
Comparing 2D and Augmented Reality
Visualizations for Microservice System

Understandability: A Controlled Experiment
Amr S. Abdelfattah

Computer Science of Baylor University
Waco, TX, USA

amr_elsayed1@baylor.edu

Tomas Cerny
Computer Science of Baylor University

Waco, TX, USA
tomas_cerny@baylor.edu

Davide Taibi
Tampere University Tampere, Finland

University of Oulu Oulu, Finland
davide.taibi@oulu.fi

Sira Vegas
Universidad Politecnica de Madrid

Madrid, Spain
svegas@fi.upm.es

Abstract—Microservice-based systems are often complex to
understand, especially when their sizes grow. Abstracted views
help practitioners with the system understanding from a
certain perspective. Recent advancement in interactive data
visualization begs the question of whether established software
engineering models to visualize system design remain the most
suited approach for the service-oriented design of microservices.
Our recent work proposed presenting a 3D visualization for
microservices in augmented reality. This paper analyzes whether
such an approach brings any benefits to practitioners when
dealing with selected architectural questions related to system
design quality. For this purpose, we conducted a controlled
experiment involving 20 participants investigating their perfor-
mance in identifying service dependency, service cardinality,
and bottlenecks. Results show that the 3D enables novices
to perform as well as experts in the detection of service
dependencies, especially in large systems, while no differences
are reported for the identification of service cardinality and bot-
tlenecks. We recommend industry and researchers to further in-
vestigate AR for microservice architectural analysis, especially to
ease the onboarding of new developers in microservice projects.

Index Terms—Microservices, Visualization, Augmented Real-
ity, Service Dependency Graph, Controlled Experiment

I. INTRODUCTION

Cloud-native design is associated with complex systems
involving many self-contained microservices that interact
to solve enterprise problems. One of the great benefits
is decentralization, which enables independent teams to
develop and maintain self-contained microservices provid-
ing better autonomy and independent deployment. At the
same time, it is connected with one major challenge for
microservices; with decentralization, we lose the system-
centric perspective that aids observability and holistic sys-
tem understanding. Such a perspective would be very useful
to help drive efficient system evolution.

Various architectural views for the system-centric per-
spective can greatly abstract the underlying system com-
plexity. They can reduce unnecessary details when reason-
ing about microservice dependencies or other perspectives

(i.e., domain, technology, operation). We can analyze ex-
isting systems and extract these views to better analyze
their architecture across their evolution [1]. This extraction
can be performed manually or involve dynamic or static
analysis. Given that microservices emerged from service-
oriented architecture, the system’s service view is well
adopted by many existing tools used for monitoring cloud-
native systems, and thus we focus on this view.

However, existing tools use an all-in-one static service
view visualization lacking interactivity [2], [3]. Moreover, we
must assume that the system size in terms of different mi-
croservices can grow beyond what established visualization
models had been designed for (i.e., monolithic systems).
The question is whether Augment Reality (AR) and its
interactivity shift could make practitioners perform better
than when using the established visualization when solving
common quality reasoning tasks in service views applied to
microservices.

In this paper, we elaborate on the service view visualiza-
tion. Our recently proposed service view visualization ap-
proach uses a 3D node-edge model rendered in Augmented
Reality (AR) [4]. This visual model has been proposed
with the rationale that 3D space can better accommodate
complex graphs, and it might be easier for end users to read
it within limited space rather than using the established
conventional 2D visual models.

The goal of our work is to compare the perceived under-
standability of microservice-based systems while analyzing
the service call graph visualized in 2D or AR. For this
purpose, we conduct a controlled experiment among 20
developers comparing how they perform when detecting
service dependencies, service cardinality, and bottlenecks
in two different sizes variations of a system.

Moreover, we also aim at understanding how practition-
ers would accept the new AR model and what challenges
emerged from using the AR to better understand the impact
of the technological shift.

ar
X

iv
:2

30
3.

02
26

8v
1

 [
cs

.S
E

]
 3

 M
ar

 2
02

3

The results conclude that AR visualization enables novice
developers to understand system dependencies as if they
were experienced developers. Also, it shows a large impact
for visualizing large systems compared with the 2D tool,
which begins to degrade accordingly.

The results of this work can be useful to researchers that
could further develop and evaluate the AR visualizations for
microservices, but also for industry that can extend existing
tools to integrate AR into their tools. As an example, tracing
tools, such as Jaeger (https://www.jaegertracing.io) or Kiali
(https://kiali.io), might easily integrate AR on top of their
2D service view.

This paper is organized as follows. Section II details re-
lated work and microservice visualization. Section III states
the research questions and study variables used to answer
them. Section IV details the study with its experimental
design details. Study results are presented in Section V, and
discussed in Section VI. Threats to the validity of this study
are given in Section VII and conclusions in Section VIII.

II. RELATED WORKS

The process of Software Architecture Reconstruction
(SAR) [5] aims to analyze an existing system to obtain the
implemented architecture of the system. The architecture
is a system blueprint and is central to the development
and design of component-based systems [5]. According to
O’Brien et al. [5], the outcome of the process can be used
to evaluate the conformance of the as-built architecture to
the as-documented architecture; for systems that are poorly
documented; or analyzing and understanding the archi-
tecture of existing systems to enable modification of the
architecture to satisfy new requirements and to eliminate
existing software deficiencies, which can be seen a system’s
evolvability [6]. In addition, this process has been used on
systems for verification, and trade-off analysis [1].

For SAR in microservices [1], [7], [8], we find relevant
system information in the system codebases, source code,
even container descriptors, build files, or many configura-
tion files. In manual reconstructions, even existing docu-
mentation can be used [1], [7]. We can also use system
runtime and monitoring to determine dependencies across
microservices [9], [10]. Microservice dependency graphs
have been used to test microservices [11], which shows that
dynamic analysis could provide a viable path to analyze
systems holistically from certain perspectives.

Software architecture might mean different things to dif-
ferent experts, which is why we typically consider different
viewpoints. Several such views have been introduced for
the microservice architecture [1], [7] such as Domain View
that deals with concerns of domain experts through domain
models and microservice bounded contexts; Technology
View that identify applied technologies in microservices;
Service View that constructs service models that specify mi-
croservices, interfaces, and endpoints; and Operation View
that concerns with the topology for service deployment

and the infrastructure for, service orchestration, discovery,
monitoring, and other operations concerns.

While there are broad options to perform SAR, we do
not always need a comprehensive architectural overview.
It might be sufficient to focus on a selected viewpoint.
For instance, it might be sufficient to analyze microservice
dependency graphs to test them [11], and for this, we
may use a simplified process. Similarly, existing tracing
and monitoring tools typically provide a primitive service
overview (i.e., service call graph). It is a natural next step
to visualize the overall system to practitioners in a tailored
way. Therefore, they can better understand the system
for the tasks they use these tools for. Thus, the derived
experiment measures the impact of different visualization
methods on the system’s understandability for practitioners.

A. Microservice Visualization

The emerging question in the context of microservices
is how to visualize the system viewpoints. Conventional
visual models like UML and SysML are derivatives, but
microservices add various aspects to consider, primarily
system size. The question is whether the existing visual-
ization techniques used before the microservice architec-
ture are appropriate for the present challenges [3], [12].
Although we can effortlessly apply UML class diagrams
to represent the domain in the context of microservice, it
is still a matter of concern how to portray service views.
The Open Group Architecture Framework (TOGAF) [13] and
ArchiMate enterprise architecture modeling language [14]
predate microservices by almost two decades.

Microservice researchers observed that when it comes
to microservices, the system holistic view should include
service APIs and their interactions [15]. The SAR’s service
view describes the APIs of microservices and the inter-
service calls between them. Furthermore, the service view
might help both DevOps and developers understand depen-
dencies inter-connections to assess possible ripple effects
in their evolution [6].

Data visualization has introduced alternative avenues
which could be utilized; these include 3D node-edge graphs
used in semantic webs [16], virtual reality with various
metaphors (i.e., islands, cities) in systems and distributed
systems [17], [18], and augmented reality [19]. Microservice
architecture, specifically the service view and the emerging
system sizes, seems to lead toward more efficient space
utilization, which can be provided by these approaches.

One such approach applied to microservices is Microvi-
sion [4], which combines 3D node-edge graphs with AR.
Microvision considers the endpoints of each service and
connects services that interact over these endpoints. These
can be obtained by tracing tools as well as static analysis
tools like Open API (https://www.openapis.org, formally
Swagger https://swagger.io) when combined with the iden-
tification of remote method calls through REST templates
or similar. Dynamic analysis could be more precise in
identifying the actual remote calls. This is because the static

https://www.jaegertracing.io
https://kiali.io
https://www.openapis.org
https://swagger.io

analysis approach has limits when considering matching
call and endpoint signatures and HTTP method, possibly
augmented with configuration information on target service
names). However, dynamic analysis requires comprehensive
traffic to identify all trace combinations. With incomplete
traces, we might not uncover the entire service call graph.
The microservice perspective in the service view gives a
service call graph representing the system broken down
into microservices and specific endpoints, showing how the
microservices communicate with one another.

Microvision operates in AR space, which changes the
navigation through the service view from what we are
used to with established visual models. Instead of using a
personal computer, keyboard, and mouse, we need to use
camera-equipped devices to navigate around the rendered
system graph. In addition, more interaction is added to such
a representation where we can select a given microservice
to highlight its connections and hierarchically detail mi-
croservice endpoint and their properties.

The challenge is that one cannot answer whether such an
approach can help practitioners to better or more effectively
cope with common tasks when identifying architectural
properties, qualities, and service dependencies. Moreover,
there are likely to arise new practical obstacles this techno-
logical shift may introduce.

III. RESEARCH QUESTIONS AND STUDY VARIABLES

This study evaluates two microservice-based system
visualization approaches: the 2D visualization and the 3D
Augmented Reality (AR)-based visualization. Therefore,
it examines the impact of the AR approach on the
understandability of microservice-based systems. Moreover,
the study considers system size and practitioner experience
level as the main factors for interaction with those tools.
The system size shows the influence of the number of
microservices on the system understandability. Therefore,
the study examines the tools with small and large system
variants. On the other hand, the practitioner experience
level measures the impact of the different development
experience levels on the system understandability. The
study divides the participants into two groups: novice
and experienced, based on their experience level in
microservices development. In summary, the goal of the
experiment is formulated as follows:

Evaluating two visualization approaches, for the
purpose of measuring the microservice-based sys-
tem understandability, with respect to the system
size and experience level of practitioners.

This paper composites and addresses the following Re-
search Questions (RQs) to achieve the goal:

RQ1. Is 2D visualization more applicable than AR for
understanding microservice-based systems?

The study is designed to introduce specific tasks that
reason about the understandability of different aspects of

systems. Therefore, the study evaluates the system un-
derstandability through the visualization tools using the
following perspectives:

• Dependency: It measures the ability to identify the
dependencies between microservices in a system using
given visualization tools.

• Cardinality: It measures the ability to recognize the
degree of dependency between microservices.

• Bottleneck: It examines the degree to which the par-
ticipant is able to detect the most dependant microser-
vices among the whole system.

RQ2. What is the verbalized perception of the participants
regarding the use of AR for understanding microservice-
based systems?

This question pertains to the feedback on tool usage
while performing the tasks.

The evaluation process highlights the following criteria
for answering this question:

• Easiness: It measures the effort needed by the partici-
pant to use the tools and how easy to find the answers
to the required tasks.

• Completeness: It measures the ability to find all the
information needed to understand the system and
answer the tasks.

• Recommendation: It measures the degree to which the
participant recommends the tool for the daily work
environment.

RQ3. What are the challenges perceived by the participants
with regard to AR-based techniques?

This question corresponds to the participants’ thoughts
on the studied tools. Evaluating challenges regarding the
study requires the analysis of various measurement criteria.
Therefore, the study collects textual opinions on multiple
criteria that help in identifying the challenges and recom-
mendations that could be used to overcome them. These
criteria are summarized by measuring the painful points in
the tools compared with the easiest ones; that is regarding
to how much effort is consumed by the participant to
bypass the task.

The following sections discuss the study details and
explain the answers to these RQs.

IV. EXPERIMENTAL DESIGN

This study measures two visualization approaches’ im-
pact on the understandability of microservice-based sys-
tems. The following subsections go through the setup pro-
cess until reaching the data analysis conclusion. The study
protocol1 including materials and scripts were prepared by
the authors and reviewed by Baylor Univerisity’s Institu-
tional Review Boards (IRBs) (#1845572).

1Study Protocol: https://zenodo.org/record/7693694#.ZAEi_S2B3RY.

https://zenodo.org/record/7693694#.ZAEi_S2B3RY

TABLE I
PARTICIPANTS DISTRIBUTION

Participant Experience System
Size

Session
1

Session
2

Group

P1 Novice Large 2D – G1
P2 Experienced Large 2D – G1
P3 Novice Large 2D AR G1
P4 Novice Large 2D AR G1
P5 Novice Large 2D AR G1
P6 Experienced Small 2D – G1
P7 Experienced Small 2D – G1
P8 Experienced Small 2D – G1
P9 Experienced Large 2D AR G1
P10 Experienced Small 2D AR G1
P11 Novice Small 2D AR G1
P12 Experienced Large 2D AR G1
P13 Experienced Large AR 2D G2
P14 Novice Large AR 2D G2
P15 Experienced Small AR 2D G2
P16 Novice Small 2D AR G1
P17 Experienced Small AR 2D G2
P18 Novice Small – 2D G2
P19 Novice Large AR 2D G2
P20 Experienced Small AR 2D G2

A. Visualization Tools

The study introduced two visualization tools: 2D and AR.
The 2D tool is a well-established visualization similar to
those used in commercial and open-source tools. It uses
rectangular boxes and arrows to depict services and calls in
microservice dependency graphs, as depicted in Figure 1.
The AR tool, on the other hand, renders a 3D model of the
service dependency graph using cubes for services and line
connectors with a popup for call information, as illustrated
in Figure 2. Although both visualizations provide the same
information, they offer different display and interaction
options that cater to different needs. The 2D approach
is ideal for static and possibly printable views, while AR
enables a wider interaction and visualization of multiple

Fig. 1. 2D Tool (Complete version is available at the protocol data.)

Fig. 2. AR Tool (Complete version is available at the protocol data.)

pieces of information in the same view.

The two visualizations have different natures in present-
ing the same information. The 2D tool is a web-based appli-
cation that can be accessed through desktop computers and
laptops. On the other hand, the AR visualization requires a
device with limited screen space and a different interaction
format. It is designed to be installed on mobile or tablet
devices and is prepared to render the 3D representation
through the mobile camera through the AR space. The AR
application was distributed to Android devices through an
APK file (required at least Android 8) and to iOS platforms
via an IPA file (required at least iOS 11).

Both tools utilized the TrainTicket (V 0.0.1) [20] testbench
as the system under test, which is a microservice-based sys-
tem containing 41 Java Spring microservices. The Prophet
tool [21] was used to extract the corresponding service de-
pendency graph, and two system sizes were considered: the
large system consisting of the complete 41 microservices,
and the small version containing 16 microservices. The
small version was generated by manipulating the graph to
preserve connections between them, thereby replicating a
microservices system architecture. That allows the study to
examine the different system sizes’ impact on tools.

B. Participants

The study population consisted of 20 participants from
various institutions in the United States and Europe. Prior
to the study, background information such as software
engineering and microservices experience, number of mi-
croservices projects, project size, etc., was collected through
a questionnaire. The questionnaire was emailed to 26
English-speaking candidates, of whom 23 were interested
in participating, and eventually, 20 completed the study.
Participants were selected based on having one to five years
of experience in microservices-related development, which
was most relevant to the study. While recruiting practition-
ers is challenging, the study opted to prioritize obtaining
valuable outcomes for practitioners over recruiting a larger
number of novices.

These participants were distributed among two groups
based on the number of years of experience in microser-
vices development. Participants who have less than two
years of experience were classified as novices; otherwise,
they were considered experienced. The first group (novice)
consisted of nine novice developers with an average of one
year of experience, while the second group (experienced)
had eleven experienced developers with an average of four
years of experience, Table I shows the participants distri-
bution. Prior to the study execution, two extra participants
volunteered to participate in a pilot study, which they were
not included in the actual study data. The pilot study was
conducted to verify the experiment’s validity. It enabled the
team to modify and improve the training material, timing,
tasks, and questions accordingly.

TABLE II
STUDY TASKS FOR THE FULL-SIZE SYSTEM (41 SERVICES)

2D Tasks AR Tasks
Dependency
1) List services that depend on the service "ts-order-service."
Answers: ts-cancel-service, ts-admin-order-service, ts-seat-service, ts-
preserve-service, ts-execute-service, ts-inside-payment-service, ts-travel-
service, ts-security-service.

1) List services that depend on the service "ts-travel-service"
Answers: ts-admin-travel-service, ts-route-plan-service, ts-preserve-service,
ts-travel-plan-service, ts-seat-service, ts-food-service.

2) List services that the service "ts-travel-service" depends on.
Answers: ts-ticketinfo-service, ts-seat-service, ts-train-service, ts-route-
service, ts-order-service.

2) List services that the service "ts-order-service" depends on.
Answers: ts-station-service.

Cardinality
3) How many services depend on the service "ts-order-service"?
Answers: 8 Services.

3) How many services depend on the service "ts-travel-service"?
Answers: 6 Services.

4) How many services are there that the service "ts-travel-service" depends
on?
Answers: 5 Services.

4) How many services there are that the service "ts-order-service" depends
on?
Answers: 1 Service.

5) Mention two microservices that have at least 4 dependent microservices
(depend on it).
Answers: ts-seat-service, ts-travel-service, ts-user-service, ts-route-service,
ts-station-service, ts-order-service.

5) Mention one microservice that has at least 5 dependent microservices
(depend on it) and state the exact number of them.
Answers: ts-travel2-service, ts-admin-basic-info-service, ts-route-service, ts-
preserve-service.

Bottleneck
6) What is the most dependent microservice?
Answers: ts-preserve-service (12 dependencies).

6) What is the most dependent microservice?
Answers: ts-preserve-service (12 dependencies).

TABLE III
ASPECTS FEEDBACK 5-POINT LIKERT SCALE RANKING

(1 IS THE WORST, 5 IS THE BEST)

Easiness
1) Usability (Easy to use)
2) Understandability (Ease to Understand the system)
3) Time to get information
Completeness
4) Has all information needed
Recommendation
5) How likely are you to recommend this method for daily work?

TABLE IV
FEEDBACK PARAGRAPH QUESTIONS

Express these questions (Textual Response)
1) What is the information that you can easily get using this method?
2) What information do you find hard to get from this method?
3) What has been your biggest pain point?
4) What are your recommendations for enhancing this method?

C. Artifacts

The study encompassed various artifacts, beginning with
a participation questionnaire that was distributed through
email to solicit candidates’ interest in participating. The
online form was designed to gather relevant information
about the participants’ experience, as well as their preferred
date and time for the study. Additionally, each visualization
approach included three documents that were customized
to suit the corresponding content. These documents were
utilized to delineate the study’s execution process, as out-
lined below:

• Training Document: A PDF file was used that described
the corresponding tool and its required installation pro-
cess in detail. It also showed an example of the antici-
pated tasks. A short video was included to demonstrate
the tool for usage.

• Tasks Form: An online form containing six questions

(tasks). These tasks vary across different tools to prevent
the influence of answer memorization. The tasks were of
equal difficulty, and they focused on the same character-
istics of various microservices, resulting in different an-
swers. For instance, while the tasks for different versions
used the same question, they were related to distinct
microservices within the system. These tasks have been
divided into three categories (See Table II): Dependency,
Cardinality, and Bottleneck. These categories contribute
to describing and illustrating the system’s understandabil-
ity as mentioned in RQ.1 above.

• Feedback Form: An online form asked the participants to
evaluate the method after completing the tasks phase.
It contained two types of questions, 5-Point Likert Scale
questions as shown in Table III and paragraph questions
as listed in Table IV to get an in-words descriptive
evaluation. These feedback guides the answers for RQ.2
and RQ.3 as stated in Section III.

These three documents and forms were organized into
a single script document. It is a PDF file that gives a
brief description of each system and the included number
of microservices. Such that, it contains references to the
Training Document, Tasks Form, and Feedback Form; it also
gives the participants guidance about how to execute the
study and how to submit the results after finished. Each
method script was sent through an email to the participant
in correspondence to a scheduled slot.

D. Design Procedure

The experiment followed a 2x2 crossover design where
each participant group used both visualization tools. Each
participant received an email at the time slot that s/he
booked for the study. This email contained two ordered
scripts that the participants were required to proceed with
the same order; each script contained the whole process for
a specific approach as described in Section IV-C. The order

TABLE V
SIGNIFICANCE STATISTICS FOR THE UNDERSTANDABILITY VARIABLES

Variables
Dependency

(P-value)
Cardinality

(P-value)
Bottleneck
(P-value)

Intercept <0.001 <0.001 <0.001
Experience Level 0.986 0.371 0.218
System Size 0.041 0.002 0.089
Group 0.446 0.562 0.618
Session 0.067 0.711 0.640
Tool 0.515 0.158 0.556
Tool * Experience Level 0.035 0.606 0.747
Tool * System Size <0.001 0.132 0.460

of the execution was crossedover from one participant to
the other; The Group column in Table I indicates whether
the participant starts with 2D or AR experiment. Moreover,
two of the authors were on-call at each slot for supporting
and answering any inquiries raised by the participants
during the experiment.

The experiment duration was one hour which was de-
composed as ten minutes for training, 30 minutes for exe-
cuting the experiment and answering the questions (tasks),
and ten minutes for filling out and submitting the feed-
back. Every participant was required to proceed with two
sessions, each per tool. All participants received the same
required knowledge and training about the experiment, the
target, interfaces, study time, and methodology.

The experiment starts with the ten-minute training;
which happens through the training document. The training
ensures the participant was settled and familiar with the
application and the nature of the tasks before proceeding
to the tasks. It provided guidance for the participants to
install and run the applications on their own devices and
browsers. Then, it showed a use case of the usage of
the application while answering a question similar to the
ones in the tasks. After that, the participants proceeded
with the tasks for 30 minutes to answer the tasks-related
questions shown in Table II. The tasks’ answers measure the
interpretation accuracy of the system regarding the three
perspectives of dependency, cardinality, and bottleneck.
Therefore, a percentage of correctness was evaluated for
each participant referencing the actual answers extracted
from the testbench system. This data is analyzed to show
the impact of the study variables on the understandability
of the system.

Finally, once the tasks are submitted, the feedback step is
highlighted. It consists of two parts: usage-related criteria
and open-opinion questions. The first part questions are
shown in Table III, they use an ordinal 5-point Likert scale
(1 is the worst, 5 is the best). These data are statistically an-
alyzed in the upcoming sections. The second part requires
the participants to write down their opinions for answering
the question in Table IV. This feedback was analyzed to
extract common thoughts and recommendations.

The study aimed to create balanced groups based on
system size and participant experience, with ten small
and ten large systems, and a specific number of novice
and experienced participants assigned to each system. To

prevent one tool from exerting more influence than the
other, we used abstract names (such as Tool 1 and Tool 2)
for the two tools, to minimize any impact that names may
have on participants. Additionally, we randomly ordered
the two scripts for the two tools so that some participants
in each group completed the study in reverse order from
others. The order of tool execution for each participant is
indicated in the Session 1 and Session 2 columns of Table I,
where Group column denotes participants who started with
2D as G1 and those who started with AR as G2.

Due to compatibility issues with six participants’ mobile
devices, they struggled to use the AR tool. It resulted in
a lack of AR tool results for four small and two large
participants. Therefore, the participant assignments were
slightly adjusted, as depicted in Table I. Specifically, two
novice participants were moved from the large to the small
system, and one experienced participant was moved from
the small to the large system, as highlighted in bold in the
Participant column. Additionally, 14 participants completed
both sessions, such that G1 conducted five large and three
small experiments, while G2 carried out three large and
three small experiments.

To sum up, the assessment of the procedure indicated
that all participants were able to carry out the 2D exper-
iment successfully. Nonetheless, six participants could not
install the AR tool because their mobile devices did not
meet the OS requirements (minimum Android 8 or iOS
11). Despite this, their results were still included in the
2D tool outcomes, but they were considered missing data
for the AR tool. All of the received email inquiries from
participants were related to the AR tool’s installation issue,
and otherwise, the study was clear to proceed without any
further concerns.

E. Analysis Approach

First, we will report descriptive statistics to continue with
hypothesis testing. Different tests are used for RQ1 and RQ2.

1) RQ1: Following Vegas et al. [22], we use the Linear
Mixed Effects Model to conduct the analysis for RQ1 in
this experiment. It is used to test the hypotheses of the
effect of the tool (2D/AR), the experience level of the
participant (novice/expert), and system size (small/large),
along with the two-way interactions of experience level by
tool and system size by the tool on our dependent variables:
dependency, cardinality, and bottleneck, controlling for
possible effects derived from the chosen crossover design
(session and group).

We used SPSS v.27 MIXED procedure to analyze our data.
Our data were fitted using two representations of the data:
one that takes into consideration participant as a random
factor, and another one that takes into consideration that
the tool is a within-subjects factor. For the latter case,
five different covariance structures (identity, diagonal, first-
order autoregressive, compound symmetry, and unstruc-
tured) are fitted. This makes six different models to be fitted
for each independent variable.

We used Akaike’s Information Criterion (AIC) to measure
model fit. AIC values are not large or small per se, but
their values can be compared across models. Smaller values
mean better fitting, so, we will choose the model with the
lowest AIC.

The MIXED procedure requires the normality of residuals.
We checked this by means of normal probability (Q-Q)
plots. When data do not meet this criterion, transformations
of the dependent variable need to be used.

The effect size is also reported in terms of Cohen’s d
statistic [23] if we can ensure that the data follows a normal
distribution; otherwise, we report non-parametric effect
size, Cliff’s delta [24].

2) RQ2: We use the non-parametric Wilcoxon signed
rank test for related samples to analyze RQ2. It is used to
test the hypotheses of the effect of the tool (2D/AR) on our
dependent variables: easy to use, easy to understand, time
to get the information, and has all information needed.

3) RQ3: We performed a qualitative analysis for the
short answers that were submitted regarding the questions
in Table IV. We read all the received feedback on the 2D
and AR experiments. For objectivity, each of us categorized
the feedback based on the interpretation of each answer
individually. Then, they discussed and combined similar
categories. After that, they summarized and reported the
common feedback.

V. DATA ANALYSIS RESULTS

We analyzed the dataset1 collected from 20 participants.
Executing the analysis approach per each corresponding
data to answer the RQs.

A. RQ1. Is 2D visualization more applicable than AR for
understanding Microservice-based systems?

We examined six models to measure how they fit the
data. These models are configured based on how partici-
pants are modeled, such that one model has no repeated
measures specified, then it specifies the participants as a
random variable. On the other hand, the other five models
specified repeated measures. However, they examined dif-
ferent covariance types, such as scaled identity, compound
symmetry, diagonal, unstructured, and autoregressive.

We compare the fitting degree of these models based on
AIC and normality of residuals (observing the Q-Q plots).
As a result of this comparison, the model configured by
the participants as a random variable is chosen; It shows
the normality of residuals (thus, data transformation is
not needed) and it has the best AIC value among all the
others. This model is applied to dependent variables that
represent the understandability property of the study as
follows: dependency, cardinality, and bottleneck.

Examining the significance of independent variables over
the understandability is summarized through the p-value
as listed in Table V. The dependent variable is influenced
by the interaction between the tool and each system size
and experience level. Although the system size variable

shows significance, we do not consider its effect because its
interaction with the tool has more precedence. To measure
this impact, we plot the estimated marginal means for the
interaction of the variables and calculate their effect size.
First, the interaction between system size with the tool em-
phasizes the scalability of the AR tool. The AR tool appeared
as the best choice for visualizing large systems with large
effect size (δ = 0.96), however, there is no large impact on
the small systems from both tools as illustrated in Figure 3.
Following the same for the experience level significance, the
analysis shows that the 2D tool requires more experienced
participants in order to detect the dependency of a system.
Nevertheless, it is a small effect size (δ = 0.19) as shown
in Figure 4.

The cardinality variable highlights the system size as its
only impact factor, while the AR tool does not have an
impact on the accuracy of the cardinality-related questions.
However, the analysis shows that the small enables the
participants to answer the cardinality questions more ac-
curately. Furthermore, the AR does not have an impact on
the bottleneck results, thus, either the 2D or the AR tool
can be chosen for these related tasks without influencing
the results.

B. RQ2. What is the verbalized perception of the participants
regarding the use of AR for understanding microservice-
based systems?

The easy-to-use scores were compared for both tools.
On average, the 2D tool performed worse (Mdn = 2) than
the AR tool (Mdn = 3), with a small effect (δ = 0.19). The
Wilcoxon signed-rank test indicated that this difference was
not statistically significant (T=30, Z=0.263, p = 0.793).

The easy-to-understand scores were compared for both
tools. On average, the 2D tool performed worse (Mdn =
3) than the AR tool (Mdn = 4), it showed a large effect
(δ = 0.46), especially with the large system. The Wilcoxon
signed-rank test indicated that this difference was statisti-
cally significant (T=66, Z=2.164, p = 0.030).

The time-to-get-information scores were compared for
both tools. On average, the 2D tool performed worse (Mdn =
2.5) than the AR tool (Mdn = 4), with a large effect (δ= 0.38).
The Wilcoxon signed-rank test indicated that this difference
was not statistically significant (T=67, Z=1.548, p = 0.122).

The has-all-information-needed scores were compared
for both tools. On average, the 2D tool performed better
(Mdn = 4) than the AR tool (Mdn = 3.5), with a small effect
(δ= 0.28). The Wilcoxon signed-rank test indicated that this
difference was not statistically significant (T=16, Z=-1.218,
p = 0.223).

Recommendation scores were compared for both tools.
On average, the 2D tool performed worse (Mdn = 2) than
the AR tool (Mdn = 4), with a large effect (δ = 0.57). The
Wilcoxon signed-rank test indicated that this difference was
statistically significant (T=69, Z=2.435, p = 0.015).

Moreover, we applied the descriptive statistics to these
response variables as summarized in Figure 5. Both AR and

Fig. 3. The impact of system size on the dependency (δ = 0.96) Fig. 4. The impact of experience level on the dependency (δ = 0.19)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Get Inform.Ease to Use Understand Recommend.Time

2D AR 2D AR 2D AR 2D AR 2D AR

1 (worst) 2 3 4 5 (best)

Fig. 5. What is the verbalized perception regarding AR and 2D (RQ2)

2D tools do not show a significant impact on the easy-to-
use response (Figure 5 Ease to Use). The 2D shows better
ranks than AR for the has-all-information-needed variable
as shown in Figure 5 (Get Inform.). However, the AR tool
outperforms the 2D tool for both the easy-to-understand
(Figure 5 Understand) and the less time-to-get-information
(Figure 5 Time). In addition, participants highly recommend
the AR over the 2D as illustrated in Figure 5 (Recommend.).

C. RQ3. What are the challenges perceived by the partici-
pants with regard to AR-based techniques?

Analyzing the participants’ evaluation and answers for
the questions listed in Table IV; their responses are sum-
marized in Table VI. For the 2D tool, the participants high-
lighted the pain of scrolling a lot around the graph to follow
the crossing lines between services. They recommended
showing the information as needed, such as when the user
clicks on a specific node or edge. For the AR tool, partici-
pants indicated that they needed more control to be able
to zoom in and rearrange the service nodes. In addition,
improved usage of colors was a common recommendation
for both approaches, either to distinguish between different
request types or between the dependency directions. The
participants indicated that they were highly impacted by the

complexity of tracking the dependency lines in the 2D tool,
in contrast to the simpler dependency lines in the AR tool.
They also stated that the AR improves their understanding
of the system by showing an overview picture of the system
and clear dependencies between services.

VI. DISCUSSION

The results of this work enabled us to understand the
power of Augmented Reality for understanding microservice
architecture.

When evaluating the suitability of AR for detecting service
dependencies, experienced developers performed similarly
using both tools. However, AR enables novice developers to
achieve a level of understanding comparable to experienced
developers when dealing with small and large systems. As a
result, identifying system dependencies using 2D requires
a greater level of expertise compared to AR. One of the
reasons for the improved performance of novice developers,
especially in the large system, is that these systems are
usually harder to understand, and AR tools enable them
to rotate them three-dimensionally to zoom or better focus
on a specific portion of the system, while 2D systems might
be complex for novices possibly because of the condensed
amount of information rendered into limited space. Fur-
thermore, the analysis shows that the system size has a
significant impact on detecting the dependencies using
the studied tools. Such that, the 2D tool could visualize
this aspect clearer than the AR tool for small systems.
However, AR outperforms visualizing large systems in a
scalable behavior.

Unexpectedly, when analyzing the cardinality of services,
no differences emerged between 2D and AR. Participants,
independently from their expertise, were able to identify
cardinality accurately in both visualizations. However, as
expected, the cardinality resulted in being associated with
system size. In a larger system, the identification of cardi-
nality was more complex and required more time.

The identification of the bottleneck is also, unexpectedly,
not influenced by the visualization approach adopted, nor
from the system size or experience of the participants.

When considering the opinion of the participants on
the 2D and AR visualizations (RQ2), the AR tool enables

TABLE VI
PARAGRAPH QUESTIONS FEEDBACK ANALYSIS (RQ3)

2D Tool AR Tool
What has been your greatest pain point?

1. Scrolling around the diagram.
2. Many crossing communication lines.

1. Move a lot around the graph.
2. AR Engine shifts the graph suddenly.
3. The fixed location for the services.

What is your recommendations for enhancing this method?

1. Highlighting the dependency using colors.
2. Show information as needed.
3. Provide Search and filter features.
4. Dialog box to show the dependent and depending services.

1. Provide control to zoom and relocate the nodes.
2. Use a different color for the dependency on the other direction.
3. Allow color customization.

What is the information that you can easily get using this method?

1. Endpoint Information.
2. The services dependencies cardinality.

1. System overview picture.
2. Supported Endpoints per service.
3. Dependency links between services.

What is the information that you find hard to get from this method?

1. The service dependencies.
2. The direction of the dependency.

1. Invoked Endpoint details.
2. The services that depend on specific service
(The other dependency direction).

the developers to better understand the microservice-based
system analyzed. The reason could be because of the
3D visualization of the AR tool that supports different
viewpoints in higher rendering space. Furthermore, the
recommendation results confirm the preference for the AR
tool due to the clearer dependency representation adopted
in the AR tool.

The ease to use, the time needed to get information,
and the information needed by the participants to analyze
the system do not provide statistically significant results.
However, even if the results are not significant, the time
needed to get information to AR was way lower than the
2D tool in most cases, and the 2D tool provided more infor-
mation than AR for analyzing microservice-based systems.
That could be because the AR visualization requires extra
steps to find the needed information.

In summary, we recommend novice developers consider
AR visualization to visualize dependencies in large systems.
However, 2D visualization of the service call graph (e.g.,
the visualization provided by Jaeger or Kiali) might still be
useful to identify service cardinality and system bottlenecks.

Therefore, considering the lack of an experienced work-
force in the software development of microservice systems,
we highly recommend companies and researchers to further
develop and validate the AR approaches for visualizing
microservice-based systems. That also promotes the on-
boarding process of new joiner developers in microservice-
based projects. On the other hand, while the participants
recommended the AR tool more than the counterpart (Fig. 5
- Recommend.), it must be considered that a hello effect
(first impression) could occur upon seeing an unconven-
tional approach. It is important to underline that for AR to
become successful, multiple features and common expec-
tations from the feedback will need to be incorporated into
the method. For instance, users demand a quick mecha-
nism to search and filter. Although AR seems promising,
it adds restrictions for practical usages, such as requiring

developers to use portable devices with cameras. Also,
that might be somewhat uncomfortable being apart from
their work environment tools. Therefore, considering the
integration of the visualization tool with the development
workspace could enhance the usability of these tools.

VII. THREATS TO VALIDITY

We address the threats to the validity of our research
according to the classification proposed by [25].

1) Construct Validity: This study followed the control
experiment practices and guidelines to construct, analyze,
and report the study and its results. The core of the study
involved our prototype tools, which could affect the results.
However, both prototype tools were developed with the
best intentions toward usability. The prototype tool authors
were distinct from those who designed the user study to
avoid bias. There was no communication about the study
design and execution between them. Furthermore, these
tools rendered the results produced using our SAR process;
nevertheless, this SAR-related software is published and
validated through multiple projects.

We collected results using small but realistic tasks ex-
pected from practitioners, which are chosen based on
interviews with experienced developers in microservices.

2) Internal Validity: Potential threats to the internal va-
lidity of the experiment are fatigue, carry-over, and practice
effects. The fatigue effect is considered negligible, as the
task execution was relatively short. The study was per-
formed remotely with two authors available on call/email
at allocated experiment times; the participants chose their
most convenient time to proceed with the study. Carry-
over and practice effects were desirable and unavoidable in
this experiment due to its nature, i.e., subjects adopted 2D
and AR consecutively, and they may have transferred their
learning of the identification of dependencies, cardinality,
and bottlenecks. We adopted a 2-group crossover within-
subjects design to avoid the carryover effect. We used
different questions involving another part of the system

accomplishing the same goal to limit the memorization of
answers. To avoid user bias, we referenced both studies with
agnostic names, so the participant would not predict or
associate with another applied method.

Furthermore, the two visualization tools present distinct
display and interaction options due to their inherent char-
acteristics. While the 2D tool lacks interactivity, the AR
tool’s use of pop-ups could potentially have an effect.
Nonetheless, in the participants’ feedback, no significant
difference was observed in terms of the ease of solving
their tasks. This aligns with the study’s objective of assessing
whether the AR approach can outperform the traditional 2D
approach in typical microservice evaluation tasks despite its
different nature and the devices’ small size limitations.

The study process faced compatibility threats that pre-
vented some participants from installing the AR tool re-
sulting in an unbalanced number of study execution for 2D
than AR experiments. Moreover, the participants executed
the study in the reverse order that it was sent to them, and
they impacted the distribution of the crossover across the
study. However, the statistical results proved that perform-
ing the tasks with one visualization followed by a similar
set of tasks for the second visualization should not have
an impact on the study results. The participants’ mobile
devices hold specific threats to the AR-related study since
different screen sizes of their devices could impact their un-
derstandability of the system. However, there was a lack of
distribution and not enough categorized data for screen size
to include and examine its impact as a factor in the model.

The threats related to participants’ understanding of the
process and the tasks were considered in the feedback form.
Such that most of them stated that was clear; however, a
few participants mentioned that the tasks were not clear
enough from their perspective. That could also be because
of a lack of their experience. Therefore, we addressed the
experience level as one of the main factors of the study.

Finally, The study was limited by the number of partici-
pants, we chose to prioritize meaningful results for practi-
tioners over a larger group of students. The study followed
a within-subjects design, allowing each participant to work
with both tools and effectively increasing the number of
participants from 20 to 40. Moreover, the lack of power
in the number of participants reduced the significance of
some measurements, including bottleneck detection mea-
surements. Nevertheless, that requires further investigation
using more participants to ensure its significance.

3) External Validity: We selected participants among our
contacts by directly contacting them. However, we reached
a diverse spectrum of practitioners from North America and
Europe, thus from various backgrounds. We surveyed study
participants about their previous experience and relied
on the trustworthiness of their answers. In the end, the
subject sample was quite heterogeneous, from junior to
senior levels concerning their experience of microservices.
Moreover, we have assigned the study in a simple random
method to avoid biased results.

To avoid participant familiarity with the studied tools and
system we considered presenting it to them for the first
time. We have used a third-party benchmark recognized by
the community to avoid bias. We manually manipulated
the system to produce the small and large perspectives of
the system size. However, we randomized the distribution
of both variants among participants.

4) Conclusion Validity: To avoid bias, we included vari-
ous authors from different fields and expertise. The results
of the study collected the opinions using natural texts
and Likert scale answers, then these data were statistically
and descriptively analyzed. Moreover, the primary goal of
this research was to answer three research questions, and
the user study generated additional insights on practical
implications, limitations, and open challenges which need
to be addressed when transitioning the AR tool to practice.

VIII. CONCLUSION AND FUTURE WORK

We conducted a controlled experiment to compare the
perceived system understandability of microservice-based
systems from a service-call graph represented in 2D and
Augmented Reality (AR). The study included multiple real-
istic tasks to measure the ability of the developers to un-
derstand the system using the studied tools. It highlighted
the impact of the participants’ expertise and the different
system sizes. The tasks’ answers and the feedback were
statistically and descriptively analyzed.

The findings investigate the feedback regarding the dif-
ferent visualization aspects and information that should be
provided to better systems understandability and to further
develop the AR system. We conclude that AR visualization
enables novice developers to understand system depen-
dencies as if they were experienced developers. However,
experienced developers do not get significant benefits from
AR for analyzing some of the tasks. One of the reasons
for the latter could be that experienced developers are
used to assessing systems using 2D visualizations, and the
introduction of AR might have biased their performance. On
the other hand, AR emphasizes a large impact on scaling
and visualizing large systems; however, it could not be
significant for small systems visualization.

In future work, we will replicate this study with senior
developers only and analyze industrial systems to better
understand the usefulness of AR but also the information
needed by developers to understand the system. We will
consider interactive 3D visualization as an alternative as
well. Dynamic system perspectives can also benefit from
advanced visual perspectives.

ACKNOWLEDGEMENTS

This material is based upon work supported by the
National Science Foundation under Grant No. 1854049
and a grant from Red Hat Research, a grant from the
Ulla Tuominen Foundation (Finland), a grant from the
Academy of Finland (grant n. 349488 - MuFAno), and
project PGC2018-097265-B-I00, funded by: FEDER/Spanish
Ministry of Science and Innovation—Research State Agency.

https://research.redhat.com

REFERENCES

[1] F. Rademacher, S. Sachweh, and A. Zündorf, “A modeling method
for systematic architecture reconstruction of microservice-based soft-
ware systems,” in Enterprise, Business-Process and Information Sys-
tems Modeling. Springer International Publishing, 2020, pp. 311–326.

[2] T. Cerny, A. Abdelfattah, V. Bushong, A. A. Maruf, and D. Taibi, “Mi-
croservice architecture reconstruction and visualization techniques:
A review,” in 2022 IEEE Symposium on Service-Oriented System Engi-
neering (SOSE), 2022.

[3] M. E. Gortney, P. E. Harris, T. Cerny, A. A. Maruf, M. Bures, D. Taibi,
and P. Tisnovsky, “Visualizing microservice architecture in the dy-
namic perspective: A systematic mapping study,” IEEE Access, vol. 10,
pp. 119 999–120 012, 2022.

[4] T. Cerny, A. Abdelfattah, V. Bushong, A. A. Maruf, and D. Taibi, “Mi-
crovision: Static analysis-based approach to visualizing microservices
in augmented reality,” in 2022 IEEE Symposium on Service-Oriented
System Engineering (SOSE), 2022.

[5] L. O’Brien, C. Stoermer, and C. Verhoef, “Software architecture re-
construction: Practice needs and current approaches,” 2002.

[6] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, “Industry
practices and challenges for the evolvability assurance of
microservices,” Empirical Software Engineering, vol. 26, no. 5, p. 104,
2021. [Online]. Available: https://doi.org/10.1007/s10664-021-09999-9

[7] N. Alshuqayran, N. Ali, and R. Evans, “Towards micro service ar-
chitecture recovery: An empirical study,” in 2018 IEEE International
Conference on Software Architecture (ICSA), 2018, pp. 47–4709.

[8] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Malavolta, L. Iovino,
and A. D. Salle, “Towards recovering the software architecture of
microservice-based systems,” in 2017 IEEE International Conference
on Software Architecture Workshops, 2017, pp. 46–53.

[9] J. Thalheim, A. Rodrigues, I. E. Akkus, P. Bhatotia, R. Chen,
B. Viswanath, L. Jiao, and C. Fetzer, “Sieve: Actionable insights
from monitored metrics in distributed systems,” in Proceedings of
the 18th ACM/IFIP/USENIX Middleware Conference, ser. Middleware
’17. New York, NY, USA: ACM, 2017, pp. 14–27. [Online]. Available:
http://doi.acm.org/10.1145/3135974.3135977

[10] S. Esparrachiari, T. Reilly, and A. Rentz, “Tracking and controlling
microservice dependencies,” Queue, vol. 16, no. 4, pp. 10:44–10:65,
Aug. 2018. [Online]. Available: http://doi.acm.org/10.1145/3277539.
3277541

[11] S. Ma, C. Fan, Y. Chuang, W. Lee, S. Lee, and N. Hsueh, “Using
service dependency graph to analyze and test microservices,” in 2018
IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC), vol. 02, 2018, pp. 81–86.

[19] A. Schreiber, L. Nafeie, A. Baranowski, P. Seipel, and M. Misiak, “Vi-
sualization of software architectures in virtual reality and augmented
reality,” in 2019 IEEE Aerospace Conference, 2019, pp. 1–12.

[12] G. Parker, S. Kim, A. A. Maruf, T. Cerny, K. Frajtak, P. Tisnovsky, and
D. Taibi, “Visualizing anti-patterns in microservices at runtime: A
systematic mapping study,” IEEE Access, vol. 11, pp. 4434–4442, 2023.

[13] O. Group et al., “The open group architecture framework togaf–
version 8,” Enterprise Edition, 2002.

[14] M. M. Lankhorst, H. A. Proper, and H. Jonkers, “The anatomy of
the archimate language,” International Journal of Information System
Modeling and Design (IJISMD), vol. 1, no. 1, pp. 1–32, 2010.

[15] B. Mayer and R. Weinreich, “A dashboard for microservice monitoring
and management,” in 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), 2017, pp. 66–69.

[16] H. Halpin, D. J. Zielinski, R. Brady, and G. Kelly, “Exploring semantic
social networks using virtual reality,” in The Semantic Web - ISWC
2008, A. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard, T. Finin,
and K. Thirunarayan, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 599–614.

[17] Z. Ma and Y. Bai, “A distributed system monitoring tool with virtual
reality,” in Proceedings of the 2nd International Conference on Com-
puter Science and Application Engineering, ser. CSAE ’18. New York,
NY, USA: Association for Computing Machinery, 2018.

[18] R. Oberhauser and C. Pogolski, “VR-EA: Virtual Reality Visualization
of Enterprise Architecture Models with ArchiMate and BPMN,” in
Business Modeling and Software Design, B. Shishkov, Ed. Cham:
Springer International Publishing, 2019, vol. 356, pp. 170–187, series
Title: Lecture Notes in Business Information Processing.

[20] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and
W. Zhao, “Benchmarking microservice systems for software
engineering research,” in Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018, M. Chaudron,
I. Crnkovic, M. Chechik, and M. Harman, Eds. ACM, 2018, pp. 323–
324. [Online]. Available: https://doi.org/10.1145/3183440.3194991

[21] V. Bushong, D. Das, and T. Cernỳ, “Reconstructing the holistic ar-
chitecture of microservice systems using static analysis.” in CLOSER,
2022, pp. 149–157.

[22] S. Vegas, C. Apa, and N. Juristo, “Crossover designs in software
engineering experiments: Benefits and perils,” IEEE Transactions on
Software Engineering, vol. 42, no. 2, pp. 120–135, 2016.

[23] J. Cohen, “A power primer.” 2016.

[24] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological bulletin, vol. 114, no. 3, p. 494, 1993.

[25] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wess-
lén, Experimentation in Software Engineering: An Introduction, ser.
The Kluwer International Series In Software Engineering. Germany:
Springer, 2000.

https://doi.org/10.1007/s10664-021-09999-9
http://doi.acm.org/10.1145/3135974.3135977
http://doi.acm.org/10.1145/3277539.3277541
http://doi.acm.org/10.1145/3277539.3277541
https://doi.org/10.1145/3183440.3194991

	I Introduction
	II Related Works
	II-A Microservice Visualization

	III Research Questions and Study Variables
	IV Experimental Design
	IV-A Visualization Tools
	IV-B Participants
	IV-C Artifacts
	IV-D Design Procedure
	IV-E Analysis Approach
	IV-E1 RQ1
	IV-E2 RQ2
	IV-E3 RQ3

	V Data Analysis Results
	V-A RQ1. Is 2D visualization more applicable than AR for understanding Microservice-based systems?
	V-B RQ2. What is the verbalized perception of the participants regarding the use of AR for understanding microservice-based systems?
	V-C RQ3. What are the challenges perceived by the participants with regard to AR-based techniques?

	VI Discussion
	VII Threats to Validity
	VII-1 Construct Validity
	VII-2 Internal Validity
	VII-3 External Validity
	VII-4 Conclusion Validity

	VIII Conclusion and Future Work
	References

