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Abstract

Software systems have been continuously evolved and
delivered with high quality due to the widespread adop-
tion of automated tests. A recurring issue hurting this sce-
nario is the presence of flaky tests, a test case that may pass
or fail non-deterministically. A promising, but yet lacking
more empirical evidence, approach is to collect static data
of automated tests and use them to predict their flakiness.
In this paper, we conducted an empirical study to assess
the use of code identifiers to predict test flakiness. To do
so, we first replicate most parts of the previous study of
Pinto et al. (MSR 2020). This replication was extended
by using a different ML Python platform (Scikit-learn)
and adding different learning algorithms in the analyses.
Then, we validated the performance of trained models using
datasets with other flaky tests and from different projects.
We successfully replicated the results of Pinto et al. (2020),
with minor differences using Scikit-learn; different algo-
rithms had performance similar to the ones used previously.
Concerning the validation, we noticed that the recall of the
trained models was smaller, and classifiers presented a vary-
ing range of decreases. This was observed in both intra-
project and inter-projects test flakiness prediction.

Kewords: test flakiness, regression testing, replication
studies, machine learning

1 Introduction

In regression testing, automated tests are run to validate
whether changes and/or bug fixes do not have a negative
impact on the software. Nevertheless, not all test failures in
regression imply on faults in the production code [1]. Some
tests have an intermittent behavior: they may pass or fail
when executed in the same software version. Those tests
cannot be trusted and are known as flaky tests [2].

Unfortunately, flaky tests are common. Eck et al. [3]
surveyed 121 practitioners from Mozilla Foundation and re-
ported test flakiness as a moderate to critical issue. More-
over, they found 58% of professionals had faced this prob-
lem in the last month. In such cases, developers may spend
important resources in analyzing failures that are due to
flaky tests and not to actual problems in production code,
with concrete impact on productivity and costs. Practition-
ers got now used to rerun each newly observed failure sev-
eral times, to ascertain that it was a genuine regression fail-
ure and not an intermittent one [4].

This problem has brought attention form practition-
ers [5, 6, 7, 8] and researchers [9]. We can find some ap-
proaches to detect flaky tests. Most of them require that a
lot of test cases are executed many times, [10, 11]. Because
of this, static approaches have been proposed. They usually
employ Machine Learning (ML) techniques [1, 4, 12] and
are less costly. Among such approaches, we would like to
highlight the one proposed by Pinto et al. [4] published in
the Mining Software Repositories Conference (MSR2020).
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The approach automatically identifies flakiness based on a
more comprehensive set of predictors than the others, and
this is the reason why this study was chosen by us to be
replicated. In addition to common characteristics of the test
cases such as number of lines of code and occurrence of
certain Java keywords, the used set of predictors is built
based on the conjecture that there are some patterns in the
test case code that could be used to automatically recognize
flaky tests. Then a set of tokens are extracted and post-
processed by applying some Natural Language Processing
(NLP) techniques to compile a vocabulary of flaky tests.

Moreover, the work of Pinto et al. constructed and made
available a dataset of flaky and non-flaky tests by running
every test case, in a set of 64k tests, 100 times (6.4 million
test executions). To this dataset, five ML algorithms imple-
mented by the Weka framework [13] were applied to predict
flakiness with an F-measure of 0.95. The best prediction
performance was obtained when using Random Forest and
Support Vector Machine (SVM). In terms of the code iden-
tifiers that are most strongly associated with test flakiness,
the authors found that words job, action, and services are
commonly associated with flaky tests.

The results obtained by the original study are very
promising, but we identified some threats regarding algo-
rithms used and the generalization of the results to other
projects. Then some questions not answered by the original
work can be posed: 1) “Can we obtain similar results by us-
ing other different algorithms or the same algorithms with
distinct implementations?”, and 2) “Are the results valid for
other datasets including different projects?”. The goal of
our replication study is to address such threats and ques-
tions.

Replication Studies have been gaining importance in
software engineering. Works and reviews on this sub-
ject show an increasing number of replications published
[14, 15, 16, 17]. Many conferences have included tracks
dedicated to this subject. The community has highlighted
the importance of producing adequate documentation to al-
low replication. Shull et al. [18] identified the types of repli-
cations. When researchers apply the same procedures to
answer the same research questions as closely as possible
the replication is called exact. When researchers investigate
the same research question by using a different experimen-
tal procedure, it is called conceptual. Internal replications
are conducted by the original researchers and external ones
by an independent group [17]. They are dependent repli-
cations when researchers attempt to keep all the conditions
of the experiment the same or very similar. Otherwise they
are independent replications, when researchers deliberately
vary one or more major aspects of the conditions of the ex-
periment.

In this sense, our replication is external and exact. To
answer our questions we applied the same procedures of

original study, with some variations in the experimental
conditions: research questions, algorithms, and datasets.
First, we conducted a dependent replication, by adopting the
same datasets and algorithms from framework Weka. This
replication ensured a correct understanding of the original
setup and confirmed original results. After, we performed
an independent replication composed of two parts. In the
first part, we used the same dataset but varying the algo-
rithms implementation by adopting the framework Scikit-
learn [19] and three additional algorithms. In the second
part, we extended original work with additional research
questions and performed cross-project validations to as-
sess the performance of the trained models with different
datasets, for intra- and inter-projects test flakiness predic-
tion. This allows evaluating the generalization of the origi-
nal results in real scenarios.

The main contributions of this paper are the following:

• Evaluation of three new algorithms: the results ob-
tained by our replication using other ML framework
such as Scikit-learn confirms through some evidence
that the approach of original work, based on static de-
tection of flaky tests, is effective. One of the new
algorithms added, Logistic Regression, obtained the
best value of recall, and best performance in the cross-
project validation.

• Campbell and Stanley [20] argue that experiments
need to be replicated in different contexts, at different
times, and under different conditions before they can
produce generalizable knowledge. Thus, replications
like ours help investigating if the vocabulary of flaky
tests obtained by the original work remains valid and
can directly be transferred for other contexts like intra-
and inter project test flakiness prediction.

• Implications of our findings to help researchers and
developers in the challenging task of identifying flaky
tests. Such implications may raise future research di-
rections.

• A new repository with the procedures, datasets, and
scripts generated from this replication, made avail-
able at https://github.com/bhpachulski/
ICPC-RENE-Paper.

The paper is organized as follows. Section 2 reviews re-
lated work on flaky tests. Section 3 describes details of the
original study following replication guidelines [21]. Sec-
tion 4 contains the setup of our replication study. Sec-
tion 5 presents and analyses the obtained results. Section 6
presents the main threats of our study. Section 7 discusses
some implications of our results. Section 8 presents our fi-
nal remarks and concludes the paper.
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2 Related Work

Test flakiness has a negative impact on the software de-
velopment process: on one hand, debugging a yet-unknown
flaky test may demand a huge effort as it is not actually a
bug in the software; on the other hand, prematurely label-
ing (incorrectly) a test as flaky would let a bug escape to
production and may harm the end-users.

Flaky tests are not only caused by changes in the soft-
ware [2, 3]. For instance, Lam et al. [11] observed that
more than half of analyzed flaky tests are order-dependent
(OD), though other causes have been investigated [2]: asyn-
chronous executions (Async Wait), concurrent execution
(Concurrency), leakage resource (Resource Leak), commu-
nication (Network), tests based on date and time (Time),
reading and writing files (IO), use of random data (Ran-
domness), operations with floating-point numbers (Float-
ing Point Operations) and use of unordered collections (Un-
ordered Collections).

This problem has brought attention from practitioner and
researchers. We noticed efforts on this subject in the in-
dustry [5, 6, 7, 8]. In the literature, we find works dedi-
cated to this subject as reported by a recent review [9]. Dy-
namic approaches to detect flaky tests require re-execution
of test cases usually fixing the number of times they will be
executed [11, 22]. This is expensive and error-prone; the
determination of this number is challenging, and an inad-
equate choice can lead to false negatives. As alternative,
static approaches have been proposed [2, 3, 4, 12, 22, 23].
Most of these approaches are based on Machine Learn-
ing [4, 12, 23]. These last ones, more related to our replica-
tion study, are described below.

Memon et al. [23] propose to reduce the workload of the
Google Test Automation Platform (TAP), avoiding the ex-
ecution of tests with low probability of failure. Another
goal is to present to developers insights about the project
they are developing. As such, developers may take preemp-
tive measures to prevent breakages. The proposed approach
is based on a feature vector composed by Continuous In-
tegration tool (CI), transitions from PASSED-to-FAILED,
fixes (FAILED-to-PASSED), and programmers’ activity in
the version control tool. In this study, 2.07% of tests passed
or failed at least once: 1.23% of them revealed faults intro-
duced by developers, and 0.84%, namely 46,694 tests were
flaky. The approach made it possible to reduce the number
of executed test cases, without neglecting the fault detection
capabilities.

King et al. [12] introduce an ML-based approach based
on Bayesian networks to predict flaky tests. The problem
is modeled like a disease in which symptoms can iden-
tify a flaky test. The authors propose a map of symptoms
and causes, using static and dynamic metrics like Com-
plexity Metrics (Test Assertion Count, Test Class/Method

Size, Depth of Inheritance Tree), Implementation Coupling
Metrics (Coupling Between Objects and Selector Stability
Index), Non-Determinism Metrics (Cyclomatic Complex-
ity and Explicit Wait Count), Performance Metrics (Aver-
age Execution Time), and General Stability Metrics (Failure
Rate and Flip Rate). The evaluation was conducted with UI
tests of a proprietary Web system; the tests are executed in
a CI environment and five teams took part in the study.

After three months, the supporting tool helped to reduce
the test flakiness, in some cases up to 60%. Overall, the
accuracy of approach’s prediction was 65.7%. The features
(symptoms) with the best prediction capabilities were High
Test Complexity (88%) and Test Size (82%).

The approaches mentioned above present some advan-
tages. The model derived is capable to predict flakiness
with less cost, without re-executions of test cases. But
among these approaches, the one from Pinto et al. [4] in-
cludes a more comprehensive set of predictors and pre-
sented promising results. Such an approach is the focus of
our replication study and is detailed in the next section.

3 Original Study

The main hypothesis of the original study was that there
are some syntactical patterns in the code of flaky test that
can be used by NLP techniques to predict flakiness without
code executions. Such patterns constitute the vocabulary of
flaky tests. Below, we describe the main items regarding
this study, following some guidelines for replication studies
proposed by Carver et al. [21].

3.1 Approach

The adopted approach can be performed statically and
includes the following steps:

1. Extraction of tokens: identifiers are extracted from test
code labeled as flaky or non-flaky;

2. Processing of tokens: NLP techniques are applied,
such as identifier splitting, stemming (removal of the
suffix from a word), and stop word removal, to turn
the extracted identifiers into tokens to be used as in-
put for text classification algorithms. The identifiers
are split using their camel-case syntax, and all result-
ing tokens are converted to lower case. Figure 1 con-
tains an example of test case extracted from the orig-
inal study [4] and its corresponding set of extracted
tokens. The information about the tokens is then aug-
mented with three numerical features, acting as prox-
ies of code complexity: LOC: number of lines of code
of the test case; keywords: the number of occurrences
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of each one of the 56 Java keywords the test case con-
tains; and keyword count: total number of Java key-
words present in the test case;

3. Flakiness prediction: five classifiers are applied on the
resulting dataset using Weka [13]: Random Forest, De-
cision Tree (DT), Naive Bayes, Support Vector Ma-
chine (SVM), and Nearest Neighbour.

Figure 1. An example of test case and its tok-
enized result (extracted from Pinto et al. [4].)

3.2 Research questions

The original study investigated four research questions
(RQs).

• RQ1. How prevalent and elusive are flaky tests? The
goal of this question was twofold: 1) to confirm that
flaky tests are very common in regression test suites,
and 2) to analyse if there is an ideal number of reruns
to be used to find flakiness.

• RQ2. How accurately can we predict test flakiness
based on source code identifiers in the test cases? The
goal of this question was to evaluate the performance
of classifiers to predict test based on the source code
identifiers without re-execution of the test suites.

• RQ3. What value do different features add to the clas-
sifier? The goal of this question was to evaluate the
impact of the processing step (i.e. stemming and stop
word removal) in the classifier performance, as well as
some choices made by the authors, such as converting
identifiers to numeric features and splitting identifiers.

• RQ4. Which test code identifiers are most strongly as-
sociated with test flakiness? The goal was to identify
the test code identifiers which are more related to flak-
iness in order to help development, code review, and
debugging tasks.

3.3 Dataset

The dataset was built based on 24 DeFlaker projects [10].
As this set of projects contains only information about flaky
test cases, the authors decided to execute the test suites
of each project 100 times. The test case was flagged as
non-flaky if a consistent outcome was obtained across all
executions. In the end, an imbalanced set was obtained
with a greater number of non-flaky tests. To deal with this
problem, a number of non-flaky tests was selected, equal
to the number of flaky tests in the original DeFlaker data
set. This selection was performed in a way that the median
sizes (in number of lines of code) of flaky and non-flaky
tests were nearly the same. The data produced as result
is available at: https://github.com/damorimRG/
msr4flakiness/. This lab package, since now called
msr4flakiness, is one of the datasets used in our replica-
tion study.

3.4 Evaluated metrics

To evaluate the performance of the classifiers, the au-
thors split the data set into 80% for training and 20% for
testing. They used standard metrics of precision (the num-
ber of correctly classified flaky tests divided by the to-
tal number of tests that are classified as flaky), recall (the
number of correctly classified flaky tests divided by the to-
tal number of actual flaky tests in the test set), and F1-
Score (the harmonic mean of precision and recall), MCC
(Matthews correlation coefficient) and AUC (area under the
ROC curve). MCC measures the correlation between pre-
dicted classes (i.e., flaky vs. non-flaky) and ground truth,
and AUC measures the area under the curve which visual-
izes the trade-off between true positive rate and false posi-
tive rate.

3.5 Summary of the results

As a result of RQ1, the authors found a low number of
flaky tests, but flakiness is relatively common in IO-related
projects. They concluded that detecting flakiness with test
reruns is challenging. The number of executions may im-
pact the detection since around 70% of the test cases identi-
fied as flaky passed in more than 90% of the runs.

Answering RQ2, all classifiers achieved very good per-
formance in distinguishing flaky test cases from non-flaky
test cases. Random Forest achieved the best precision
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(0.99), the SVM classifier slightly outperformed Random
Forest in terms of recall (0.92). Overall, in terms of F1-
Score, Random Forest achieved the best performance, but
all classifiers achieved an F1-Score of at least 0.85. The
results are presented in Section 5 for comparison.

RQ3 investigates the performance impact of the differ-
ent features used in the classifiers. To answer this question,
the authors used the best classifiers: Random Forest (best
precision and F1-Score) and Support Vector Machine (best
recall). The features evaluated were: no stemming, no stop
word removal, no lower casing, no identifier splitting, only
split identifier, no LOC, no Java keywords, no identifiers.
The evaluation showed the impact on the classifier perfor-
mance of most pre-processing steps was negligible. The
only large impact was observed for Random Forest when
Java keywords were included as tokens, but not identifier
names. In this case, the performance would drop from an
F1-Score of 0.95 to 0.79. For SVM, not splitting identifiers
reduced the F1-Score from 0.93 to 0.89 and not considering
identifiers at all reduced it to 0.74.

To answer RQ4, the paper provides a list of 20 features
with the highest information gain along with their frequency
in the projects. The vocabulary associated with flaky tests
contains words such as job (present only in 2 projects (out
of 24)), id (appears in 9 projects), table, and action,
many of which are associated with executing tasks remotely
and/or using an event queue. Interestingly, the authors did
not find a single token in the top 20 that was more strongly
associated with non-flakiness. In that regard, for the Java
keyword throws the authors conjecture that proper excep-
tion handling can help avoiding test flakiness.

3.6 Threats and Limitations

One of the main threats mentioned by the authors is the
generalization of the results. The obtained vocabulary is
limited to the Java language. But in addition to this, even if
the same language is considered we would like to highlight
two other threats. The first one is that the results may be
valid only for the studied test cases, which are particular to
the selected projects and their domains. A second possible
threat is the ML algorithms used. To investigate the impact
of such threats is the objective of our replication study.

4 Replication Study Setup

We set out our replication study to address the threats
of the original study mentioned in the last section. We can
divide our study in two parts, each one of them correspond-
ing to one of the identified threats and to a main research
question.

RQ1. Can we obtain similar results by using other ML al-

gorithms or the same algorithms with distinct implementa-
tions?

• RQ1.1 How accurately can we predict test flakiness
based on source code identifiers in the test cases?

• RQ1.2 What value of different features add to the clas-
sifier?

• RQ1.3 Which test code identifiers are most strongly
associated with test flakiness?

Rationale. Answering RQ1 we intend to investigate the
influence of using other algorithms and implementations in
the results of the original study. We believe the previous
results are promising, yet further evidence would be de-
sirable. For this end, replication studies are an important
source of evidence [20]. Then, apart from the first RQ of
the original study that aims to obtain the dataset, we used
the dataset msr4flakiness (available lab package) to repli-
cate the study for the remaining questions. As such, RQ1.1,
RQ1.2, and RQ1.3 are same ones investigated previously, but
now using the framework Scikit-learn and applying three
additional algorithms, successfully employed for process-
ing text.

RQ2. Are the results valid for other datasets including dif-
ferent projects?

• RQ2.1 Can a trained classifier be successfully applied
within the same projects (i.e., intra-project)?

• RQ2.2 Can a trained classifier be successfully applied
to other projects (i.e., inter-projects)?

Rationale. RQ2 investigates if the vocabulary of flaky
tests obtained by original study remains valid and can be
directly used in other contexts. Answering this question,
we intend to obtain evidence that the results can be gener-
alized by varying the datasets used. For this end, we use
different cross-project validation, not only using the orig-
inal msr4flakiness. This question is herein proposed to
assess the behavior of trained models towards the adoption
by practitioners. In particular, we analyze two scenarios:
(i) (RQ2.1) there is a group of projects and historical data
is used to predict flaky tests within this group (i.e., intra-
project), and (ii) (RQ2.2) to predict test flakiness in projects
outside the group (i.e., inter-projects).

To answer RQ1, we used the lab package msr4flakiness
to replicate the original study in two steps. First like the
work of Pinto et al., we adopted the ML framework Weka
[13] to extract features, training and validation of ML algo-
rithms. This step tries to reproduce the same results, as well
as to know the intrinsic configurations of feature extrac-
tion, training and tests. The idea is to confirm previous re-
sults and understand the available package msr4flakiness.
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As a result of this dependent replication, apart from RQ1,
which is not directly related to the goal of our study, we
obtained the same results of the original study for all ques-
tions. These results are not presented and discussed in the
present paper but they are in our replication package.

In this way, as a result of this first step we ensure that
we are interpreting well and adopting the same procedure
of original study. Then in the second step and considering
the goals of RQ1, we use a different ML framework and
algorithms, so we chose Scikit-learn [19]. Scikit-learn is
one of the most popular ML libraries1, providing a platform
to build ML applications using the programming language
Python. This makes it possible to evaluate if the results
could be reproduced in a different software platform, and
facilitates future extensions of the study, once Python seems
to be the de facto programming language for ML [8].

Targeting RQ1.1, we first loaded the dataset
msr4flakiness and ran the pre-processing of features
(tokens). For feature extraction, we adopted the method
COUNTVECTORIZER of Scikit-learn along with a hand-
crafted tokenizer, shown in Figure 2, to replicate the same
tokenization criteria used in Weka at the original study.

d e f w e k a t o k e n i z e r ( s t r i n g ) :
d e l i m i t e r s =

r e . compi l e ( ” [ |\n |\ f |\ r |\ t | . | , | ; | : | ’ | \ ” | ( | ) | ? | ! ]
” )

r e t u r n l i s t ( f i l t e r ( None , d e l i m i t e r s . s p l i t ( s t r i n g ) ) )

Figure 2. Function for word separation in
Python.

Scikit-learn has implementations of the five classifiers
used in the original study: Random Forest, Decision Tree
(DT), Naive Bayes, Support Vector Machine (SVM) and
Nearest Neighbour. Yet, we needed to adjust them to use
the same parameters of Weka to obtain the same results.
Furthermore, we included three different classifiers: Logis-
tic Regression (LR), Linear Discriminant Analysis (LDA)
and Perceptron. The choice of these algorithms is based on
successful studies that use linear classifiers and neural net-
works for text classification [24, 25].

We used 80% of the dataset for training and 20% for vali-
dation, following the original study. Figure 3 shows how the
classifiers were parameterized in Scikit-learn based on the
original study Weka parameters. We used the LINEARSVC
implementation of SVM.

Concerning RQ1.2, the goal is to evaluate the impact of
pre-processing steps for word separation and feature trans-
formation. The following configurations were adopted con-
sidering datasets made available by the msr4flakiness ex-

1https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-
learning/

’ r a n d o m f o r e s t ’ : R a n d o m F o r e s t C l a s s i f i e r ( r a n d o m s t a t e =1) ,
’ d e c i s i o n t r e e ’ : D e c i s i o n T r e e C l a s s i f i e r ( m i n s a m p l e s l e a f

=1) ,
’ n a i v e b b a y e s ’ : GaussianNB ( ) ,
’ svm ’ : C a l i b r a t e d C l a s s i f i e r C V ( LinearSVC ( f i t i n t e r c e p t =

F a l s e , t o l = 0 . 0 0 1 , C=1 , d u a l = F a l s e , m a x i t e r =100000)
, method= ’ s igmoid ’ ) ,

’ knn ’ : K N e i g h b o r s C l a s s i f i e r ( n n e i g h b o r s =1 , m e t r i c = ’
e u c l i d e a n ’ ) ,

’LR ’ : L o g i s t i c R e g r e s s i o n ( m a x i t e r =1000) ,
’ p e r c e p t r o n ’ : C a l i b r a t e d C l a s s i f i e r C V ( P e r c e p t r o n ( ) ) ,
’LDA’ : L i n e a r D i s c r i m i n a n t A n a l y s i s ( )

Figure 3. Classifiers’ parameters used in
Scikit-learn.

perimental package: No Stemming, No Stop Words Re-
moval, No Lowercasing, No Identifier Split, Only Split
Identifiers, No Lines of Code, No Java Keywords, No Iden-
tifiers. These configurations were evaluated with the same
algorithms of the original study to allow comparison.

In RQ1.3, we evaluated the impact of features using the
method mutual info classif of Scikit-learn with de-
fault settings, which is equivalent to the entropy calcula-
tion of Weka. At this step we considered the entire dataset.
The information gain (as known as entropy) is calculated
for each output variable. This value ranges from 0 (no gain)
to 1 (maximum of information gain). All these aforemen-
tioned steps were performed as described in the previous
work.

Concerning RQ2, a different dataset is required to val-
idate the trained models. Therefore, we selected the 335
flaky tests from 72 different projects, collected in Lam et al.
[11]; we refer to this dataset as iDFlakies. This dataset does
not contain examples of non-flaky tests, so only recall will
be used to analyze the results. To obtain the dataset’s fea-
tures, we used the same process performed by the original
study based on the scripts for data extraction. To support
this step, we adopted the eight classifiers trained for answer-
ing RQ1 using Scikit-learn.

RQ2.1 focuses on the intra-project scenario. For this
question, we generated from iDFlakies a validation dataset
using the process provided by the authors of the original
study. As a result we transformed the flaky test cases into
a dataset that comprises all the features used in the original
study. Then we filtered out duplicate tests and tests from
projects not present in dataset msr4flakiness. So, we are
testing the scenario in which the historical data of a set of
projects is used to predict test flakiness within this same set
of projects. In the end, the validation set for this question
contains only flaky tests (80) from 22 different projects.

In RQ2.2, we evaluated the inter-project scenario. So, we
generated from iDFlakies a validation dataset by filtering
out tests from projects present in the dataset msr4flakiness.
So, we are testing the scenario in which the historical data
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of a set of projects is used to predict test flakiness in a dif-
ferent set of projects. At the end, the validation set for this
question contains only flaky tests (256) from 64 different
projects.

5 Analysis of Results

This section analyses the obtained results in order to an-
swer the posed RQs.

5.1 RQ1 – Replicating the study with Scikit-learn

Below we compare the results of our replication using
Scikit-learn with the ones obtained in the original study us-
ing Weka. In our analysis we adopted the same evaluation
metrics used in the original study (see Section 3): precision,
recall, F1-score, MCC and AUC.

5.1.1 RQ1.1 – How accurately can we predict test flak-
iness based on source code identifiers in the test
cases?

The results of our replication using Scikit-learn were sim-
ilar to the results of the original study (which used Weka),
as shown in Table 1. The greatest difference was for the
Nearest Neighbour classifier, with a -0.7% difference for
Scikit-learn considering Recall, and Naive Bayes, with a
0.8% difference for Scikit-learn regarding MCC.

The Random Forest algorithm had the highest score for
all evaluated metrics in our replication study considering the
algorithms of the original study. It correctly identified 98%
of all the flaky tests classified by the model. The results for
MCC of 0.90 and for F1-score of 0.94 show that the quality
of the prediction model is very good. The high score for
both MCC (0.90) and F1-score (0.94) were expected, as the
dataset was balanced. AUC for Random Forest was also
the highest (0.98), providing further evidence regarding the
model classification quality. Considering the extended set
of classifiers, Random Forest had a lower score only for

Recall when considering the Logistic Regression classifier
using the Scikit-learn: 0.90 versus 0.91, respectively.

For the new classifiers considered in our study, Logistic
regression provided comparable results to Random Forest,
with better results for recall. Nonetheless, the difference
was of just two percentage points. Perceptron had a simi-
lar performance to Logistic Regression. Regarding LDA, it
performed similarly to Decision Tree, with a lower overall
performance than the other algorithms.

Answer to RQ1.1: The classifiers performed very
well, similarly to the original study. The difference
of the results due to machine learning frameworks
is small. The additional classifiers obtained results
similar to the ones investigated previously. LR pre-
sented the best recall value.

5.1.2 RQ1.2 – What value of different features add to
the classifier?

Although every classifier has performed very well, we con-
sidered models created with all the features extracted from
the dataset. However, it is important to analyse the impact
of each feature and pre-processing applied to them. Pinto
et al. [4] considered three types of features: identifiers, Java
keywords, and LOC metric. For the identifiers, which com-
prise most of the features considered in the model, several
pre-processing steps were applied: stemming, stop word re-
moval, lowercasing, splitting. In Table 2, we present the
performance of Random Forest and SVM classifiers with
respect to precision, recall, F1-score, MCC and AUC, with
different subsets of features and pre-processing configura-
tions.

As in the original study, the exclusion of tokens from the
generated model (No Identifiers) had the greatest impact in
the classifier performance in the replication. The precision
reduces drastically, from 0.98 to 0.72 when using Random
Forest and from 0.94 to 0.59 using SVM. Considering that
identifiers are directly related to the vocabulary in each test

Table 1. Classifier performance.
(a) Original study (b) Replication study

Algorithm Precision Recall F1 MCC AUC Algorithm Precision Recall F1 MCC AUC
Random Forest 0.99 0.91 0.95 0.90 0.98 Random Forest 0.98 0.89 0.94 0.89 0.98
Decision Tree 0.89 0.88 0.89 0.77 0.91 Decision Tree 0.87 0.86 0.86 0.74 0.87
Naive Bayes 0.93 0.80 0.86 0.74 0.93 Naive Bayes 0.95 0.84 0.89 0.81 0.90
SVM 0.93 0.92 0.93 0.85 0.93 SVM 0.93 0.86 0.90 0.81 0.96
Nearest Neighbour 0.97 0.88 0.92 0.85 0.93 Nearest Neighbour 0.98 0.81 0.89 0.81 0.90

Perceptron 0.95 0.83 0.88 0.81 0.96
LR 0.91 0.91 0.91 0.84 0.96
LDA 0.83 0.78 0.80 0.63 0.87
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case, this result was expected. Interestingly, disabling pre-
processing for identifiers did not significantly changed the
performance of the model. Similarly, excluding LOC or
Java keywords other features also have minor impact, with
a variation of less than three percentage points for SVM.

Answer to RQ1.2: Similarly to the original study,
different features did not show much impact in the
classifiers, except when tokens (No Identifiers) ex-
tracted from test cases were not considered.

5.1.3 RQ1.3 – Which test code identifiers are most
strongly associated with test flakiness?

The association of features and test code identifiers was
evaluated by calculating the information gain based on the
entropy of the features extracted after pre-processing the
text of the test cases. In Table 3 we report the features with
higher information gain for original study and our replica-
tion. The value for the information gain of the studies are
different. For instance, for job the original study reported
0.2053 while we got 0.1449 for the replication. Nonethe-
less, the top three features are the same for both models and,
considering the top twenty features, the only differences
are the feature coordinatorjob (present in the origi-
nal study, but absent from the replication) and get (present
in the replication, but absent in the original study).

Thus, despite the different values for information gain,
we can conclude that features associated with test flak-
iness are the mostly same of the original study. The
features are associated with executing and coordinat-
ing tasks (job, services, action, coordinator,
workflow, getstatus), persistance (table, id,
record, jpa, jpaservice). The most relevant
difference was with respect to the feature throws
(keyword). Although it was identically ranked, in the
original study it was related to few tests (10), in the replica-
tion it was exactly the opposite, with 2.348 test cases. We
also conjecture that exception handling is related to flaki-
ness.

Answer to RQ1.3: The flaky vocabulary is related to
executing and coordinating tasks, and persistence.
The set of words is very similar to the one of origi-
nal study.

Summary of RQ1: Our replication gives more evidence
about the validity of the original results using other ML
framework and algorithms. The results obtained are very
similar, concerning the performance of the algorithms,

value of the used features and vocabulary of flaky tests
found. It is worth emphasizing the good performance of
the additional classifiers. LR reached the best values of
Recall and second best values of AUC. Other point to be
highlighted is that the lab package provided by the original
study is easy-to-use and self-contained, which allows us to
replicate the study without contacting the authors.

5.2 RQ2 – Cross-project validation

For RQ2, we extended the original study by addressing
the performance of the classification model using the vo-
cabulary of flaky tests with different datasets. First, we
consider using the trained classifier within a different set of
test cases from the same software projects (intra-projects).
Second, we applied the classifier to other projects (inter-
projects).

5.2.1 RQ2.1 – Can a trained classifier be success-
fully applied within the same projects (i.e., intra-
project)?

The intra-project validation was performed with the dataset
of iDFlakies considering only the 22 projects which are also
in the dataset msr4flakiness. The results are presented in
Table 4. As previously described, this dataset does not have
tests classified as non-flaky, thus the confusion matrix has
only true positives (TP) and false negatives (FN). Thus, we
just considered Recall to evaluate the performance of the
classifiers.

The classifiers performance was not satisfactory com-
pared to the results for msr4flakiness in the RQ1.1 (Ta-
ble 1). Random Forest was the classifier with the best per-
formance regarding Recall on msr4flakiness (0.90), but
achieved only 0.08 for the intra-project scenario. SVM also
experienced a lower recall, dropping from 0.86 to 0.29. In-
terestingly, the classifiers we had added for the extended
replication performed better than the original ones, although
they also had a lower performance. Linear Discriminant
Analysis (LDA) had a recall of 0.75, followed by Logistic
Regression (LR), with 0.68.

Regarding the importance of each feature of the classi-
fication, we calculated the information gain and reported
the top-20 features in the Table 5. The only feature com-
mon to msr4flakiness and the intra-project dataset was
loc, but with no actual information. There some fea-
tures related to execution and coordination of tasks (init,
createdirwithhttp), but most are related to I/O op-
erations (reader, write, directory, folder). The
feature public, a Java keyword, had the highest informa-
tion gain (0.8188) and is associated to 80 flaky tests. As
most (if not all) tests are declared in public methods, that
is not actually unexpected, although it should not be rele-
vant to detect flaky tests. Another interesting fact is that,
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Table 2. Performance of RQ 1.1 classifiers without features.
Original study Replication study

(a) Random Forest (b) Random Forest
Features Precision Recall F1 MCC AUC Features Precision Recall F1 MCC AUC
All Features 0.99 0.91 0.95 0.90 0.98 All Features 0.98 0.90 0.94 0.90 0.98
No Stemming 0.99 0.91 0.95 0.90 0.98 No Stemming 0.97 0.89 0.93 0.88 0.98
No Stop W. Removal 0.99 0.91 0.95 0.90 0.98 No Stop W. Removal 0.98 0.89 0.93 0.87 0.98
No Lowercasing 0.98 0.91 0.94 0.89 0.98 No Lowercasing 0.98 0.90 0.93 0.88 0.98
No Identifier Split. 0.98 0.89 0.94 0.88 0.98 No Identifier Split. 0.98 0.90 0.94 0.89 0.98
Only Split Identif. 0.99 0.92 0.95 0.90 0.98 Only Split Identif. 0.97 0.90 0.93 0.88 0.98
No Lines of Code 0.99 0.91 0.95 0.90 0.99 No Lines of Code 0.98 0.89 0.93 0.88 0.98
No Java Keywords 0.99 0.90 0.94 0.89 0.98 No Java Keywords 0.98 0.89 0.93 0.88 0.98
No Identifiers 0.76 0.82 0.79 0.56 0.85 No Identifiers 0.72 0.81 0.76 0.52 0.85

(c) SVM (d) SVM
Features Precision Recall F1 MCC AUC Features Precision Recall F1 MCC AUC
All Features 0.93 0.92 0.93 0.85 0.93 All Features 0.94 0.86 0.90 0.82 0.96
No Stemming 0.93 0.92 0.93 0.85 0.93 No Stemming 0.94 0.85 0.89 0.81 0.96
No Stop W. Removal 0.93 0.92 0.93 0.85 0.93 No Stop W. Removal 0.93 0.86 0.89 0.81 0.96
No Lowercasing 0.91 0.93 0.92 0.84 0.92 No Lowercasing 0.93 0.86 0.90 0.81 0.96
No Identifier Split. 0.91 0.88 0.89 0.79 0.90 No Identifier Split. 0.94 0.88 0.91 0.84 0.97
Only Split Identif. 0.93 0.92 0.93 0.85 0.93 Only Split Identif. 0.92 0.90 0.91 0.83 0.96
No Lines of Code 0.93 0.92 0.93 0.85 0.93 No Lines of Code 0.94 0.86 0.90 0.80 0.96
No Java Keywords 0.93 0.92 0.93 0.85 0.93 No Java Keywords 0.92 0.89 0.91 0.82 0.96
No Identifiers 0.54 0.87 0.74 0.40 0.68 No Identifiers 0.59 0.83 0.69 0.32 0.73

although we reported top-20 features in Table 5, only 15
had an information gain greater than zero: the five features
with no information gain were LOC and Java keywords
(abstract, assert, boolean and break).

Answer to RQ2.1: The performance of the classifi-
cation model to identify flaky tests within the same
projects was low. The features with higher informa-
tion gain are distinct from those previously identi-
fied, and they are related to I/O operations, execu-
tion and coordination of tasks, and Java keywords.

5.2.2 RQ2.2 – Can a trained classifier be successfully
applied to other projects (i.e., inter-projects)?

To answer RQ2.2, we used the classification models trained
for RQ1.1 to test the inter-project dataset. This dataset
has 256 flaky tests of 64 projects distinct from those from
msr4flakiness. Similarly to RQ2.1, we considered only
recall to evaluate the classifier performance as the inter-
project dataset contains just flaky tests.

The performance of the classifiers for the inter-projects
dataset was very low, as detailed in table 6. Considering the
Decision Tree classifier, which achieved a recall of 0.86 in
RQ1.1, the result for the inter-project dataset was of 0.16.
Yet, from the five models considered in the original study, it
was the best classifier. Random Forest, which had a recall of
0.90 for in RQ1.1, got only 0.02, correctly identifying just
four flaky tests. In the context of our extended replication

study, LDA was the best, with a recall of 0.48.
It is worth noticing that the performance for inter-

projects was significantly lower than for the intra-project
scenario. For instance, LDA had a recall of 0.76 in the lat-
ter against 0.48 in the former.

The information gain for the features extracted from
the inter-project dataset is shown in Table 7. The fea-
tures are different from those of RQ1.1 and intra-project
dataset in RQ2.1. The features that are more often as-
sociated to flaky tests are related to asynchronous calls
(await, export, handler, protocol, server,
task, taskpayloadbuilder, url) or they are Java
keywords (return, try). Strikingly, the special character
{ is among the top-20 features, even though it is present in
every flaky test and could not provide any relevant informa-
tion to classify a test case as flaky.

Answer to RQ2.2: Classifiers trained with the
dataset msr4flakiness could not provide a satisfac-
tory performance when testing a dataset of different
projects (inter-projects). The features with higher
information gain are related to asynchronous calls
and they are distinct from those previously identi-
fied.

Summary of RQ2: We obtained some evidence that the vo-
cabulary of flaky tests from original study cannot be directly
used in other contexts. In general, training the classifiers
with the dataset msr4flakiness does not lead a good predic-
tion in both scenarios evaluated: intra- and inter-projects. A
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Table 3. Top 20 features by Information Gain.
(a) Original study (b) Replication study

Feature Inf. Gain Tests Flaky
tests

Non-Flaky
tests Feature Inf. Gain Tests Flaky

tests
Non-Flaky
tests

job 0.2053 528 524 4 job 0.1449 530 525 5
table 0.1449 414 406 8 table 0.1029 414 406 8
id 0.1419 584 522 62 id 0.1004 577 525 52
action 0.1365 395 387 8 services 0.0977 378 371 7
oozie 0.1359 274 274 0 action 0.0972 396 388 8
services 0.1309 378 371 7 oozie 0.0942 346 346 0
coord 0.1192 307 307 0 loc 0.0879 - - -
getid 0.1076 288 287 1 coord 0.0826 307 307 0
coordinator 0.1070 258 258 0 xml 0.0752 356 341 15
xml 0.1061 253 247 6 getid 0.0746 288 287 1
loc 0.0977 - - - coordinator 0.0741 278 278 0
workflow 0.0913 207 207 0 get 0.0691 2194 1260 934
getstatus 0.0884 248 246 2 workflow 0.0633 240 240 0
throws keyword 0.0873 10 3 7 throws keyword 0.0615 2348 1327 1021
record 0.0845 314 296 18 getstatus 0.0613 248 246 2
jpa 0.0780 207 207 0 record 0.0596 314 296 18
jpaservice 0.0752 200 200 0 service 0.0590 451 383 68
service 0.0733 434 367 67 jpa 0.0541 207 207 0
wf 0.0721 192 192 0 jpaservice 0.0521 200 200 0
coordinatorjob 0.0689 184 184 0 wf 0.0499 192 192 0

Table 4. Classifiers performance in the intra-
project scenario.

Classifier Recall TP FN
LDA 0.75 60 20
LR 0.68 54 26
Perceptron 0.51 41 39
SVM 0.29 23 57
Decision Tree 0.19 15 65
KNN 0.19 15 65
Random Forest 0.08 6 74
Naive Bayes 0.11 9 71

possible reason for this is overfitting, caused by excessive
number of tokens in the vocabulary and few examples.

6 Threats to Validity

Threats to construct validity are related to metrics used
to evaluate the results. As a replication, the same metrics of
Pinto et al. [4] were employed to support the comparisons.
As such, this study is subjected to the same threats that are
the evaluation method based on precision and F1-Score. For
RQ2, a dataset only with flaky tests was used. So, the preci-
sion was always the maximum and we did not consider it in
our analyses. This limitation should be addressed in future
work.

Table 5. Top 20 features by information gain
in the intra-project scenario.

Feature Inf. Gain Tests
Flaky

public keyword 0.8188 80
acl 0.8188 6
created 0.8188 6
reader 0.8188 6
createdirwithhttp 0.0791 6
createsnapshot 0.0791 6
directory 0.0791 6
folder 0.0791 6
gethadoopusers 0.0791 6
hadoopusersconftesthelper 0.0791 6
init 0.0791 6
no 0.0791 6
touri 0.0791 6
write 0.0791 6
assertnotnull 1.1102 28
loc 0.0 -
abstract keyword 0.0 0
assert keyword 0.0 68
boolean keyword 0.0 0
break keyword 0.0 0

Threats to internal validity may comprise the results
when relating independent and dependent variables. To mit-
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Table 6. Classifiers performance in the inter-
project scenario.

Classifier Recall TP FN
LDA 0.48 122 134
LR 0.40 102 154
Perceptron 0.38 97 159
Decision Tree 0.16 40 216
SVM 0.11 27 229
Naive Bayes 0.09 24 232
KNN 0.09 22 234
Random Forest 0.02 4 252

Table 7. Top 20 features by Information Gain
in the inter-project scenario.

Feature Inf. Gain Tests
Flaky

getname 0.8882 22
namingcontext 0.8882 22
same 0.8882 22
await 0.8674 14
export 0.8674 14
return keyword 0.8465 17
be 0.8465 17
handler 0.8465 30
is 0.8465 17
this keyword 0.8396 14
protocol 0.8396 14
} 0.8396 14
collections 0.8188 17
context 0.8188 19
server 0.8119 14
task 0.8049 19
of 0.7633 19
taskpayloadbuilder 0.7633 19
url 0.6939 40
try keyword 0.6661 51

igate this, we carefully replicate the experiments so that the
same results were achieved with the Weka software. With
Scikit-learn, we tried our best to replicate the results, while
slightly differences were noticed due to mostly the feature
extraction.

External validity is connected to the generalization of ob-
tained results. While the replication brings more evidence
and the adoption of different datasets helps to evaluate dif-
ferent scenarios, as in the original study we cannot gen-
eralize the results, we are limited to a Java language and
limited domain projects. When looking at the intra-project
and inter-project contexts, the results herein presented had
a meaningful reduction of performance, the fact that moti-

vates further research. The sample used to evaluate the clas-
sifiers is small and should be increased to better understand
the possibilities.

7 Discussion

This section discusses some implications of our findings,
which may guide new research in the area.

The use of tokens extracted from test cases was effective
in identifying flaky tests for the first part of our study. How-
ever, for the extended replication, considering test cases for
the same projects (which should share the vocabulary) and
for different projects (which may not hold such assump-
tion), the recall was rather low. This suggests an overfitting
of the classification model.

The choice of features or models that are more gener-
alizable and useful in broader contexts could be an alter-
native to improve the performance of classification models
for flaky tests on intra and inter-projects scenarios. Several
approaches could be analyzed to address this issue. For in-
stance, we could refine a more general vocabulary, remov-
ing project-specific words.

As reported, stop words had a minor impact on the clas-
sifier’s performance. However, that could be due to an in-
effective list of words. As we can see in Table 7, there are
features which are usually considered as stop words, such
as common auxiliary verbs (be, is), prepositions (of), and
symbols (}). We could also employ term weighting (for ex-
ample, TF-IDF) to reduce the impact of features common
to a single project or to the entire dataset.

After inspecting the extracted features and the related
test cases, we observed that the current tokenizer is split-
ting dates, URLs, and filenames. For usual text mining and
NLP-based approaches, such heuristic would have minor
impact on the classifier performance, but that information
is relevant for flaky tests, which can be associated to I/O
and time/calendar operations [2, 26]. An improved parser
and tokenizer could address such cases. Some tokens, like
symbol “{” in Table 7, being recognized as a feature point
to issues regarding feature engineering. It is important to
emphasize that such special cases are also present in the
original study.

Currently, we extracted features only from the body of
the test cases, but tests can become flaky due to changes
unrelated to that information [27]. Thus we could consider
external information associated to each test case, such as
helper methods and library dependencies. Order-dependent
flaky tests are often detected in test suites with helper
methods [22] that configure the state of the application.
For Java applications these fixture methods are annotated
with BeforeEach, BeforeClass, AfterEach, and
AfterClass, defining the test workflow. The association
of such annotations to order-dependent flaky tests makes an-

11



notations a candidate for feature selection. Approximately
50% of the flaky tests for the iDFlakies dataset considered
for RQ2.2 are order-dependent [11]. The absence of fea-
tures associated to test workflow can partially explain the
poor performance of the classifier for that dataset.

Version control systems may also be an interesting
source of data, such as code churn, modified code, commits,
and contributors. Finally, dynamic features like code cov-
erage, monitoring data, and test execution reports deserve
further investigation.

8 Conclusions

Flaky tests are intermittently passing or failing, causing
distrust in test automation. This may harm the software de-
velopment process of several companies that rely on auto-
mated tests to support a continuous integration and delivery
environment. Therefore, the prevention and identification
of potential flaky tests are investigated by practitioners and
researchers.

This paper intends to increase the body of evidence on
using code identifiers to predict flaky tests. To do so, we
conducted an extended replication of Pinto et al. [4]’ study
on the vocabulary of flaky tests. Besides replicating the pre-
vious results, we extended it by using a different ML frame-
work (namely, Scikit-learn), assessing different classifiers,
and validating the trained models with different datasets for
intra- and inter-project contexts.

The results obtained in this work demonstrated that the
proposal to create a vocabulary of flaky tests by the authors
of the original study has a process of extracting character-
istics, training is replicable and extensible, thus reducing
possible bias added by researchers, process and software.
The results obtained during the intra- and inter-project tests
demonstrated that the defined vocabulary does not have the
level of generalization sufficient to predict flaky tests with
the same performance obtained during the tests of the clas-
sifiers. We observed that the context of a given project has a
major impact on the vocabulary of flaky tests; this may hin-
der the adoption of code identifiers to predict test flakiness.

A potential future work would be to investigate a sub-
set of existing vocabularies that generalizes for different
projects. Other direction is to evaluate if the prediction
of test flakiness may benefit from different features used in
other studies [12, 23], along with code identifiers.
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