
ChameleonIDE: Untangling Type Errors Through
Interactive Visualization and Exploration

Shuai Fu
Faculty of Information Technology

Monash University
Clayton, Australiay

shuai.fu@monash.edu

Tim Dwyer
Faculty of Information Technology

Monash University
Clayton, Australiay

tim.dwyer@monash.edu

Peter J. Stuckey
Faculty of Information Technology

Monash University
Clayton, Australia

peter.stuckey@monash.edu

Jackson Wain
Faculty of Information Technology

Monash University
Clayton, Australia

ORCID: 0000-0003-2006-3538

Jesse Linossier
Faculty of Information Technology

Monash University
Clayton, Australia

ORCID: 0000-0001-6782-7019

Abstract—Dynamically typed programming languages are pop-
ular in education and the software industry. While presenting
a low barrier to entry, they suffer from runtime type errors
and longer-term problems in code quality and maintainability.
Statically typed languages, while showing strength in these
aspects, lack in learnability and ease of use. In particular, fixing
type errors poses challenges to both novice users and experts.
Further, compiler type error messages are presented in a static
way that is biased toward the first occurrence of the error in
the program code. To help users resolve such type errors we
introduce ChameleonIDE, a type debugging tool that presents
type errors to the user in an unbiased way, allowing them
to explore the full context of where the errors could occur.
Programmers can interactively verify the steps of reasoning
against their intention. Through three studies involving actual
programmers, we showed that ChameleonIDE is more effective
in fixing type errors than traditional text-based error messages.
This difference is more significant in harder tasks. Further,
programmers actively using ChameleonIDE’s interactive features
are shown to be more efficient in fixing type errors than passively
reading the type error output.

Index Terms—types, type errors, debugging, visualization,
exploration

Dynamically typed programming languages such as
JavaScript and Python have risen in popularity in recent
decades [1]. These languages present a low barrier of entry,
especially to beginner programmers: they require no type
declaration, variable types or object structures can be modified
dynamically, and functions can deal with dynamic input using
ad-hoc polymorphism and runtime reflection. However, stud-
ies show that dynamically typed languages negatively affect
development productivity [2], code usability [3], and code
quality [4]–[6]. They are often found to produce error-prone
code [7]–[9] and require strong programmer discipline to avoid
pitfalls [7]. For these reasons, many modern dynamically-
typed languages have introduced static typing annotations
as part of the core language features in recent years (e.g.
TypeScript [10] and mypy [11]).

Functional programming languages have long enjoyed rig-

orous type systems and expressive type-level features. Tech-
niques such as type inference and algebraic types have been
standard practice for decades in functional languages such
as ML and Haskell, and more recently in multi-paradigm
languages, such as Rust and TypeScript. Various type system
advances were introduced in Haskell and ended up in main-
stream languages years or even decades after, leading many
to consider Haskell the “type-system laboratory” [12]. Type
classes, an implementation of generic programming, were
introduced to Haskell in 1988 [12], and now can be found
in most popular languages such as C# [13], Java [14], and
TypeScript [15].

One crucial challenge of programming in statically-typed
languages is that type errors can sometimes be difficult to
resolve [16], [17]. In particular, they may point to locations
that are not the root causes of the type error, expose errors
in cryptic language, or provide misleading fixing sugges-
tions [18].

This paper introduces ChameleonIDE, an interactive type
debugging tool for Haskell. It can visualize the relevant context
of a type error: where it happens or could have happened and
which parts of the code cause it. In addition, ChameleonIDE
allows programmers to interactively explore all the parts of
code where multiple types can be inferred and to resolve
ambiguity. The most noticeable features are the type compare
tool (Section II-A0a), the candidate expression card (Section
II-A0b), and the deduction step (Section II-A0c). These fea-
tures are integrated into a debugging environment and can
be enabled or disabled separately based on the programmers’
preferences and debugging needs. ChameleonIDE is open-
source and is available at [19].

This paper makes the following contributions:
• We provide the design and implementation of the

ChameleonIDE to visualize the relevant context of a type
error and allow programmers to explore and verify the
error locations in small chunks interactively.

u =
addPair x = fst x + snd x

pairs = zip u u

y = map addPair pairs

[]
‘0’ ‘9’..

$dNum :: Num Char

addPair :: forall {a}. Num a => (a, a) -> a

Defined at /home/haskell/Test.hs:2:1

_ :: (Char, Char) -> Char

_ :: forall {a}. Num a => (a, a) -> a

• No instance for (Num Char) arising from a use of ‘addPair’

• In the first argument of ‘map’, namely ‘addPair’

 In the expression: map addPair pairs

 In an equation for ‘y’: y = map addPair pairs

 stypecheck(-Wdeferred-type-errors)

1

2

3

4

Fig. 1. A type error displayed in Visual Studio Code [21] and the Haskell
Vscode extension [22]. The expression addPair is blamed for causing the
type error. This may not match the programmers’ intention.

• We report the results of three experiments designed to
evaluate ChameleonIDE.

Our experiments showed that programmers using
ChameleonIDE fix type errors faster than with traditional
text-based error messages. This difference is more significant
when solving harder tasks. Further, programmers who
actively use ChameleonIDE interactive features fix type
errors faster than simply reading the type error output.
Although ChameleonIDE is designed to work with the
Haskell language, we plan to extend the underlying ideas to
work with other strongly typed languages, such as Rust or
TypeScript..

I. MOTIVATION

The design requirements of ChameleonIDE are motivated
by limitations of traditional type errors, as documented in a
number of studies (e.g. [17], [20]), but which we illustrate
here with a few motivating examples.

1) Traditional type errors show only limited location:
Haack and Wells [23] noted that “Identifying only one node or
subtree of the program as the error location makes it difficult
for programmers to understand type errors. To choose the
correct place to fix a type error, the programmer must find all
the other program points that participate in the error.” The
type error in Fig. 1 can be fixed in multiple locations. For
instance replacing [’0’..’9’] on line 1 with [0..9], or
replacing fst x and snd x on line 2 with read (fst
x) and read (snd x). In the type error message, only
the addPair expression on line 4 was blamed. In this small
example, the whole context is visible, but it can become
problematic in large programs where the lines contributing
to the type error are far apart in the source code.

2) Traditional type errors are biased: A common form of
bias happens when a type error is reported in one expression,
but it can occur in multiple other expressions as well. In
Fig. 1, the error message arbitrarily focuses on only addPair,
while ignoring that the literals in the definition of u may be
incorrect. Another form of bias is that traditional type errors

are often framed as conflicts between Expected type and
Actual type. This framing is standard practice in most
typed languages. However, what is expected and what is
actual are a side effect of different unification orders rather
than the intention of the programmer. In both forms, the error
message may lead programmers to falsely believe the validity
of parts of code and wrongly accuse others.

3) Traditional type errors give poor explanations: When
the compiler rejects a program, the internal state of type
checking is the result of a complex computation. But the
details of this process are hard to explain to users and are
usually not reported by compilers. For the typical type error
shown in Fig. 1, the evidence for the type error is gathered
from the previous declarations. These have to be rediscovered
by programmers using less rigorous methods.

A. Design Goals of ChameleonIDE

Based on the limitations of traditional type errors, we give
the following design requirements for ChameleonIDE:
Show all the possible locations where the type error happened
or could have happened.
Explain type errors avoiding jargon and internal constructs of
the type checker.
Do not presume which expression is to blame for the type
error based on the order of computation or which possible type
for an expression is ‘actual’ or ‘expected’.

II. CHAMELEON IDE

ChameleonIDE comprises two parts: a type inference engine
and a novel interactive debugging interface. The debugging
interface is designed from the ground up; the type inference
engine is a re-implementation of the original Chameleon with
several novel improvements, as described in Section II-B.

A. The Debugging Interface

The ChameleonIDE debugging interface provides three
main features to visualize and explain type errors.

a) Type compare tool: The type compare tool shows
conflicting types in different colors, each type associated with
one or more error locations highlighted in a matching color
(Fig. 3). If the programmers know the expression’s intended
type (they usually do), they will be able to eliminate half
of the possible locations. A hover interaction over one of
the possible types facilitates such bisection, causing only the
relevant locations that contribute to that type to be highlighted.

b) Candidate Expression Cards: A candidate expression
is an expression that can be inferred to have two conflicting
types. When a type error is detected, ChameleonIDE provides
a list of all candidate expressions, and programmers are free
to choose the problem to resolve by clicking on one candidate
expression card. In the example shown in Fig. 4, x and y are
both candidate expressions. Fixing either type error can make
both expressions well-typed.

Programmers select a candidate expression card by clicking
on one card. Once a card is selected, the information in
the conflicting types block changes to reflect the change of

a

b

c

G

H

I

d

is defined as (step)

x ::Int

x = id 'c'

x
1

2

2 3

The expression can have two conflicting
types

Conflicting types

Inferred from the orange highlights on the left side

Inferred from the blue highlights on the left side

x :: Int

x :: Char

Possible type 1

Possible type 2

x

Relevant type information

Imported from prelude

id :: a -> a

Highlighted Slices Error StatementMode Swiching Buttons

Candidate
Expression Card

Alternative Type
Signatures

Relevant Type
Signatures

Deduction Step
Buttons

Deduction Step
Controls

Step-wise Explanation

E

F

Editor Pane Debugging Pane

Fig. 2. The anatomy of ChameleonIDE. The editor pane (left) is similar to a traditional code editor. Fragments of source code may have a highlight color
(A). Additionally, an explanation layer (B) displays if deduction steps are enabled. The debugging pane contains three blocks. First, the error statement block
contains an error statement (D), optionally, a list of candidate expression cards (E), a list of deduction steps (F), and a control bar (G) to increment/decrement
deduction step. Second, the conflicting types block shows two alternative types (H). Third, the relevant type information block shows additional information
(I) that may help understand type errors.

u = ['0' .. '9']
addPair x = fst x + snd x
pairs = zip u u
y = map addPair pairs

The expression can have two
conflicting types

Conflicting types

Inferred from the orange highlights on the left side

Inferred from the blue highlights on the left side

u :: [Char]

u :: [Int]

Possible type 1

Possible type 2

u

Relevant type information

Inferred from the blue highlights on the left side

addPair :: (Int,Int) ->Int

Fig. 3. ChameleonIDE with type compare tool enabled. ChameleonIDE
identified the conflicting types for the expression u and associated the relevant
locations with each type. Compare the output with the traditional type error
message in fig. 1.

candidate expression. In the editor pane, some error locations
change highlight colors based on the updated candidate ex-
pression. Alternatively, programmers can preview the change
of a candidate expression by hovering on one card. The hover
effect is reverted once the cursor moves away.

x :: String
x = y
y = 3

x y

The expression can have two
conflicting types

Conflicting types

Inferred from the orange highlights on the left side

Inferred from the blue highlights on the left side

y :: String

y :: Int

Possible type 1

Possible type 2

y

Relevant type information

Inferred from the orange highlights on the left side

x :: String

Fig. 4. ChameleonIDE with candidate expression cards enabled. Indicates
the type error can occur in the definition of x or y.

c) Deduction steps: Deduction steps allow programmers
to explore all the error locations one at a time (Fig. 5). Steps
are shown as a list of sequentially numbered circular buttons
(step buttons) and an explanation layer in the editor window. In

is defined as (step)2

x :: String

x = y

y = 3 x
1 2

y
3 4

The expression can have two
conflicting types

Conflicting types

Inferred from the orange highlights on the left side

Inferred from the blue highlights on the left side

x :: String

x :: Int

Possible type 1

Possible type 2

x

Relevant type information

y :: Int
Inferred from the blue highlights on the left side

Fig. 5. ChameleonIDE with deduction steps enabled. ChameleonIDE
explains the type error in four steps. In the screenshot, the active step is step
2, where ChameleonIDE shows that the expression x and y should have the
same type.

the explanation layer, the two locations under examination are
outlined, and a line is drawn to connect these two locations.
This line is accompanied by a human-readable text explanation
of their semantic connection. Programmers are free to activate
any step. The active step is shown in green. When activating
a step, some highlights switch color. The message in the
explanation layer changes accordingly. A program in Fig. 5
generates a list of steps shown in Fig. 6 left.

Programmers can use mouse and keyboard shortcuts to
increment or decrement the step number or jump to any step.
Programmers resolve type errors by navigating through all the
deduction steps and verifying whether each explanation aligns
with their intention. Eventually, they will find a step that does
not match, and the type error can be fixed by modifying one
of the two outlined locations.

Internally, deduction steps are different ways to divide the
error locations into two groups, denoted by the two colors.
Each color infers a different type of the candidate expression.
Each increment/decrement of the step changes the splitting
point (dotted lines in Fig. 6) of the two colors.

d) Multiple Modes: Nielson pointed out that the two
most important issues in designing for usability are under-
standing the users’ tasks and the differences in users [24].
From analyzing how users use ChameleonIDE, we realized
that the ideal debugging interface should adapt to the specific
programmer and programming task. There are cases where a
programmer wants the debugger to simply “show the answer”,
and others to dive deeper into the problem domain and
search for the optimal solution. To accommodate the need
to customize the level of information density and granularity
of control, ChameleonIDE provides three modes: basic, bal-
anced, and advanced. Programmers can switch between modes

String x y y 3

String x y y 3

String x y y 3

String x y y 3

x :: String

x = y

y = 3

isannotatedas1

STEP EXPLANATION LAYER MEANING HIGHLIGHTS ONLY

The variable x is
annotated to
have type String.

x :: String

x = y

y = 3 is identical to

x :: String

x = y

y = 3 isdefinedas

3
The y on line 2 and
the y on line 3 are
the same variable.

The definiation of y
is the integer
literal 3.

x :: String

x = y

y = 3

isdefinedas2 The definition of x
is the variable y.

4

Fig. 6. Deduction steps if they are shown all at once. In practice, steps are
shown one at a time. Programmers increment or decrement the step number
using the step control bar (Fig. 2-G) or by directly clicking on a step button
(Fig. 2-F). To increment or decrement the deduction step can be intuitively
thought of as moving the position of the splitting point (dotted lines) where
the blue and orange highlights divide.

Mode Features
Basic Mode Type Compare Tool
Balanced mode Type Compare Tool

Candidate Expression Cards
Advanced mode Type Compare Tool

Candidate Expression Cards
Deduction Steps

TABLE I
CHAMELEONIDE MODES AND FEATURES

by clicking on the mode switching toggles (Fig. 2-C). The
features accessible from different modes are summarized in
table I.

B. The Type Inference Engine

Chameleon was originally a command-line tool devel-
oped in the early 2000s to improve type error reporting
for the Haskell programming language. Unlike traditional
type errors produced by the Glasgow Haskell Compiler
(GHC) [25], which uses a Hindley–Milner type inference
system, Chameleon infers types using constraint solving. In
Chameleon, constraints are generated from the source code
based on typing rules. In addition, each constraint is labeled
with the location where it is generated. This set of constraints
is consistent if the program is well-typed and inconsistent
otherwise. When a type error occurs, an efficient algorithm
is used to derive a minimal subset of the constraints that
still contain inconsistencies. This subset is called a Minimal
Unsatisfiable Subset (MUS). From this, Chameleon can report
a list of locations, using the labels of constraints that are in
the MUS. Stuckey et al. [26] showed that program locations
linked to the constraints from an MUS are all relevant to the
type error and must include the cause of the error.

Despite successfully borrowing the underlying ideas, we
could not reuse the original implementation of Chameleon
since the project language standard and libraries used were

Types :

ERROR : Type Error
Problem : Mismatch

(a, Int) -> b
(a, Char) -> b

The following expression can have
two conflic�ng types f

Possible type 1

Possible type 2

f ::(Int, Int) -> Bool

f ::(Int, Char) -> BoolChameleon outputThe source code

ChameleonIDE output

f (0, 0) = False
f (1, '1') = True

Fig. 7. Reporting the same type error, Chameleon uses more abstract types
Int -> a and Char -> a, while ChameleonIDE uses the concrete types
(types that do not contain type variables) Int -> Bool and Char ->
Bool.

out of date. Our ChameleonIDE implementation extends the
original Chameleon approach in a number of ways.

a) Recovering concrete types from type errors: Using
only constraints from the MUS is sufficient to locate the type
error, but to recover types from type errors we need constraints
from parts of the program that are irrelevant to the type
error. For instance, consider an ill-typed 2-tuple where two
possible types can be assigned: (Int, Int) and (Int,
String). The types reconstructed from Chameleon may
be (a, Int) and (a, String). Although the recovered
types are theoretically correct, they introduce the notation a,
which denotes a generic type variable that can be any type,
making the error message harder to understand. To solve this
issue in ChameleonIDE, for each constraint c in the MUS,
we find a maximally satisfiable subset (MSS) from all the
constraints that contain every other element of MUS but not c.
These maximally satisfiable subsets, while not helpful in error
localization, will produce the most concrete types, see Fig. 7.
Concrete types, such as Int and String, often provides
extra information to programmers. With a type of (Float,
Float), programmers may want to convey a point in 2d
space. However, a type of (a, Float) does not preserve
such information.

b) Type error explanation: In addition, ChameleonIDE
provides support for type explanation. Similar to the type
explanation system in [27], ChameleonIDE is able to produce
a human-readable explanation, but for type errors. This is
achieved by annotating nodes in the abstract syntax tree with
constraints and the type inference rules used. We generate an
inference history from constraints and accompanying annota-
tions.

if a then b else c
a = "True"

Listing 1. A simple program that is ill-typed. It generates two constraints
from line 1 and one constraint from line 2.

For instance, for the program in Listing 1, ChameleonIDE
generates the following constraints and labels (in brackets)
Ta = Bool (if condition), Tb = Tc (if branches), Ta = String
(definition). Clearly, as Ta can not unify with both Bool and
String, this program is not well typed. ChameleonIDE can con-
struct a human-readable explanation from the MUS. An exam-
ple output for Listing 1 can be: a has type Bool because a is
the condition of an if statement; however, a has type String
because a is defined as the string literal "True". This
explanation facilitates the deduction steps (Section II-A0c).

sum [] = 0

sum (x:xs) = x + xs

The expression can have two
conflicting types

Conflicting types

Inferred from the orange highlights on the left side

Inferred from the blue highlights on the left side

xs :: [a]

xs :: Int

Possible type 1

Possible type 2

xs

Relevant type information

Imported from prelude

+ :: Int -> Int -> Int

Fig. 8. Maxine’s code to calculate the sum of a list of integers;
ChameleonIDE reports an error on the expression xs.

III. WALKTHROUGH

In this section, we showcase ChameleonIDE by walking
through examples of its use. The examples are given from the
perspective of a hypothetical Haskell programmer Maxine.

A. Basic mode

Maxine writes a function to calculate the sum of a list
of numbers, but ChameleonIDE shows there is a type error
(Fig. 8). After reading the error reports, Maxine realizes that
the error revolves around the expression xs. That is: xs
can be either [a] or Int. By matching the color in the
conflicting type block (Fig. 2-H) and the highlighted error
locations Maxine knows that the [a] results from the pattern
matching of the : operator, while Int results from using +
to add two expressions.

At this point, Maxine knows the possible type 1 aligns
with her intention, and therefore, the error locations with blue
highlights must be erroneous. After examining the program,
it comes clear that Maxine forgets to apply the sum function
recursively at the right-hand side of the addition.

B. Balanced mode

Maxine writes additional code to add only even numbers in
a list of integers, reusing the sum function she wrote earlier.
After saving the file, ChameleonIDE shows a type error in the
expression sum (Fig. 9). However, this is not helpful because
Maxine has just verified the implementation of sum. Switching
to balanced mode, ChameleonIDE shows two cards: sum and
evens.

Maxine therefore clicks on the evens card and
ChameleonIDE reports two possible types for the expression
[Int] and [Int] -> [Int] (Fig. 10). Knowing the ex-
pression evens holds a temporary list of even integers (hence
it is of [Int] types), Maxine concludes that the Possible
type 2 is unintended. The locations with blue highlights must
contain the cause. It does not take long for Maxine to realize
the list l is not supplied to the filter function.

C. Advanced mode

To illustrate the deduction steps with the task shown in
section III-B, first, Maxine clicks on step 5 (Fig. 11) and

sum [] = 0

sum (x:xs) = x + sum xs

isEven x = x `div` 2 == 0

sumEvens l =

let evens = filter isEven

in sum evens

sum evens

The expression can have two
conflicting types

Conflicting types

Inferred from the orange highlights on the left side

Inferred from the blue highlights on the left side

sum :: [Int] -> Int

sum :: ([Int] ->[Int]) -> Int

Possible type 1

Possible type 2

sum

Relevant type information

Inferred from the blue highlights on the left side

evens :: [Int] -> [Int]

Fig. 9. Maxine’s code to calculate only the sum of even numbers.
ChameleonIDE reports an error with two candidate expressions.

sum [] = 0

sum (x:xs) = x + sum xs

isEven x = x `div` 2 == 0

sumEvens l =

let evens = filter isEven

in sum evens

sum evens

The expression can have two
conflicting types

Conflicting types

Inferred from the orange highlights on the left side

Inferred from the blue highlights on the left side

evens :: [Int]

evens :: [Int] ->[Int]

Possible type 1

Possible type 2

evens

Relevant type information

Inferred from the orange highlights on the left side

Imported from prelude

sum :: [Int] -> Int

filter :: (a ->Bool) ->[a] ->[a]

Fig. 10. Clicking on the evens card (5) results in the changes in the
conflicting types panel to show the possible types for evens, and the changes
highlight color to reflect the assumption that the definition of evens is the
cause of the error.

verifies that the two occurrences of evens are supposed to
be identical, and the second use means evens is a list of
integers. Second, she clicks on step 6 (Fig. 12) and verifies
that evens should be the same type as the declaration on the
right-hand side.

Lastly, Maxine clicks on step 7 (Fig. 13), and it shows that
the filter function is applied to one argument isEven.
By consulting the relevant type information, Maxine identifies
that filter is expecting two arguments while only one is
provided.

IV. EVALUATION

We conducted three user studies, iteratively refining the
ChameleonIDE UI and evaluating several research questions
as per Fig. 14.

is identical to (step)

sum [] = 0

sum (x:xs) = x + sum xs

isEven x = x `div` 2 == 0

sumEvens l =

let evens = filter isEven

in sum evens

sum evens
1 2 5

5

3 64 7

The expression can have two
conflicting types

Conflicting types

Inferred from the orange highlights on the left side

Inferred from the blue highlights on the left side

evens :: [Int]

evens :: [Int] ->[Int]

Possible type 1

Possible type 2

evens

Relevant type information

Inferred from the orange highlights on the left side

Imported from prelude

sum :: [Int] -> Int

filter :: (a ->Bool) ->[a] ->[a]

Fig. 11. Maxine’s code to calculate only the sum of even numbers in
advanced mode. The current step is step 5, ChameleonIDE explains that the
two appearances of expression evens should have the same type.

is defined as (step)

sum [] = 0

sum (x:xs) = x + sum xs

isEven x = x `div` 2 == 0

sumEvens l =

let evens = filter isEven

in sum evens

sum evens
1 2 5

6

3 64 7

The expression can have two
conflicting types

Conflicting types

Inferred from the orange highlights on the left side

Inferred from the blue highlights on the left side

evens :: [Int]

evens :: [Int] ->[Int]

Possible type 1

Possible type 2

evens

Relevant type information

Inferred from the orange highlights on the left side

Imported from prelude

sum :: [Int] -> Int

filter :: (a ->Bool) ->[a] ->[a]

Fig. 12. In step 6, ChameleonIDE explains that evens is defined as the
expression filter isEven. The left-hand side and the right-hand side
should have the same type.

A. Experiment Design

Recruitment: Participants were recruited via the Reddit
r/haskell and r/programminglanguages communities. Partici-
pation is fully anonymized; detailed ethical implications of
these experiments are reviewed and approved by the IRB of
the authors’ institution.

Experiment setting: Experiments were conducted online
and unsupervised. All user studies use a web-based debugging
environment developed by the authors.

Training and group assignment: After consent, partici-
pants received interactive training on the tool interface and
interactive features. Participants were also shown a cheat

is applied at (step)

sum [] = 0

sum (x:xs) = x + sum xs

isEven x = x `div` 2 == 0

sumEvens l =

let evens = filter isEven

in sum evens

sum evens
1 2 5

7

3 64 7

The expression can have two
conflicting types

Conflicting types

Inferred from the orange highlights on the left side

Inferred from the blue highlights on the left side

evens :: [Int]

evens :: [Int] ->[Int]

Possible type 1

Possible type 2

evens

Relevant type information

Inferred from the orange highlights on the left side

Imported from prelude

sum :: [Int] -> Int

filter :: (a ->Bool) ->[a] ->[a]

Fig. 13. In step 7, ChameleonIDE explains that filter is applied to the
function isEven. Assisted by the type of filter in the Relevant Type
Information panel on the bottom right, Maxine can find the type error that
filter expects two arguments but receives one.

22 12 32

ChameleonIDE 1

GHC GHC

ChameleonIDE 2
Basic Mode

ChameleonIDE 2
Balanced Mode

ChameleonIDE 2
Advanced Mode

Research Questions

Research Findings

STUDY 1A STUDY 1B STUDY 2

How do users use the
interactive features of
ChameleonIDE to fix

type errors?

Programmers who actively
use interactive features
performed better overall.

Programmers using
ChameleonIDE solve

type errors faster than
GHC.

Do users resolve type
errors faster with
ChameleonIDE than

with GHC?

Number of
Participants

Settings

Haskell
Experience

Under 1 year

1 - 2 years

3 - 4 years

Over 5 years

Fig. 14. The timeline of ChameleonIDE evaluation.

sheet summarizing the key functionality of the interface, and
had access to the cheat sheet at all times during the study.
Participants were given 4 trial runs (2 for each setting) before
the data collection started. All the studies used a within-subject
design to evaluate the effectiveness of different tools or feature
sets while counterbalancing the difference in programming
proficiency between participants. In each study, participants
were required to complete a series of programming tasks (8
for studies 1a and 1b, 9 for study 2). At each task, a participant
receives a single Haskell file that contains one or more type
errors. They were then asked to correct the code with the help
of the given tool.

Data Collection: Time is measured from the start of each
task to the first time the program is successfully type-checked
and also passes all the functional tests. Participants are able
to skip a task if they are stuck. After completing all tasks,
participants are prompted to complete a debriefing survey.
The survey questions include their Haskell experience and
feedback on the tools.

We used a browser session recording tool [28] to record the

GHCChameleonIDE 1

Time (seconds) to complete each task in study 1a
with 95% confidence interval

40

60

20

0
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

Fig. 15. Study 1a task completion time (secs.) with 95% confidence interval.

study sessions. This allows us to identify usability issues in
the study and to recognize general patterns.

B. ChameleonIDE Human Studies

1) ChameleonIDE 1: An earlier version of the UI than
that depicted in Figs. (2-13), it featured the type inference
engine that recovers most concrete types after type errors
occur and a minimal set of debugging features. Key features
in ChameleonIDE 1 include showing two (or more) alternative
types, showing all possible error locations, dividing possible
error locations into groups based on alternative types, and con-
crete type restoration. In short, ChameleonIDE 1 is equivalent
to ChameleonIDE 2 set to basic mode.

Two studies (1a & 1b) were conducted to compare the
effectiveness of solving type errors using ChameleonIDE 1
and GHC compiler error messages. We choose GHC compiler
error messages as the baseline because it is the canonical tool
for working with type errors in Haskell.

Eight tasks were given in both studies. In study 1a, the tasks
were taken from the exercises of the Haskell programming
class in the authors’ institute. In the second study, the tasks are
sourced from the top 20 Haskell topics on GitHub [29]. The
authors then manually added type errors into the program. In
both studies, the type errors include simple mismatch, confus-
ing syntax, missing instance, precedence and fixation, infinite
types, and confusing list versus element. These categories
follow the common type errors in Tirronen’s study [16].

Studies (1a & 1b) address the research question:
RQ1. Do programmers solve type errors faster with
ChameleonIDE than GHC compiler error messages?

Results: The data collected during study 1a, Fig. 15 does
not show significant differences across Tasks 1-7. In hindsight,
these tasks were trivial challenges for most users, and the
individual differences among participants are generally more
significant than the differences between treatments. However,
one interesting observation is task 8, where the ChameleonIDE
group outperformed the GHC group. We attribute this signif-
icant difference to the difficulty of Task 8. The source file
is longer and involves more language features (abstract data
types and high-level functions). GHC struggles to produce a
relevant error message for this type of error. From this result,
we hypothesized that we might observe a more significant

GHCChameleonIDE 1

Time (seconds) to complete each task in study 1b
with 95% confidence interval

150

200

50

100

0
Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

Fig. 16. Study 1b task completion time (secs.) with 95% confidence interval.

difference using tasks with lengthier and more realistic source
code. This hypothesis is also supported by the most common
feedback claiming that the tasks were too trivial to invite
meaningful evaluation. One participant said, “Looks nicer than
GHC, but without trying it on something more complicated, I
cannot conclude whether it would help me in practice.”

Therefore, in study 1b we introduced more difficult chal-
lenges and indeed observed that the ChameleonIDE group was
faster than the GHC group in almost all tasks (figure 16), bar-
ring task 1. A two-sample paired t-test was performed to com-
pare the completion time between ChameleonIDE and GHC
groups. There was a significant difference between the two
groups: t(23) = −3.86, p = 0007. For task 1, it is suspected
that some participants spent more time exploring the interface
of ChameleonIDE due to its unfamiliarity. For all other tasks,
from the video recordings, we saw many ChameleonIDE users
confidently skip reading unrelated chunks of code, while GHC
users generally read through the whole program. In harder
problems and messier code, we notice programmers start to
report the benefits of ChameleonIDE. “It’s most useful feature
that I noticed was that it points out the locations of both
conflicting uses; GHC often makes it difficult to figure out
how it’s coming to a conclusion about a type.” reported one
participant. “I think ChameleonIDE does a much better job
than GHC’s error messages. I like that it shows the sources
for the type judgments. This makes it quite easy to figure out
how to rectify errors.” reported another participant.

2) ChameleonIDE 2: Based on observations of Study 1 we
introduced several new features to ChameleonIDE, eventually
resulting in the UI depicted in Figs. (2-13). Interactive features
were available in this iteration, such as deduction steps,
candidate expressions, and mode switching. A few other user
interfaces [30] were designed and prototyped between the
development of ChameleonIDE 1 and ChameleonIDE 2. Study
2 addresses the research question:
RQ2: How do programmers use the interactive features in
ChameleonIDE 2?.

More specifically:
• RQ2.1 How do programmers use the advanced features

provided by ChameleonIDE 2?
• RQ2.2 Do programmers prefer switching modes during

debugging type errors?

Interaction level Description
Minimal Users completed the tasks by making

changes in source code, type checking, and
reading error messages.

Low Users only actively used universal features in
all modes, for example, hovering on
”Possible type 1” and ”Possible type 2” to
narrow down error space.

High Users did everything from the low interaction
group but used features specific to the
Balanced mode and the Advanced mode,
such as activating steps and expression cards.

TABLE II
LEVELS OF PROGRAMMER INTERACTION AND THEIR DESCRIPTION

• RQ2.3 What are programmers’ preferences among the
three modes provided by ChameleonIDE 2?

During each run, the initial mode of each task alternated
through the three different modes and repeated three cycles
in nine tasks. The order of the three modes in each cycle is
counterbalanced among all participants. However, participants
can switch to other modes at any time.

Results: Study 2 is more exploratory in methodology than
Study 1. We encouraged programmers to discover their way of
using the tool. In post hoc analysis of the collected log data,
we were able to extrapolate some interesting patterns of how
the tool was used.

RQ2.1. The most striking feature of the data is that users
tend to vary wildly in their use of the tool. Some users
used the features extensively, while others completed the tasks
without actively exploring the given information. Based on this
discrepancy, we divided the users into three groups in table II.

As shown in Fig. 17, the time to complete each task roughly
relates to the interaction level of participants. Participants with
higher interaction levels generally performed better, and the
lowest interaction level was worse. Tukey’s HSD Test for
multiple comparisons found that the completion time was
significantly different between the minimal interaction group
and the high interaction group (p ≤ 0.001, 95% C.I. = [18.26,
31.41]), and between the minimal interaction group and the
low interaction group (p ≤ 0.001, 95% C.I. = [11.96, 26.67]).
The results from three tasks stand out from the general trend:
in Tasks 4 and 6, higher interaction users performed worse,
and in task 9, the general trend is exaggerated. As with Study
1a and 1b, this difference is likely related to task difficulty.
Tasks 4 and 6 are shorter than other tasks. The ideal fixes
for these two tasks are placed relatively early in the source
code (both in the first two lines of the source code). Users
simply reading top to bottom could quickly identify the error
without needing to skip unrelated sections of code using the
information provided by ChameleonIDE. This reduced the
apparent benefit of ChameleonIDE in these tasks. On the other
hand, task 9 is the lengthiest task of all. It also involves deeply
nested type definitions that are harder to follow in mind.

Another observation is when using the mode switching
feature of ChameleonIDE, we show this by presenting the

High Interaction Group Low Interaction Group Minimal Interaction Group

40

0

80

120

Time (seconds) to complete each task in study 2
with 95% confidence interval

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9

Fig. 17. Study 2 task completion time (secs.) with 95% confidence intervals.

38 31 24

50367

7 12 74

Basic

Ba
si

c

Balanced

Ba
la

nc
ed

Advanced

Ad
va

nc
edSt

ar
ti

ng
m

od
e

Finishing mode

Fig. 18. Study 2 mode switches by starting mode. Users overwhelmingly
switched to the more sophisticated interface mode.

starting mode and finishing mode of each task and each
participant in a correlation matrix (Fig. 18). This observation
suggests two characteristics of using multi-mode debugging
tools. First, to answer RQ2.2 programmers are roughly splitted
in this matter: 53% changing modes vs. 47% staying in the
same mode. Second, to answer RQ2.3 when changing modes,
programmers generally switch to the more informative modes
instead of the more concise ones.

C. Limitations

One threat to the validity of the evaluation is the number
of participants. Although for each study we received hun-
dreds of online participants, the studies suffered from a high
abandonment rate (especially study 1b). This was expected:
the programming challenges are difficult, and our volunteer
participants are unremunerated. Because we recruited par-
ticipants online and anonymized all the participants, it is
possible for participants of a previous study to enter a later
one. This creates variation in familiarity. We offset this by
using new code challenges in every study and conducting trial
runs before data collection to bring new participants up to
speed. Conducting studies remotely and unsupervised left us
no means to intervene when users encounter usability issues.
To mitigate this, we conducted cognitive walkthroughs and
sandbox pilots before running each study.

Future evaluation would benefit from using more realistic
tasks. The tasks in our human studies do not get as complex
as professional Haskell programmers may face in a typical
production codebase. It would be interesting to see how
ChameleonIDE is used against type errors that span multiple

files and packages and include more confusing abstractions,
like Monads, Monad transformers, and Lenses.

V. DISCUSSION

This paper presents the interactive type debugging tool
ChameleonIDE and charts the evolution of its design across
several iterations in response to user evaluation and feedback,
as well as examines the effectiveness of the general approach
compared to traditional static type error messages. We found
that programmers using ChameleonIDE are able to debug
errors faster than using traditional text-based error messages.
This effect is shown more clearly when the task is not trivial.
We found that programmers who actively use ChameleonIDE’s
interactive features are more efficient in fixing type errors than
passively reading the type error output. In this section, we will
discuss a few interpretations of the results.

A. Effect on Reading Source Code

From the results of Study 1a, we observed that the choice
of debugging tool had little effect on how fast programmers
solve simple type errors. Conversely, when facing more re-
alistic problems (longer source code, error locations more
scattered) in study 1b, programmers are more effective using
ChameleonIDE. One explanation is that ChameleonIDE re-
duces the amount of reading time by taking programmers more
directly to the problem. Earlier studies [31], [32] showed that
reading source code is generally the initial step of solving pro-
gramming problems and is done in several passes. Although
traditional compiler error message tools initially show fewer
locations, these may be incomplete, meaning that programmers
have to expand the reading span without clear guidance. In
contrast, ChameleonIDE shows more error locations initially.
However, the completeness of error locations assures program-
mers which part of the source code can be safely skipped.

B. Forming Debugging Plans

From the results of Study 2, we found that programmers
who use the interactive tool fix type errors faster than the
ones who passively read the error output. This effect is
stronger in harder tasks. We speculate that one factor of
this result is that ChameleonIDE helps to develop debugging
plans. We observed that when working with ChameleonIDE,
programmers form different debugging plans to attack the
problem. Among the high interactivity participants in user
study 2, some programmers cycle through deduction steps as
a guide to reading source code; some navigate to both ends
of the deduction chain where types are normally grounded
and concrete. In contrast, minimal interactive participants
generally form similar plans, including carefully reading the
program text and manually annotating expressions based on
their understanding of the program.

C. Externalize Intermediate Typing Information

We speculate another factor of the effectiveness of
ChameleonIDE interactive debugging tools is that they help
programmers effectively chunk intermediate information. With

f z
| z == 3 = False
| z == ’4’ = True

Listing 2. ChameleonIDE reports an error in the expressions f and z

the program shown in Listing 2, ChameleonIDE offers two
candidate expressions: f can be typed as Int -> Bool or
Char -> Bool; z can be typed as Int or Char. Although
these two statements are equivalent in theory, programmers
are often required to compute the latter from the former or
vice versa. And this computation may carry out multiple
layers. Programmers have to remember all the intermediate
types and their reasoning throughout such mental gymnastics.
Assisted by candidate expression cards and deduction steps,
this intermediate information is externalized on screen and
can be retrieved anytime. A recent study on working memory
[33] suggested this approach may provide a positive effect
in helping programmers manage cognitive load and free up
working-memory space for high-level thinking.

VI. RELATED WORK

A. Finding all type error locations

Many have studied the approach of finding all locations
that contribute to a type error [23], [26], [34], [35]. Type
error slicing [23] is a technique that finds locations that
are complete and minimal for the type error. Internally la-
beled constraints and Minimal Unsatisfiable Subset (MUS)
generation are used to generate these slices. The language
supported in Haack’s work was a subset of Standard ML.
The original Chameleon [26] used Constraint handling rules
(CHR) to support the computing of type error slices in Haskell.
Chameleon also supported advanced type-level features (type
classes and functionally dependent types). The project also
introduced the ability to query type information through a
command line interface. Although Chameleon was firmly
grounded in results from type theory, its designs were never
evaluated with user studies. While finding all error locations
is useful in comprehending type errors, it is only 1 of the
7 properties listed in the proposed manifesto of good type
error reporting [20]. To the best of our knowledge, ours is the
first user-centered evaluation of an interactive type debugging
system involving type-error slicing.

B. Producing high-quality error explanation

One weakness of compiler error messages, in general, is that
they fail to explain the error in human language. As put in [36],
“Error messages appear to take the form of natural language,
yet are as difficult to read as source code.” A well-studied
approach to producing better error explanations is through
ECEM (Enhanced compiler error message). Through a series
of mixed-method studies, Prather showed [37] that ECEM has
a positive result in understanding compiler errors. Decaf [38]
is a tool that can rephrase Java compiler error messages into
an enhanced version. In a study of over 200 CS1 students,
Decaf was shown to reduce overall errors in their coding

practices. Berik proposed a framework [39] for constructing
compiler error messages based on argumentation theory, and
showed that error messages following a simple argumentation
layout or an extended argumentation layout are more human-
friendly. These works show the significance of improving the
language in the compiler error messages. Most principles and
suggestions are followed in ChameleonIDE in constructing
error statements. However, these earlier studies were not
targeting type errors alone but general compiler errors (some
even include runtime errors). The nuances of type errors, such
as alternative typing, were not considered. Moreover, these
explanation systems were designed specifically for novice
users.

C. Interactive Debugging

Modern programming tools can offer alternative methods of
code authoring, display real-time feedback and reveal complex
programming contexts through visualizations. Many tools aim
to improve the debugging experience using such capabilities.
We list two. Hazel Tutor [40] is an interactive type-driven envi-
ronment for the OCaml language. It can automatically fill type
holes by suggesting template expressions (called “strategies”
by the authors) through a popup window. It also provides a
cursor-based type inspector that allows programmers to query
the types of different parts of the program. Whyline [41] is a
Java debugging system that allows a user to ask questions like
“why does variable X have value Y.” It also allows users to
interactively ask follow-up questions to gain further knowledge
of the nature of an error. These debugging tools are important
motivations for developing ChameleonIDE. However, they
focus on different aspects of the debugging process. Java
Whyline mainly tackles the problem of unintended runtime
behavior, while Hazel Tutor specializes in development assis-
tance supported by type holes.

VII. CONCLUSION

We present ChameleonIDE, a type debugging tool for
the Haskell programming language. Its constraint-based type
inference engine provides unbiased and comprehensive error
location reporting. Our studies evaluated the tool’s design with
programmers. We found that, particularly for more complex
tasks, ChameleonIDE helped programmers to fix type errors
more quickly than traditional text-based error messages. Fur-
ther, programmers actively using ChameleonIDE interactive
features are shown to fix type errors faster than simply reading
the type error output. ChameleonIDE currently works with the
Haskell language, but in the future, we plan to extend the type-
checking system to work with other strongly typed languages,
such as Rust or TypeScript.

Acknowledgments

The work of Peter Stuckey was partially supported by the
OPTIMA ARC ITTC, Project ID IC200100009.

REFERENCES

[1] R. Chatley, A. Donaldson, and A. Mycroft, “The next 7000 programming
languages,” in Computing and Software Science: State of the Art and
Perspectives, ser. Lecture Notes in Computer Science, B. Steffen and
G. Woeginger, Eds. Springer International Publishing, 2019, pp. 250–
282. [Online]. Available: https://doi.org/10.1007/978-3-319-91908-9 15

[2] S. Kleinschmager, R. Robbes, A. Stefik, S. Hanenberg, and E. Tanter,
“Do static type systems improve the maintainability of software systems?
an empirical study,” in 2012 20th IEEE International Conference on
Program Comprehension (ICPC), 2012, pp. 153–162, ISSN: 1092-8138.

[3] C. Mayer, S. Hanenberg, R. Robbes, E. Tanter, and A. Stefik,
“An empirical study of the influence of static type systems on
the usability of undocumented software,” in Proceedings of the
ACM international conference on Object oriented programming
systems languages and applications, ser. OOPSLA ’12. Association
for Computing Machinery, 2012, pp. 683–702. [Online]. Available:
https://doi.org/10.1145/2384616.2384666

[4] Z. Gao, C. Bird, and E. T. Barr, “To type or not to type: Quantifying
detectable bugs in JavaScript,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), 2017, pp. 758–769, ISSN:
1558-1225.

[5] B. Ray, D. Posnett, P. Devanbu, and V. Filkov, “A large-scale study of
programming languages and code quality in GitHub,” vol. 60, no. 10,
pp. 91–100, 2017. [Online]. Available: https://doi.org/10.1145/3126905

[6] L. A. Meyerovich and A. S. Rabkin, “Empirical analysis of
programming language adoption,” in Proceedings of the 2013 ACM
SIGPLAN international conference on Object oriented programming
systems languages & applications, ser. OOPSLA ’13. Association
for Computing Machinery, 2013, pp. 1–18. [Online]. Available:
https://doi.org/10.1145/2509136.2509515

[7] Z. Chen, Y. Li, B. Chen, W. Ma, L. Chen, and B. Xu, “An empirical study
on dynamic typing related practices in python systems,” in Proceedings
of the 28th International Conference on Program Comprehension, ser.
ICPC ’20. Association for Computing Machinery, 2020, pp. 83–93.
[Online]. Available: https://doi.org/10.1145/3387904.3389253

[8] B. Wang, L. Chen, W. Ma, Z. Chen, and B. Xu, “An empirical study
on the impact of python dynamic features on change-proneness,” 2015,
pp. 134–139.

[9] Z. Xu, P. Liu, X. Zhang, and B. Xu, “Python predictive analysis
for bug detection,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2016. Association for Computing Machinery, 2016, pp. 121–132.
[Online]. Available: https://doi.org/10.1145/2950290.2950357

[10] Microsoft. JavaScript with syntax for types. [Online]. Available:
https://www.typescriptlang.org/

[11] mypy. mypy - optional static typing for python. [Online]. Available:
http://mypy-lang.org/

[12] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler, “A history
of haskell: being lazy with class,” in Proceedings of the third ACM
SIGPLAN conference on History of programming languages, ser. HOPL
III. Association for Computing Machinery, 2007, pp. 12–1–12–55.
[Online]. Available: https://doi.org/10.1145/1238844.1238856

[13] Bill Wagner. (2022) Constraints on type parameters - c# programming
guide. [Online]. Available: https://learn.microsoft.com/en-us/dotnet/
csharp/programming-guide/generics/constraints-on-type-parameters

[14] Oracle. (2022) Generic methods and bounded type parameters (the
java™ tutorials > learning the java language > generics (updated)).
[Online]. Available: https://docs.oracle.com/javase/tutorial/java/generics/
boundedTypeParams.html

[15] Microsoft. (2022) Documentation - generics. [Online]. Available:
https://www.typescriptlang.org/docs/handbook/2/generics.html

[16] V. Tirronen, S. Uusi-Mäkelä, and V. Isomöttönen, “Understanding begin-
ners’ mistakes with haskell,” vol. 25, p. e11, 2015, publisher: Cambridge
University Press.

[17] J. Hage, “Solved and open problems in type error diagnosis,” p. 13,
2020.

[18] B. Wu and S. Chen, “How type errors were fixed and what
students did?” vol. 1, pp. 105:1–105:27, 2017. [Online]. Available:
https://doi.org/10.1145/3133929

[19] Fu, Shuai. (2022) Chameleon type debugger. [Online]. Available:
https://chameleon.typecheck.me/

[20] J. Yang, G. Michaelson, P. Trinder, and J. B. Wells, “Improved type
error reporting,” in In Proceedings of 12th International Workshop on
Implementation of Functional Languages. Citeseer, 2000.

[21] Microsoft. Visual studio code - code editing. redefined. [Online].
Available: https://code.visualstudio.com/

[22] Haskell. Haskell extension for visual studio code. [Online]. Available:
https://marketplace.visualstudio.com/items?itemName=haskell.haskell

[23] C. Haack and J. B. Wells, “Type error slicing in implicitly typed higher-
order languages,” vol. 50, no. 1, pp. 189–224, 2004. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S016764230400005X

[24] Jakob Nielsen, Usability Engineering. Morgan Kaufmann, 1993.
[25] Ben Gamari. (2022) Home — the glasgow haskell compiler. [Online].

Available: https://www.haskell.org/ghc/
[26] P. J. Stuckey, M. Sulzmann, and J. Wazny, “Interactive type debugging

in haskell,” in Proceedings of the ACM SIGPLAN workshop on Haskell
- Haskell ’03. ACM Press, 2003, pp. 72–83. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=871895.871903

[27] Y. Jun, G. Michaelson, and P. Trinder, “Explaining polymorphic types,”
vol. 45, pp. 436–452, 2002.

[28] OpenReplay. (2022) OpenReplay: Open-source session replay. [Online].
Available: https://openreplay.com/

[29] Github. (2022) GitHub topic: Haskell. [Online]. Available: https:
//github.com/topics/haskell

[30] Fu, Shuai and Dwyer, Tim and Stuckey, Peter, “Interactive
haskell type inference exploration (extended abstract),” 2021.
[Online]. Available: https://icfp21.sigplan.org/details/TyDe-2021/6/
Interactive-Haskell-Type-Inference-Exploration-Extended-Abstract-

[31] A. Jbara and D. G. Feitelson, “How programmers read regular code:
A controlled experiment using eye tracking,” in 2015 IEEE 23rd
International Conference on Program Comprehension, 2015, pp. 244–
254, ISSN: 1092-8138.

[32] N. Peitek, J. Siegmund, and S. Apel, “What drives the reading order
of programmers?: An eye tracking study,” in Proceedings of the
28th International Conference on Program Comprehension. ACM,
2020, pp. 342–353. [Online]. Available: https://dl.acm.org/doi/10.1145/
3387904.3389279

[33] W. Crichton, M. Agrawala, and P. Hanrahan, “The role of
working memory in program tracing,” 2021. [Online]. Available:
http://arxiv.org/abs/2101.06305

[34] Z. Pavlinovic, T. King, and T. Wies, “Practical SMT-based type error
localization,” in Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ser. ICFP 2015. Association
for Computing Machinery, 2015, pp. 412–423. [Online]. Available:
https://doi.org/10.1145/2784731.2784765

[35] T. Schilling, “Constraint-free type error slicing,” in Trends in Functional
Programming, ser. Lecture Notes in Computer Science, R. Peña and
R. Page, Eds. Springer, 2012, pp. 1–16.

[36] T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng, E. Murphy-Hill,
and C. Parnin, “Do developers read compiler error messages?”
in Proceedings of the 39th International Conference on Software
Engineering, ser. ICSE ’17. IEEE Press, 2017, pp. 575–585. [Online].
Available: https://doi.org/10.1109/ICSE.2017.59

[37] J. Prather, R. Pettit, K. H. McMurry, A. Peters, J. Homer, N. Simone,
and M. Cohen, “On novices’ interaction with compiler error messages:
A human factors approach,” in Proceedings of the 2017 ACM
Conference on International Computing Education Research, ser. ICER
’17. Association for Computing Machinery, 2017, pp. 74–82. [Online].
Available: https://doi.org/10.1145/3105726.3106169

[38] B. A. Becker, “An effective approach to enhancing compiler error
messages,” in Proceedings of the 47th ACM Technical Symposium on
Computing Science Education. ACM, 2016, pp. 126–131. [Online].
Available: https://dl.acm.org/doi/10.1145/2839509.2844584

[39] T. Barik, D. Ford, E. Murphy-Hill, and C. Parnin, “How should
compilers explain problems to developers?” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2018, pp.
633–643.

[40] H. Potter and C. Omar, “Hazel tutor: Guiding novices through type-
driven development strategies,” 2020, p. 10.

[41] A. J. Ko and B. A. Myers, “Finding causes of program output
with the java whyline,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ser. CHI ’09. Association
for Computing Machinery, 2009, pp. 1569–1578. [Online]. Available:
https://doi.org/10.1145/1518701.1518942

https://doi.org/10.1007/978-3-319-91908-9_15
https://doi.org/10.1145/2384616.2384666
https://doi.org/10.1145/3126905
https://doi.org/10.1145/2509136.2509515
https://doi.org/10.1145/3387904.3389253
https://doi.org/10.1145/2950290.2950357
https://www.typescriptlang.org/
http://mypy-lang.org/
https://doi.org/10.1145/1238844.1238856
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/constraints-on-type-parameters
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/constraints-on-type-parameters
https://docs.oracle.com/javase/tutorial/java/generics/boundedTypeParams.html
https://docs.oracle.com/javase/tutorial/java/generics/boundedTypeParams.html
https://www.typescriptlang.org/docs/handbook/2/generics.html
https://doi.org/10.1145/3133929
https://chameleon.typecheck.me/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=haskell.haskell
https://www.sciencedirect.com/science/article/pii/S016764230400005X
https://www.haskell.org/ghc/
http://portal.acm.org/citation.cfm?doid=871895.871903
https://openreplay.com/
https://github.com/topics/haskell
https://github.com/topics/haskell
https://icfp21.sigplan.org/details/TyDe-2021/6/Interactive-Haskell-Type-Inference-Exploration-Extended-Abstract-
https://icfp21.sigplan.org/details/TyDe-2021/6/Interactive-Haskell-Type-Inference-Exploration-Extended-Abstract-
https://dl.acm.org/doi/10.1145/3387904.3389279
https://dl.acm.org/doi/10.1145/3387904.3389279
http://arxiv.org/abs/2101.06305
https://doi.org/10.1145/2784731.2784765
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1145/3105726.3106169
https://dl.acm.org/doi/10.1145/2839509.2844584
https://doi.org/10.1145/1518701.1518942

	I Motivation
	I-1 Traditional type errors show only limited location
	I-2 Traditional type errors are biased
	I-3 Traditional type errors give poor explanations

	I-A Design Goals of ChameleonIDE

	II Chameleon IDE
	II-A The Debugging Interface
	II-B The Type Inference Engine

	III Walkthrough
	III-A Basic mode
	III-B Balanced mode
	III-C Advanced mode

	IV Evaluation
	IV-A Experiment Design
	IV-B ChameleonIDE Human Studies
	IV-B1 ChameleonIDE 1
	IV-B2 ChameleonIDE 2

	IV-C Limitations

	V Discussion
	V-A Effect on Reading Source Code
	V-B Forming Debugging Plans
	V-C Externalize Intermediate Typing Information

	VI Related Work
	VI-A Finding all type error locations
	VI-B Producing high-quality error explanation
	VI-C Interactive Debugging

	VII Conclusion
	References

