural diagram then the diagram
is consistent.

• A tool to generate architectural diagrams from docker-
compose files. According to a meta-model, the tool
analyzes a docker-compose file and then transforms its
tags into visual elements of the corresponding diagram.

Given the widespread use of system descriptors in modern
system architectures, our approach can potentially impact how
to produce and validate architecture diagrams in the future.

The remainder of this paper is organized as follows: Section
II presents the motivation for this work. In Section III we
present concepts behind our approach, our hypotheses are in
Section III-B, and Section III-C describe the transformation
function. In Section IV, we describe a study carried out with
a tool that generates architectural diagrams from Docker-
Compose files. In Section V, we discuss a preliminary evalu-
ation. Finally, in Section VII, we draw some conclusions and
outline directions for future work.

1The tool is currently called Diagrams.net

ar
X

iv
:2

10
3.

13
61

4v
1 

 [
cs

.S
E

] 
 2

5 
M

ar
 2

02
1



II. ARE ARCHITECTURAL DIAGRAMS INCONSISTENT?
In a natural language context, consistency is the state or

condition of always happening (or behaving) in the same way
[4]. In the context of systems modelling, Litvak et al. [3]
states that a consistency problem can arise because more than
one diagram can describe the same aspects of the model.
Furthermore, diagrams are not updated as the system evolves.

To illustrate an example of inconsistency in architectural
diagrams, consider the diagram in Figure 1. Analyzing this
diagram, we could formulate several questions. For example,
(1) how many services does this system have?; (2) where
is this system deployed?; (3) how much does this diagram
consistently communicate enough details to represent the same
system using other languages or graphical notations, such as
UML?

Fig. 1: Example of system architecture diagram from a Netflix
technical blog post [5]. Original caption: “DBLog High Level
Architecture”.

Informally, we analyzed 20 architectural diagrams2 from
technical blog posts, such as Amazon, LinkedIn, Netflix, and
Spotify. For each diagram, at least one of these issues occurs:

a) Issue 1: Use of boxes associated with different border
styles.: Rectangles or squares are generally associated with
different border styles to separate or classify different types
of elements. These specifications are not always provided in
a caption.

We observe in Figure 1 it is hard to infer how each box
is classified, raising questions such as “Why this is gray, and
that is white?”, or “Boxes with dashed borders represent a
logical group of components or a closer view (zoom in) of
a component?”. Besides that, visual blocking occurs in some
boxes in the diagram, as in the representation of the “chunks”
and the “passive DBLog.” This rise to multiple interpretations
of the diagram.

b) Issue 2: Use of arrows.: It is not clear what each
arrow represents in the diagram. For example, arrows represent
a flow of data or connections between components.

In software engineering, consistency model validation must
ensure that all diagrams correctly express the system require-
ments [6]. Some approaches have been proposed to validate

2In future work, we must systematically investigate our data set of gray
literature architectural diagrams.

model consistency, such as using consistency rules [6], [7],
algorithmic approach [3] or the use of graphs [8]. However,
these approaches validate a UML model from another [3], [7],
[8]. For example, Mohammadi et al. proposed an approach to
validate UML component and deployment diagrams [8].

The consistency issues can arise because more than one
diagram can describe the same aspects of the model. Moreover,
even if the models are consistent, there is no guarantee that
these models are consistent with the production system. Thus,
we propose a new approach to address these issues.

III. APPROACH

We propose an approach to improve architectural diagram
consistency using system descriptors. Hence, in this section,
we briefly present the concepts behind our approach and our
hypotheses.

A. Concepts

According to Ludewig [9], the architectural diagram is a
prescriptive model that specifies the architecture that must be
created. A UML deployment diagram is an instance of an
architectural diagram.

According to the UML Specification [10], “deployment
diagrams show the configuration of run-time processing el-
ements and the software components, processes, and objects
that execute on them”. One of the deployment diagram func-
tions is to map the software architecture to the hardware [11].
Deployment diagrams are composed of nodes, communication
associations and, where desired, dependency associations be-
tween nodes. Besides, run-time components and objects are
represented in nodes [12].

Systems descriptors are scripts for automation, standard-
ization, and infrastructure management in production envi-
ronments. System descriptors emerge within the context of
Infrastructure as Code (IaC), which specifies the definition and
set up of the software infrastructure required to run a system
by using configuration scripts [13]. Descriptor providers, such
as Docker-Compose, Chef, Puppet, Kubernetes Pods tools, use
different languages such as JSON, YAML, or even in specific
domain languages (DSL), as Puppet to implement their scripts.
Hence, system descriptors are artifacts that describe a system
architecture.

Diagram-as-Code is an approach to generate diagrams
through programming. According to [14], diagram-as-code is
the design of system architecture diagrams, using a domain-
specific language to describe the diagram’s elements and
relationships. This approach has sparked recent interest among
software engineering practitioners. A non-exhaustive list of
some web articles on the subject is given in [14]–[17].

B. Hypotheses

We propose the use of system descriptors to improve
the architectural diagrams consistency, generating them and
validating them. Thus, we formulate the following hypotheses:



Hypothesis 1: (the architectural diagram consistency)

If an architectural diagram is generated from a valid
system descriptor then the diagram is consistent.

We assume that a descriptor file is naturally consistent
for two reasons: (1) System descriptor files are written in a
formal language, such as YAML (used by Docker-compose
and Kubernetes Pods) or Ruby (used by Chef); (2) System
descriptor files are automatically processed by a finite state
machine. If the diagram generated from system descriptors
presents each descriptor item, this diagram will also be
consistent.

Hypothesis 2: (the system descriptor validity)

If a valid system descriptor is generated from an
architectural diagram then the diagram is consistent.

We state that if a architectural diagram has accurate enough
data to generate a system descriptor that is valid and executable
in a tool that processes system descriptor files, then this
diagram is consistent.

C. Transformation function

Let’s assume that S is the set of all script instances (σ) of
a system descriptor and D is the set of architectural diagrams
(δ). We define the transformation function as f : S → D, so
that:

f(S) = {σ ∈ S | (∃δ ∈ D), f(σ) = δ} ⊂ D (1)

is the image of f . Considering that hypotheses 1 and 2 are true,
we then assume that the transformation function will have a
bijective mapping, so that:

f(σ) =

{
σ1, σ2 ∈ S | σ1 6= σ2 ⇐⇒ f(σ1) 6= f(σ2).

δ ∈ D | (∃σ ∈ S)[(σ, δ) ∈ f ].
(2)

Hence, if f is a bijector function, then it admits an inverse
function f−1 : D → S, such that f−1(δ) = σ.

The next section describes a tool that implements the
transformation function. This tool was developed and used to
explore the hypotheses of this work.

IV. CASE STUDY

We conducted a case study to test our hypotheses. First, we
created a meta-model to describe how to transform docker-
compose system descriptors into architectural diagrams. Our
model defines three top-level entities: service, volume and
network. The service entity contains the settings that we
apply to each container within a service. A volume describes
permanent storage in services, and network describes the
logical network in a container.

We developed a tool that generates architectural diagrams
named Descriptor to Architectural Diagram or DAD3. In
its current version, DAD only recognizes docker-compose as
a system descriptor and uses a diagrams-as-code library to gen-
erate architectural diagrams 4. Thus, DAD receives a system
descriptor file as input, and it generates a architectural diagram
and a diagram-as-code script. Listing 1 shows a fragment of
the diagram-as-code script automatically generated by the tool.

1 with DaC("dblog system", direction="TB"):
2 with Cluster("mysql service"):
3 mysql = Server("mysql")
4 with Cluster("dblog service"):
5 connect = Server("connect")
6 with Cluster("kafka service"):
7 kafka = Server("kafka")
8 kafka >> zookeeper
9 connect - zookeeper

10 ...

Listing 1: Diagram-as-code script generated by the DAD tool

Fig. 2: Architectural diagram corresponding to Figure 1,
generated from the DAD tool and modified manually to add
some semantic aspects.

We created a docker-compose.yaml file to represents the
architectural diagram shown in Fig. 1. Next, we use DAD
to automatically generate the architectural diagram from this
docker-compose file, whose fragment is present in Listing 2.
Finally, we compare the architectural diagram shown in Fig. 1
with an architectural diagram for the same system generated
by our tool (Fig. 2).

V. DISCUSSION

We compared the architectural diagram from Netflix (Figure
1) with architectural diagrams generated using DAD (Figure
2), and we discuss our observation as follows.

We observed some elements of the original architectural
diagram in Figure 1 do not appear in the generated diagram,
such as “State” and “Sink” boxes. When these elements are
inserted in the architectural diagram, even understanding that
they are part of the Zookeeper and Kafka concepts, they could
cause misunderstandings because it uses the same symbol for
different concepts (for example, “DBlog” vs “State”).

3https://github.com/jalvesnicacio/descriptors-diagrams
4https://diagrams.mingrammer.com/

https://github.com/jalvesnicacio/descriptors-diagrams
https://diagrams.mingrammer.com/


1 services:
2 mysql:
3 image: mysql
4 dblog:
5 build:
6 context: api
7 dockerfile: Dockerfile
8 container_name: dblog
9 depends_on:

10 - mysql
11 - postgres
12 ...

Listing 2: Docker-compose.yaml example

As noted in Figure 2, the diagram that we generated
from the system descriptor (docker-compose) contains fewer
ambiguous elements than the original diagram. Hence, the
generated diagram is potentially more consistent.

Observation 1: The generated architectural diagram
does not present inconsistent aspects of the original
diagram.

We also observed in Figure 2 that arrows were represented
into an inverted direction concerning Figure 1. In graph theory,
the arrows’ orientation refers to a dependency relationship
between the two connected elements (asymmetric digraphs
concept). Thus, we observe that the relationship between
DBLog service and MySQL service could be expressed as
“The DBLog service depends on the MySQL service”, which
was reported in the docker-compose file (see line 12 from
Listing 2) that we created to be used as input to the DAD
tool.

Besides, we note that all docker-compose elements, such
as services, volumes, dependency relationships or links, are
represented by a uniform and consistent graphical notation in
the architectural diagram generated by the DAD tool.

Observation 2: All elements in the Docker-compose
description are able to be graphically represented in
the generated architectural diagram.

Finally, we note that comprehension of architectural
diagrams also involves the degree of proximity between
the diagram elements. It suggests that the order in which
the elements appear in the diagram is important for
understanding the diagram, as it expresses the elements’
semantic organization. For example, elements representing
objects with similar roles should be arranged closer together
than those with distinct roles.

Observation 3: The position of an element in the
diagram is important for understanding the system.

In this version, when the DAD tool generates the architec-
tural diagram, the meta-model considers the order in which the
elements appear in the system descriptor’s text. It also affects

the order in which the elements appear on the diagram. Hence,
in Fig. 2, we adapted manually the diagram generated by the
tool to include semantic aspects. We modify the order in which
the elements appear in the diagram so that elements that have
similar roles remain together, such as database systems.

VI. RELATED WORK

Up to our knowledge, this is the first work that proposes
an approach to improving architectural diagrams consistency
using system descriptors. Related studies are from Paraiso et
al. [18] and Burco et al. [19].

One difference with our work is that we focus on verifying
architectural diagrams consistency. In contrast, previous stud-
ies aim to validate the system descriptor file still in the initial
implementation stages.

VII. CONCLUSION

This paper presents our proposal to apply system descriptors
to improve architectural diagrams consistency. We discussed
the issues of consistency validation in diagrams, and we
observed the ad-hoc system modelling with the current nota-
tions does not deal with consistency in architectural diagrams.
Hence, we stated two main hypotheses formulated from our
observations in real-world architectural diagrams. Further, we
presented DAD, a tool that uses Diagram-as-code to create
diagrams from Docker-Compose files.

Our case study shows that all Docker-compose description
elements can be graphically represented in a generated ar-
chitectural diagram. Also, the generated architectural diagram
does not present inconsistent aspects of the original diagram.
Also, we highlight the position of elements in the diagrams is
important for understanding the system.

We did not evaluate whether the diagram-as-code library’s
notation is sufficient to represent diagrams from descriptors,
and it is not the objective of this work to evaluate notations.

Some details of the system descriptor, such as ports and
passwords, were not mapped in the generated architectural
diagram. Such information describes details that out-of-scope
of architectural diagrams. Unmapped elements of a system
descriptor can be specified as a subset of the domain of that
mapping.

This work presents preliminary research results, and our
case study does not prove our hypotheses. However, de-
spite limitations, the case study’s observations indicate that
the proposed approach is promising and presents a consis-
tent approach for representing system descriptors. Our case
study uses only a single systems descriptor provider: docker-
compose. In future work, we intend to carry out studies with
others descriptor providers. Also, in its current version, DAD
cannot generate a system descriptor from a diagram, which
did not evaluate hypothesis 2. As future work, we intend to
evolve our tool to evaluate our hypotheses more deeply in a
controlled experiment.



REFERENCES

[1] R. Jolak, M. Savary-Leblanc, M. Dalibor, A. Wortmann, R. Hebig,
J. Vincur, I. Polasek, X. Le Pallec, S. Gerard, and M. R. Chaudron,
“Software engineering whispers: The effect of textual vs. graphical soft-
ware design descriptions on software design communication,” Empirical
Software Engineering, Jun. 2020.

[2] S. Brown, “Visio, draw.io, lucidchart, gliffy, etc - not recommended for
software architecture diagrams,” https://dev.to/simonbrown/visio-draw,
Jul. 2020.

[3] B. Litvak, S. Tyszberowicz, and A. Yehudai, “Behavioral consistency
validation of uml diagrams,” in Proceedings - 1st International Confer-
ence on Software Engineering and Formal Methods, SEFM 2003, 2003.

[4] “Meaning of consistency in english,” https://dictionary.cambridge.org/pt/
dicionario/ingles/consistency, accessed: 2021-02-16.

[5] A. Andreakis, F. Jhaveri, I. Papapanagiotou, M. Cho,
P. Reddy, and T. Liu, “Delta: A data synchronization
and enrichment platform,” https://netflixtechblog.com/
dblog-a-generic-change-data-capture-framework-69351fb9099b,
The Netflix Tech Blog, Oct. 2019.

[6] S. O. B. Amor, M. Ali, and F. Gargouri, “Verification of the consistency
between use case and activity diagrams: A step towards validation of
user requirements,” in ICEIS 2011 - Proceedings of the 13th Interna-
tional Conference on Enterprise Information Systems, vol. 3 ISAS, 2011,
pp. 396–399.

[7] I. . Ha and B. . Kang, “Meta-validation of uml structural diagrams
and behavioral diagrams with consistency rules,” in IEEE Pacific RIM
Conference on Communications, Computers, and Signal Processing -
Proceedings, vol. II, 2003, pp. 679–683.

[8] R. G. Mohammadi and A. A. Barforoush, “Enforcing component de-
pendency in uml deployment diagram for cloud applications,” in 7’th
International Symposium on Telecommunications (IST’2014), 2014, pp.
412–417.

[9] J. Ludewig, “Models in software engineering - an introduction,” Inform.,
Forsch. Entwickl., vol. 18, pp. 105–112, 04 2004.

[10] O. M. Group, “Omg unified modeling language™(uml®), version 2.5.
1,” Object Management Group, Tech. Rep., 2017.

[11] J. Arlow and I. Neustadt, UML 2 and the Unified Process: Practical
Object-Oriented Analysis and Design, ser. Addison-Wesley Object Tech-
nology Series. Pearson Education, 2005.

[12] G. Swain, Object-Oriented Analysis and Design Through Unified Mod-
eling Language. Laxmi Publications Pvt. Limited, 2010.

[13] M. Artač, T. Borovssak, E. Nitto, M. Guerriero, and D. Tamburri,
“Devops: Introducing infrastructure-as-code,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-
C), 05 2017, pp. 497–498.

[14] Mingrammer, “Introducing diagrams: Diagram as code,” https://medium.
com/better-programming/diagrams-diagram-as-code-56fec222cdf6,
Feb. 2020.

[15] H. K. Flaatten, “Diagram as code,” https://open.evry.blog/2020/01/05/
diagram-as-code.html, Jan. 2020.

[16] R. Meyer, “Infrastructure diagrams as code,” https://dev.to/raoulmeyer/
infrastructure-diagrams-as-code-3f3j, Feb. 2019.

[17] S. Brown, “Modelling software architecture with plantuml,” https://dev.
to/simonbrown/modelling-software-architecture-with-plantuml-56fc,
Jul. 2020.

[18] F. Paraiso, S. Challita, Y. Al-Dhuraibi, and P. Merle, “Model-driven
management of docker containers,” in 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD), 2016, pp. 718–725.

[19] F. Burco, M. Miculan, and M. Peressotti, “Towards a formal model
for composable container systems,” in Proceedings of the 35th Annual
ACM Symposium on Applied Computing, ser. SAC ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 173–175.
[Online]. Available: https://doi.org/10.1145/3341105.3374121

https://dev.to/simonbrown/visio-draw-io-lucidchart-gliffy-etc-not-recommended-for-software-architecture-diagrams-4bmm
https://dictionary.cambridge.org/pt/dicionario/ingles/consistency
https://dictionary.cambridge.org/pt/dicionario/ingles/consistency
https://netflixtechblog.com/dblog-a-generic-change-data-capture-framework-69351fb9099b
https://netflixtechblog.com/dblog-a-generic-change-data-capture-framework-69351fb9099b
https://medium.com/better-programming/diagrams-diagram-as-code-56fec222cdf6
https://medium.com/better-programming/diagrams-diagram-as-code-56fec222cdf6
https://open.evry.blog/2020/01/05/diagram-as-code.html
https://open.evry.blog/2020/01/05/diagram-as-code.html
https://dev.to/raoulmeyer/infrastructure-diagrams-as-code-3f3j
https://dev.to/raoulmeyer/infrastructure-diagrams-as-code-3f3j
https://dev.to/simonbrown/modelling-software-architecture-with-plantuml-56fc
https://dev.to/simonbrown/modelling-software-architecture-with-plantuml-56fc
https://doi.org/10.1145/3341105.3374121

	I Introduction
	II Are architectural diagrams inconsistent?
	III Approach
	III-A Concepts
	III-B Hypotheses
	III-C Transformation function

	IV Case study
	V Discussion
	VI Related Work
	VII Conclusion
	References

