
Pathways to Leverage Transcompiler based Data
Augmentation for Cross-Language Clone Detection

Subroto Nag Pinku
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

subroto.npi@usask.ca

Debajyoti Mondal
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada
d.mondal@usask.ca

Chanchal K. Roy
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

chanchal.roy@usask.ca

Abstract—Software clones are often introduced when develop-
ers reuse code fragments to implement similar functionalities in
the same or different software systems resulting in duplicated
fragments or code clones in those systems. Due to the adverse
effect of clones on software maintenance, a great many tools
and techniques and techniques have appeared in the literature
to detect clones. Many high-performing clone detection tools
today are based on deep learning techniques and are mostly used
for detecting clones written in the same programming language,
whereas clone detection tools for detecting cross-language clones
are also emerging rapidly. The popularity of deep learning-
based clone detection tools creates an opportunity to investigate
how known strategies that boost the performances of deep
learning models could be further leveraged to improve the clone
detection tools. In this paper, we investigate such a strategy, data
augmentation, which has not yet been explored for cross-language
clone detection as opposed to single language clone detection.
We show how the existing knowledge on transcompilers (source-
to-source translators) can be used for data augmentation to
boost the performance of cross-language clone detection models,
as well as to adapt single-language clone detection models to
create cross-language clone detection pipelines. To demonstrate
the performance boost for cross-language clone detection through
data augmentation, we exploit Transcoder, which is a pre-
trained source-to-source translator. To show how to extend single-
language models for cross-language clone detection, we extend
a popular single-language model, Graph Matching Network
(GMN), in a combination with the transcompilers and code
parsers (srcML). We evaluated our models on popular bench-
mark datasets. Our experimental results showed improvements
in F1 scores (sometimes up to 3%) for the cutting-edge cross-
language clone detection models. Even when extending GMN for
cross-language clone detection, the models built leveraging data
augmentation outperformed the baseline with scores of 0.90, 0.92,
and 0.91 for precision, recall, and F1 score, respectively.

Index Terms—Code Clone Detection, Cross-Language Clones,
Data Augmentation, Deep Learning, Graph Matching Networks

I. INTRODUCTION

Code clones are code fragments with similar functionalities
in a software system. It appears when the developers reuse
the existing source code knowledge base to annex the new
features across the same or different platforms. Studies show
that a software system may contain around 9% to 17% code
clones [1], [2]. Such clones have adverse impacts on software
systems as they often introduce redundant codes, require
code changes to implement consistently, and make program

comprehension harder for the developers [3], [4]. Moreover,
reusing complex codes may generate intricate and sometimes
incorrect programming logic. A rich body of research thus
focuses on developing tools and techniques to detect and track
clones across software systems so that they can be maintained
through the complete software development life cycle [5], [6].

In this paper we focus on clones that appear across software
systems written in different programming languages. Clone
detection techniques in such a cross-language context are
relatively less explored compared to the decades of research
on single-language clone detection [7]. Cross-language clones
are ubiquitous in software systems that are written in one
language with certain functionalities and need to be translated
into another language to add support for multiple platforms.
Clones carry important domain knowledge and thus studying
the clones in a system could potentially assist in understanding
the system itself [8]. Cross-language clones can play a crucial
role in program comprehension due to their potential for
revealing code reuse patterns across different languages. Anal-
ysis of code reuse patterns in cross-language context could
help researchers understand development practices, identify
toxic code snippets, and build code searching tools [9] over
diverse varieties of systems written in different languages.
Furthermore, understanding the clones of a software system
written in a certain programming language could potentially
help understand a different software system written in a
different programming language by tracking cross-language
clones. Since multi-language software development (MLSD)
appears to be common, at least in the open source world
[10], cross-language clone detection could help understand any
such clones and manage them accordingly in MLSD. Porting
the same software systems to different platforms is natural
and they could be written in different programming languages
depending on the need. In such cases, cross-language clone
detection tools will help detect, understand, and manage these
clones across platforms.

Developers with existing knowledge and experience in one
language make use of it to produce the same functionalities
consciously or subconsciously. These codes are generally
syntactically different but semantically the same [11]. Trans-
forming systems written in one programming language to

ar
X

iv
:2

30
3.

01
43

5v
1

 [
cs

.S
E

]
 2

 M
ar

 2
02

3

another programming language is a tedious task. These can be
considered as systems that are clones of each other whereas
maintaining them over the years may take a lot of resources
depending on their complexities.

Detecting cross-language clone is difficult due to the differ-
ence in syntax and textual nature of source codes [7]. Figure
1 shows an example of cross-language clones where three
programs are written in two languages: the first one is in
Java and the other two are in Python. All three programs
solve the same problem of checking whether a given string
is a palindrome. This example depicts the use of different
structures and concepts such as library function, recursion, list
slicing, etc. Programs that are written in different languages
differ inherently due to the grammar behind them. As a
result, token-based, text-based traditional approaches tend not
to work well for cross-language clone detection [12]. Recently
several deep learning models have shown good performances
when detecting code clones in single-language settings [13],
[14], [15]. These models appear to have good capabilities of
leveraging the underlying structure and semantics of the code
fragments to identify code clones. Among many techniques
proposed for single-language clone detection, some are based
on graph neural networks that consider both syntactic and
semantic features of the code fragments. Consequently, such
graph neural networks [14] arguably learn the representation
better than other deep learning methods that consider only
syntactical features [16].

A few techniques have been proposed for cross-language
clone detection recently and deep learning models are shown
to be effective in detecting clones [7], [17], [18]. One of
the challenges in building deep learning models for cross-
language clone detection techniques is the scarcity of data [17]
as they typically require a large amount of data to well train
the models [19]. In general, the performance of deep learning
models depends on the quality and amount of data used to train
them. A common technique to boost the performance of deep
learning models is to use data augmentation that adds new data
to the dataset by slightly modifying the existing data. Such
data augmentation increases the number of data points and is
shown to enhance the generalizability of deep learning models
[20]. Although data augmentation techniques are well explored
in computer vision and natural language processing research,
only a few techniques are available that examine specifically
the context of source code augmentation. These techniques
predominantly focus on codes written in a single language and
facilitate rule-based data augmentation [19]. While considering
the problem of cross-language clone detection, we noticed
that a rich body of literature on transcompilers has gone
unnoticed [21]. A natural question that we thought of is
whether they could be leveraged to extend existing single-
language clone detection tools for cross-language settings and
moreover, for the purpose of data augmentation. Are there
reasons to use transcompiler based augmentations instead of
augmentations based on simple mutations (e.g., line deletion,
swap, or duplication)? Considering the constraints of cross-
language clone detection, lack of sufficient data, and op-

1 public static boolean checkPalindrome(String st){
2 String r = "";
3 boolean a = false;
4 int i = st.length() - 1;
5 while(i >= 0){
6 r = r + st.charAt(i);
7 i = i - 1;
8 }
9 if(st.equals(r)){

10 a = true;
11 }
12 return a;
13 }

(a) Java code to check palindrome using library function

1 def check_palindrome(s):
2 def check_palindrome_helper(i, j):
3 if j <= i:
4 return True
5 if s[i] != s[j]:
6 return False
7 return check_palindrome_helper(i + 1, j - 1)
8

9 return check_palindrome_helper(0, len(s) - 1)

(b) Python code to check palindrome using recursion

1 def check_palindrome(s):
2 return s == s[::-1]

(c) Python code to check palindrome using list slicing

Fig. 1. Example of cross-language-clones: (a) is in Java, (b)–(c) are in Python.

portunities for leveraging transcompilers, we formulated the
following research questions for this study.
RQ1. To what extent does source-to-source translation based
data augmentation influence cross-language clone detection
models?
In this research question, we explored the ability and extent of
generalization for existing deep learning models through the
lens of transcompiler-based data augmentation.
RQ2. How does mutation based data augmentation per-
form compared to the source-to-source translation-based
approach?
To answer this research question, we studied the effect of
feeding a deep-learning model with codes generated through
random modification. We compared models trained with this
approach with the ones trained with the transcompiler-based
augmented data.
RQ3. Can we use source-to-source translation to adapt
single-language clone detection models to detect cross-
language clones?
To answer this research question, we investigated the oppor-
tunity to leverage existing single-language models for cross-
language clone detection in a combination with transcompilers.
We chose the state-of-the-art model [14] from the literature
and extended it to cross-language settings.
Our contribution. In this paper we answer the research
questions RQ1–RQ3, which results into the following con-
tributions:

We introduce a data augmentation technique for cross-
language clone detection using a transcompiler, which is a
pre-trained deep learning model for source-to-source trans-
lation. We conduct controlled experiments on the widely
used CLCDSA dataset [17] with state-of-the-art deep learning
models for cross-language clone detection. Our experimental
results show that the transcompiler-based data augmentation
can boost the performances of these clone detection models
when trained with the augmented dataset (e.g., we noticed 3%
increase in F1 scores for some models).

Since the transcompiler we exploit uses a semantic-
preserving translation, we examined whether the same level of
performance boost could be achieved by augmented datasets
that are created using simple mutation operations. By exam-
ining the abstract syntax trees (ASTs) of the augmented data
we show that the ASTs for transcompiler augmented data are
more diverse which provides some insights and justification
for its use in the cross-language clone detection setting.

To examine whether transcompilers can aid in extending
the single-language clone detection models for cross-laguage
clone detection, we selected the Graph Matching Network
(GMN), which is a widely used single-language clone de-
tection technique and is known to show high performance
on benchmark datasets [14]. Given a pair of code fragments
written in different languages, the idea here is to first use
transcompilers to transform one of these code fragments to
match the language of the other code fragment, and then to
use a single-language clone detection tool on the new pair.
However, the transformed code obtained from transcompilers
may not always be parsable, and hence, it cannot be directly
fed as an input to GMN. We tackle this challenge by exploit-
ing the srcML parser [22], which allows us to build XML
representations to be used for GMN. Our experimental results
show that the performances of such extended GMN models
may not be the highest, but yet comparable to the cutting-
edge cross-language clone detection models [7] that require
high-end computing resources. This makes GMN an attractive
option in a low-resource environment. Furthermore, this opens
up the opportunity to explore whether the proposed framework
for extending existing single-language clone detection models
could be improved further or leveraged to build better cross-
language clone detection models.

II. BACKGROUND

A. Code Clone

Codes that share syntactic and semantic similarities are
clones of each other. Code fragments that are modified or
transformed through editing have the same functionalities
and are termed syntactic clones. Semantic clones are code
fragments that have major differences in their structure and
have the same meaning or semantics [23], [24]. Clones can
be broadly divided into four types [23], [25], [26]. Type-I:
Identical code fragments with a varying number of comments
and white spaces. Type-II : Code fragments that are equivalent
in syntax with changes in identifier names, literals, types,

layout, and comments. Type-III: Along with Type-I and Type-
II, this type has addition, removal, and/or modification of
statements. Type-IV: Code fragments that have the same
functional behavior but very different syntax.

Software systems that are maintained across different plat-
forms are often developed in different languages. Therefore,
these systems often have code fragments written in different
languages but with the same functionalities. Such code frag-
ments are known as cross-language clones [17]. These clones
can be categorized as Type-IV clones.

B. Source-to-source translation

Transforming codes from one programming language to an-
other language is defined as source-to-source translation. It is
often referred to as transcompilation [27]. There are a few open
source packages such as java2python1, chsarp2python2, cs2j3,
etc for source-to-source translation. These packages work only
for the intended target language and are often unable to
transform code the other way around. A few commercial tools
are also available for high-level source-to-source translation4.
These tools and techniques rely on hand-crafted rules that use
the mapping of keywords and libraries from one language to
another. There exist two well-known pre-trained deep learning
models that can be used for code conversion. One is available
through the Microsoft CodeXGLUE5 project that can convert
between C# and Java code, and the other one is Transcoder,
which is available through Facebook research6 that can convert
among Java, Python, and C++.

C. Pre-trained Models

Pre-trained deep learning models have been successful in
different natural language processing tasks. Among the avail-
able models, BERT [28] and GPT [29] achieved state-of-the-
art results in different downstream tasks. With the inspiring
results from these models, software researchers adopted them
to build models such as CodeBERT [30] and CodeGPT [31].
These models have been in use for different tasks such as code
completion, code search, code summarization, and so on [31].

Transcoder is a pre-trained neural machine translation based
model for code conversion among programming languages
released by Facebook [21]. It uses the sequence-to-sequence
modeling approach [32] with unsupervised learning and ex-
ploits the transformer architecture with attention mechanism
[33]. Transcoder achieved state-of-art accuracy in source-to-
source code translation when compared with the existing
commercial and non-commercial tools.

D. Data Augmentation

Deep learning models heavily rely on data to learn complex
patterns from given data. With limited data, complex models

1https://github.com/natural/java2python
2https://github.Scom/shannoncruey/csharp-to-python
3https://github.com/twiglet/cs2j
4https://www.tangiblesoftwaresolutions.com/converters.html
5https://github.com/microsoft/CodeXGLUE
6https://github.com/facebookresearch/CodeGen

are known to suffer from issues such as over-fitting and the
inability to generalize to other datasets. Providing more data
to the model is one of the fundamental ways to overcome such
challenges [20]. Creating synthetic data to increase dataset size
by manipulating original data is known as data augmentation
[19], which is widely used in computer vision and natural
language processing domains.

E. Mutation Analysis in Code Clones

Mutation is the process of modifying a piece of code to get
another slightly modified version of it. Mutation analysis is
primarily used in software testing [34]. The primary goal is
to introduce bugs in codes for testing. In code cloning, these
operators are used to modify a code fragment to create another
copy [35]. Mutation analysis consists of a set of operations.
These operations include renaming identifiers, insertion or
deletion of a statement, inter-changing loops from one to
another, swapping statements, etc. The mutation operations are
language independent unless replacing one type of control with
another, which is language-specific. Any of these operations
can be used in any sequence to generate any number of
copies of a code fragment. Mutation analysis has been used
to evaluate clone detection tools [36] and generate multiple
copies of a code fragment [37].

F. Graph Matching Network (GMN)

Graph matching network is a graph neural network (GNN)
that takes two homogeneous graph structures and finds the
similarity between them [38]. The goal of GNN model is to
achieve embedding for the nodes of the graph by learning
about the surrounding structure and semantics. Code fragments
inherently have a structure that can be represented as trees
or graphs. In representation learning, GNN learns from its
surrounding neighbors and finds an embedding for each node.
The GMN model has proved to be very effective for clone
detection tasks in single-language settings [14] with a proper
embedding [16]. It takes the advantage of cross-graph attention
to ensure that similar structure remains close in the embedding
space and dissimilar structure spreads away while finding the
global embedding.

III. RELATED WORK

1) Single-Language Clone Detection: Researchers have
mostly been focused on single-language clone detection [39].
Traditional techniques primarily use structural features to
detect single-language clones. Among them, a text-based ap-
proach such as NiCad [40] uses code normalization and text
comparison to detect near-miss clones. Token-based approach
SourcererCC [41] exploits tokens of code blocks to create an
inverted index and compare them to find clones. However, it
only captures information at the lexical level, which limits
its performance. Deckerd [42] uses AST to create clusters of
numeral vector representations of subtrees. These subtrees are
created from the AST of code fragments, and the cluster is
created using the Euclidean distance metric. It is dependent
on pre-defined language-specific rules. These techniques have

been successful in detecting the first three types of clones.
However, these conventional methods could not achieve the
same performance for Type-IV clones [35] due to the inability
to capture the code semantics among code fragments with
different syntax.

The use of deep learning techniques has gained popularity
because of its ability to learn the representation of the seman-
tics of code fragments. White et al. [43] applied deep learning
to reduce the gap between the syntactic and semantics of
code fragments by using both lexical information of identifiers
and structural information of AST. DeepSim [44] encodes
Control Flow Graphs (CFG) to generate semantic metrics for
deep neural networks. However, CFGs lack control and data
flow information at different granular levels. Wang et al. [14]
addressed this issue and proposed a modified AST structure by
adding additional control flow edges to the AST. The authors
combined the modified AST with graph neural network to
successfully detect clones. Another work by Phan et al. [45]
used a graph-based convolution network with CFGs, which
learns semantic features to find software defects.

Ji et al. [46] adapted a graph convolution network with
hierarchical active graphs with an attention mechanism to
distinguish the importance among nodes in the AST. Zhang
et al. [13] proposed an AST-based Neural Network (ASTNN),
which splits ASTs into different sub-tree segments and uses
bidirectional RNN. This method achieved success in both code
classification and clone detection tasks. The recent success of
encoder-decoder models in natural language processing tasks
has paved the way for them in source code analysis applica-
tions. For instance, codeBERT [30] and graphCodeBERT [47]
are built on top of Google’s BERT model and have been used
for multiple code tasks including clone detection.

A. Cross-Language Clone Detection

Only a few methods are known so far for cross-language
clone detection due to the complexity and unavailability of
proper datasets. Cheng et al. [48] proposed CLCMiner, which
uses code revision histories to detect clones. Their method did
not use any intermediate representation and only relied on data
from the version control system. LICCA [49]is another well-
known tool that uses tree-based intermediate representation
and variant of the longest common subsequence algorithm.
Nafi et al. [17] used hand-crafted features to train a siamese
neural network for cross-language clone detection. The authors
provided a cross-language clone dataset in their paper [17].

Mathew et al. [11] used dynamic analysis to detect cross-
language clones. In another study, they studied clone detection
as a special case of code search [50]. This study combines a
generic AST and token-based approach with non-dominating
sorting. Tao et al. [7] proposed C4 that leverages contrastive
learning and exploits the pre-trained codeBERT model. They
experimented with the CLCDSA datasets and achieved state-
of-the-art performance in cross-language clone detection.

B. Source Code Augmentation
With the advent of the deep learning era and the availability

of many big and/or benchmark datasets, deep learning models
have gained a lot of interest from the research community.
Cross-language clone detection is one of the few areas that
lack a proper dataset [7]. Existing techniques rely on small
datasets and are often hand-crafted by the authors [51].

There exists a number of studies that applied data augmen-
tation in the context of code clones. Yu et al. [19] built a
rule-based tool named SPAT for Java which has 18 transfor-
mation rules that can create semantically equivalent codes. The
authors created these transformation rules by observing code
patterns from clone pairs in the widely used BigCloneBench
[52] and OJ datasets [53]. The significant similarity in clone
pairs enabled the authors to extract patterns from them.

Transforming codes to generate adversarial examples is
often used to test a model’s robustness. Zhang et al. [54] used
renaming techniques to attack code processing models. Models
trained with these adversarial examples showed improvement
in classification tasks and robustness of the model. Deepbugs
[55] introduced a bug-inducing pattern in the code and pro-
posed a name-based learning approach that detects bugs. It
was very specific and limited to bug detections. Compton et al.
[56] trained a model with obfuscated codes. This obfuscation
of variable renaming showed a decline in the performance
of the model in the method-name prediction task though the
embedding showed better preservation of semantics.

All existing research on source code augmentation used
rule-based transformations that require manual investigation
and human intervention. Such manual procedure often intro-
duces systematic bias [57], which jeopardizes the effectiveness
of the process. Additionally, none of these transformation
techniques focus on augmenting the dataset and are not built
on top of any deep learning models. Our research is different
from the studies mentioned in several aspects such as using
the existing knowledge of transcompilers to augment data and
extending single-language clone detection models for cross-
language clone detection, which are both natural concepts that
have not yet been explored in the literature.

IV. RESEARCH METHODOLOGY

A. Problem Formulation
We deal with two dimensions of cross-language clone

detection: (a) the clone detection task and (b) improving the
deep learning based cross-language clone detection models
through data augmentation.

Clone detection is formulated as a binary classification
problem. Given two code fragments Fi and Fj , we define
a clone pair (Fi, Fj) and associate a label Lij . A clone pair
label is true when there are significant similarities between the
fragments; otherwise, the label is false. A similarity score, Sij

is calculated on the pair (Fi, Fj), and the pair is true clone
when Sij is larger than a threshold value [58]. This similarity
is based on the syntax or semantics of the code fragments.
A pair of code fragments can only be called clones when we
obtain a similarity score above the threshold.

Fig. 2. Overview of our approach to data augmentation and model training.

Improving a model’s performance via data augmentation is
formulated from the dataset perspective. Assume that D is
a given dataset D, and a model M has an F1 score of s
on D. If we can augment the dataset D by an amount X ,
train the model M on D +X , and get an F1 score of s+ t,
then the difference in F1 score is t, which we refer to as the
improvement obtained by the augmentation. Note that in both
cases the test dataset is the same, which is kept separate and
thus not augmented.

Figure 2 illustrates the overall approach of our study while
examining the impact of data augmentation on cross-language
clone detection models. First, we convert each code fragment
from the original dataset to get another version of it in another
language (e.g., Java to Python and vice versa). Second, the
original code fragments and the transcompiled fragments are
stored in a database to be used for the assessment of the impact
of augmentation. Third, the models are trained in two different
ways, one that only uses the original dataset and the other
using the augmented dataset. Here we compute the model
accuracies and compare them to compute the impact of data
augmentation.

B. Data Augmentation using Transcoder

In our study, we are particularly interested in generating data
for cross-language clone detection models. We used source-
to-source translation for this task. To create more data, we
leveraged the pre-trained model, Transcoder, to convert codes
from one language to another. In our dataset, we had Java and
Python. Consequently, we converted all Java codes to Python
and Python codes to Java. Since the Transcoder is a pre-
trained deep learning model, it is very effective and efficient
in generating fragments that share the same semantics as the
original ones. Moreover, the pattern learned by the pre-trained
models is not based on hand-crafted rules. As a result, the
kind of codes it generates are diverse in nature. The details
about semantic, syntactic, and computational correctness of
the generated codes can be found in [21].

C. Mutation Based Augmentation

We created another dataset by transforming code fragments
using mutation operations to see how the extent of its impact
compares with the ones obtained using Transcoder based aug-
mentation. The operation includes insertion, deletion, swap,

Fig. 3. Graph matching network combined with a transcompiler.

TABLE I
SUMMARIES OF ORIGINAL DATASET

AtCoder(AtC) GoogleCodeJam(GCJ)
Metric Java Python Java Python
#Problems 1095 1028 261 223
#Average Lines 55 19 73 57
#Parsable Fragments 14838 14703 4341 1121
#Unparsable Fragments 620 11 5 2471

duplication of statements, comments, and change in operators
[35], [36]. We chose these transformations based on how
different types of clones are defined and categorized. For ex-
ample, comments and white spaces are the only differences for
Type I clones. Similarly, insertion, deletion, and modification
of statements fall into Type III clones. We chose the operations
with random order and frequency. These changes were made
at random locations in the code fragment [36].

D. GMN with Transcompiler

To demonstrate how transcompiler could be used to extend
single-language clone detection tools for cross-language set-
tings, we leverage graph matching network (GMN). GMN
is a single-language clone detection model that achieved
superior single-language clone-detection performances for all
four types of clones [14]. Furthermore, it exploits both the
structure and semantics of code fragments which makes it
more robust for source code analysis.

Figure 3 depicts the steps of using GMN with Transcoder.
GMN can only match homogeneous structures, and the em-
bedding space is based on the textual information of tokens
for each node. As a result, different structures and texts
would generate very different embedding in GMN. We chose
Java as the target language for this reason. First, we pass
the Python code fragment from a pair through Transcoder
to get the converted code representation in Java. Then both
of the fragments are passed through srcML to create the
AST representation. We use this representation to train the
model. We can test it against any fragment following the same
conversion steps once the model is trained.

E. Models and Datasets

The cross-language clone detection models that we used
in our experiments are CLCDSA and C4, and the single-
language model that we chose to extend to the cross-language

TABLE II
SUMMARIES OF TRANSCOMPILED DATASET

AtCoder(AtC) GoogleCodeJam(GCJ)
Metric Java Python Java Python
#Problems 1027 1086 221 258
#Average Lines 14 32 25 45
#Parsable Fragments 10024 5574 1989 1550
#Unparsable Fragments 4684 2620 1578 2620

setting is GMN. Figure 4 shows the structures of these
models at a high level. We used the popular dataset from
the paper that introduced the cross-language clone detection
model called CLCDSA [17]. We will refer to this dataset
as CLCDSA dataset for convenience. The dataset consists of
code fragments from three programming contests that include
AtCoder7, Google CodeJam8, and CoderByte9. AtCoder is a
programming contest website that originated in Japan, and
CodeJam is Google’s programming competition. The data for
CoderByte is not available in their replication package.

We chose code fragments of Java and Python programming
languages for this study. The study is challenging because
these two languages follow different paradigms, such as Java
is a statically-typed language, and Python is a dynamically-
typed language. There are about thirty-eight thousand Java
and Python code fragments in the original dataset. We used
Transcoder to convert code fragments from the original dataset
to get another transcompiled version of it. We create the
augmented dataset by combining this data with the original
dataset. The summary statistics for original data are given in
Table I, and the information regarding transcompiled data is
shown in Table II. Both of the datasets have many unparsable
code fragments.

We followed the pair creation procedure of CLCDSA [17].
Code fragments from the same problem are identified as
clones, and code fragments from different problems are non-
clones. We had 312,581 clone and non-clone pairs in the
original dataset and 1,130,998 in the augmented dataset.

We created a smaller version of the dataset by filtering out
fragments of less than six lines which is often considered as
the minimum granularity for functional clone [40]. Then we
randomly selected 60% of these code fragments to create clone
pairs, which we will refer to as the ‘sample dataset’. This
sample dataset is around one-third of the original dataset and
consists of 134,623 pairs. All code fragments from the sample
dataset were converted using Transcoder. These converted
fragments were combined with sample dataset to create the
augmented sample dataset. The augmented sample dataset
consists a total of 825,050 pairs.

To augment the dataset, clone/non-clone pairs were created
after combining the original code fragments with the new
TransCoder generated code fragments. We selected 20% ran-
dom pairs from these new pairs and combined them with the
pairs from the original dataset. As a result, this augmentation

7https://atcoder.jp/
8https://codingcompetitions.withgoogle.com/codejam
9https://coderbyte.com/

Fig. 4. Deep learning models in our study. CLCDSA and C4 are existing models for cross-language clone detection. GMN is combined using a transcompiler.

process increased the datasets by 20% for both the original
dataset and sample dataset.

We split the data into 8:1:1 ratio for train, validation, and
test set [7], [14], [17]. Since binary classification can be
biased with an imbalanced number of items for each class, we
maintained a 1:1 ratio for clone and non-clone pairs across
all models. We followed the standard procedure to select an
equal number of clone and non-clone pairs randomly [7]. The
models in this study have also used the same ratio and have
been trained through this procedure to ensure data balance and
reduce bias [7], [14], [17]. We followed the same procedure
while creating the other augmented dataset with the mutation-
based code transformations.

F. Evaluation Metrics

Precision, recall, and F1 score are the most widely used
[7], [14] metrics for clone detection tasks, which are defined
as follows.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1score =
2× Precision×Recall

Precision+Recall
(3)

Here, TP is the number of clones classified correctly, and
TN is the non-clones classified correctly. FP stands for non-
clones that were mistaken as clones, and FN is clones that
were classified as non-clones by the model. Since Transcom-
piler merely provides us with a code representation, the values

of these metrics depend on the clone detection models. We use
F1 score as the ultimate measure for model evaluation.

G. Experimental Settings

We used the Transcoder model10 specifically trained with
deobfuscation objectives for Java and Python. We used the
default settings for the Transcoder as stated in the original
paper [21]. We followed the settings in CLCDSA [17] for
filtering out clones and non-clones to prepare the dataset. We
followed the settings mentioned in the respective papers to
train the models [17], [7], [14].

In the case of C4, we choose a batch size of 4. We
replicated the model with the original dataset provided in the
replication package and this setting and found less than 1%
disagreement between the results. We trained and tested the
models following existing literature [7], [14] on a machine
using RTX-3080ti. Our codes and datasets are available here.

V. RESULTS

A. Answering RQ1: Impact of data augmentation through
source-to-source translation

To answer the first research question, we divided the clone
detection techniques into two groups. The first three techniques
in Table III are the deep learning techniques (DL models)
used in this study. The last row shows the non-machine
learning (non-ML) approaches. Among the deep learning
techniques, CLCDSA has been considered as a reasonable
standard baseline, and C4 is the state-of-the-art cross-language
clone detection model [50], [7]. The GMN model is the

10https://github.com/facebookresearch/CodeGen

https://github.com/subrotonpi/clone_transcompiler

TABLE III
RESULTS ON ORIGINAL DATASET. THE FIRST ROW SHOWS THE DEEP

LEARNING MODELS AND THE SECOND ROW SHOWS NON-ML MODELS

Model Precision Recall F1

DL Models
CLCDSA 0.49 0.99 0.66
C4 0.95 0.96 0.96
GMN 0.90 0.92 0.91

Non-ML
Models

CLCMiner 0.36 0.57 0.44
COSAL 0.55 0.89 0.68

TABLE IV
RESULTS ON AUGMENTED DATASET. DELTA SHOWS THE DIFFERENCE

WITH ORIGINAL DATASET IN F1 SCORE FROM (TABLE III)

Model Precision Recall F1 ∆
CLCDSA 0.53 0.98 0.69 3%
C4 0.97 0.99 0.98 2%
GMN 0.93 0.95 0.94 3%

adapted single-language clone detection model for cross-
language clone detection.

We trained each model with original and augmented
datasets. We also trained with the smaller version of each
dataset to understand the degree of impact on the models over
dataset size. As a result, this combination makes four sets of
datasets in total. Table III shows the precision, recall, and F1
score for each of the DL models we trained with the original
dataset. Among the models, C4 has the best precision and
F1 score, and CLCDSA has the highest recall score. Table
IV shows the scores for these models when trained with the
augmented dataset. All of the models show an improvement of
2% to 3% in terms of F1 score. CLCDSA and GMN showed
a higher increase compared to C4 in the F1 score.

Table V shows that for the smaller sample dataset (as
described in Section IV-E). Model C4 again has the highest F1
score and CLCDSA still maintains its high recall value. Table
VI shows the result on the augmented sample dataset. In this
case, CLCDSA and GMN show a 2% increase in the F1 score.
The overall F1 scores for all models and the performance
boosts appear to be small when compared to the results on
the original dataset, which is expected as the performances
of deep learning models often suffer from the lack of data.
However, in all cases, the results show that the Transcoder-
based data augmentation can effectively improve the clone
detection performances of the deep learning models.

In summary, our experimental results show that the
transcompiler-based data augmentation can substantially in-
crease deep learning models’ performance for cross-language
clone detection (e.g., for some models the F1 score improves
about 3% on benchmark dataset).

B. Answering RQ2: Comparing mutation based augmentation
with transcompiler based augmentation

We found that augmentation with source-to-source transla-
tion worked well for both large and small datasets. However, at
this point, a natural question is whether we could find the same
level of performance boost using simple mutation based data

TABLE V
RESULTS ON SAMPLE DATASET

Model Precision Recall F1
CLCDSA 0.50 0.99 0.66
C4 0.92 0.95 0.93
GMN 0.89 0.91 0.90

TABLE VI
RESULTS ON AUGMENTED SAMPLE DATASET. DELTA IS THE DIFFERENCE

IN F1 SCORE FROM (TABLE V)

Model Precision Recall F1 ∆
CLCDSA 0.54 0.93 0.68 2%
C4 0.93 0.96 0.94 1%
GMN 0.91 0.93 0.92 2%

augmentation. To answer this research question, we examined
the performances [36] of the models on the mutation based
augmented dataset. We followed the methodology described
earlier (Section IV-E) to create the mutation based augmented
dataset, and re-trained all of the models. We also created a
smaller sample of this dataset and maintained the same number
of pairs and the ratio between clone and non-clone pairs as
we did for RQ1.

TABLE VII
RESULTS ON MUTATION BASED DATASET. DELTA IS THE CHANGE IN F1
SCORE COMPARED WITH TRANSCOMPILER APPROACH (TABLE IV, VI)

Dataset Size Model Precision Recall F1 ∆

Original
CLCDSA 0.52 0.97 0.68 -1%
C4 0.97 0.98 0.97 -1%
GMN 0.89 0.90 0.91 -3%

Small
sample

CLCDSA 0.50 0.98 0.67 -1%
C4 0.930 0.944 0.936 -0.4%
GMN 0.88 0.90 0.89 -3%

The rightmost column shows the change in the F1 score
for the mutated dataset compared to our transcompiler based
approach. It is evident from Table that for all models, per-
formance decreased from 1% to 3% in the case of a larger
dataset, and it dropped 3% for GMN for the smaller sample
dataset. C4 managed to perform almost similar for both the
original dataset and the smaller sample dataset. In the case
of the original dataset, it shows only a decline of 1% while
maintaining high accuracies. We believe that the power of C4
lies in the CodeBERT model, as it is primarily dependent on
the token sequences instead of the structure or semantics of
code fragments.

We further investigate the reason why mutation based aug-
mentation fails to provide a performance boost whereas the
transcompiler based approach appears to work.

Why does the Transcompiler Based Approach Work?

To this end, we believe the quality of data impacts a
model’s performance to a large extent. Although mutation
based modification of source codes does not hamper the
token quality, it may create unparsable code, and alternate
the syntax and sequence of execution. Consequently, it affects
the AST tree structure. Therefore, it may initially appear that

TABLE VIII
AST DISTANCE STATISTICS.

Dataset Size Original Transcompiled Mutated

Large
Mean 17.93 16.53 17.85
SD 0.244 0.384 0.277

Small
Mean 17.94 16.55 17.86
SD 0.249 0.407 0.281

TABLE IX
MEAN ABSOLUTE DIFFERENCE BETWEEN THE AVERAGE ROOT-TO-LEAF

DISTANCES FOR THE ASTS CORRESPONDING TO THE ORIGINAL AND
NEWLY CREATED CODE FRAGMENTS

Original vs. Transcompiled Original vs. Mutated
Mean 1.3 0.09
SD 0.37 0.17

the new code fragments that are created by the mutation
based augmentation are more diverse than the ones created
by the transcompiler based approach. To examine this we
computed the ASTs of all the code fragments and computed a
similarity score between ASTs obtained from the original code
and augmented code. Specifically, we compared the metric
average root-to-leaf distance for the ASTs (i.e., the mean of
the distances from the root to all leaf nodes for each ASTs),
as shown in Table VIII.

Contrary to the initial assumption, we now can see that
the variation appears to be more in the transcompiler based
augmented data compared to the mutation based augmented
dataset. We investigated the reason for this and found the
code generated from Python to Java by Transcoder is shorter
compared to the mutated fragments (Java to Java). The AST
lengths are quite similar to the original code in case of random
perturbation unless many statements were added and deleted.
Figure 5 shows examples of a code fragment that can read
a text file. When it is transcompiled from Java to Python
using Transcoder, the number of lines is reduced. As evident
from the last fragment in the example, the random application
of the mutation operation modifies the code by deleting and
swapping some lines of code. Lines 6 and 7 from (a) were
swapped and lines 3 and 9 were deleted by the operations. This
observation shows that the data produced by transcompilers are
more diverse in nature. These code fragments have inherent
variation in their structure since the pre-trained model was
trained on a large corpus of real-world data. This tends to
capture more variation from the data and use that in inference.
This explains the success of transcompiler based approach
to some extent as removing redundancies and increasing the
diversity in datasets tends to improve the performance of
machine learning models [59].

In summary, the mutation-based data augmentation may
not boost the model performances and thus careful data
augmentation such as Transcoder based ones are important.
A potential reason for the success of Transcoder based data
augmentation is their capability of increasing data diversity
while preserving the code semantics.

TABLE X
RESULTS ON ONLY PARSABLE CODES VS. ALL.

Parser Metrics Original Dataset Augmented Dataset

Only
Parsable

Precision 0.90 0.92
Recall 0.92 0.94

F1 0.91 0.93

All
Precision 0.90 0.93

Recall 0.92 0.95
F1 0.91 0.94

C. Answering RQ3: Extending single-language model for
cross-language clone detection

Here we examined GMN in more detail. Recall that al-
though GMN is known to provide high accuracy for single-
language settings, it has not previously been used for cross-
language clone detection. Our experiment shows GMN out-
performed the baseline model CLCDSA by a high margin.
It showed a very robust result, for all the cases examined
in Tables III–IV. Since GMN relies on the code structure
more than the other two models, it showed a larger decline in
performance when used with the mutation based augmentation
method. The original implementation of GMN did not consider
unparsable codes. We exploited srcML11 parser to create
a graph for all types of codes generated by transcompiler
irrespective of whether they are parsable or not.

Table X shows the results on original and augmented
datasets. The top rows show the result obtained using only the
code fragments that were parsable and the bottom rows show
the result for all code fragments (i.e., including unparsable
ones). We can see for augmentation, taking all types of code
fragments helped GMN to learn better representations.

GMN takes significantly less time than C4. The reason is
the number of parameters and fine-tuning time required by
CodeBERT [30]. The number of trainable parameters for GMN
is 123,101, whereas C4 has 172,503,552, which is 1401 times
higher. To train the models, GMN takes around one-fourth
time of C4. Hence we believe that GMN can be an excellent
choice in a resource-constraint environment and it now appears
as a competitive candidate to be examined further for cross-
language clone detection in future research.

In summary, our results show that single-language clone de-
tection models may be used in a combination with transcom-
pilers to create a pipeline for effective cross-language clone
detection. However, such an adaptation may require addi-
tional steps depending on the specifications of the single-
language clone detection models being extended.

VI. DISCUSSION

A. Generalizability of Our Approach

The quality of the data augmentation using source-to-source
translation depends on the choice of transcompiler. This study
considered only Java and Python programming languages as
a use case. These two languages are way different from one

11https://www.srcml.org/about.html

1 public static readTextFile() {
2 try {
3 File f = new File("textfilename.txt");
4 Scanner sc = new Scanner(f);
5 while(sc.hasNextLine()) {
6 String st = sc.nextLine();
7 System.out.println(st);
8 }
9 sc.close();

10 } catch(FileNotFoundException e) {
11 e.printStackTrace();
12 }
13 }

(a) Java code for reading a text file

1 def read_textfile() :
2 with open('textfilename.txt', 'r') as f :
3 with f :
4 for st in f :
5 print(st)

(b) Python code by Transcoder

1 public static readTextFile() {
2 try {
3 Scanner sc = new Scanner();
4 while(sc.hasNextLine()) {
5 System.out.println(st);
6 String st = sc.nextLine();
7 }
8 } catch(FileNotFoundException e) {
9 e.printStackTrace();

10 }
11 }

(c) Java code by mutation

Fig. 5. Example of codes modified differently. The code in (b) is transcom-
piled through Transcoder from (a), and code in (c) is generated by applying
random mutation operations.

another compared to the languages such as C# and C++ which
have more lexical features in common. The performance of
the Transcoder depends on the agreement of the dynamic or
static nature of the taken languages. The more common char-
acteristics two different language shares, the better outcome
is possible from the Transcoder. However, TransCoder is a
pre-trained model and it can convert a code fragment with a
fraction of a second and therefore, can be used for large-scale
clone detection tasks.

We showed that our approach is efficient as the pre-trained
model does not require any kind of fine-tuning and can be
used for inference directly for code conversion. Moreover, the
amount of time required for model inference is negligible.
These characteristics make this approach ideal and generalized
for cross-language data augmentations. Our experimental re-
sults show consistent improvements for all models even when
they already achieved over 90% F1 score. This indicates that
practitioners may want to use such data augmentation tech-
niques to their fullest potential. Additionally, the experimental
result also shows success in the adaption of a single-language
clone detection model through the aid of a transcompiler.
Although we chose a specific graph neural network for this
task, the concept generalizes to other deep learning based
single-language clone detection model.

B. Threats to validity

Our method relies on a pre-trained Transcoder model. We
used it to convert code fragments from one language to another
language. This may introduce the inherent bias in our study.
Transcoder is trained on a large corpus of codes. It outputs
varied levels of computationally correct codes depending
on the choice of programming language. In our technique,
the languages that could be supported are limited by the
ones supported by the transcompilers. Nevertheless, the rapid
development of pre-trained models and different fine-tuning
approaches for transcompilers may overcome these limitations.

We used the dataset provided by CLCDSA paper [17],
which is collected from programming competitions. As a con-
sequence, they can be very different from real-world software
systems. Moreover, many of these problems are complex, and
the solutions require a well-thought approach. Therefore, the
code fragments are likely to be diverse both syntactically and
semantically. Hence it would be interesting to explore our
proposed method in real-life software systems.

We considered only two languages for our study whereas
the original dataset has code fragments from more languages.
We observed that other studies considered different sets
of programming languages from this dataset. For example,
CLCDSA [17] used three languages in their study, C4 used
four languages [7], and COSAL [50] used only Java and
Python. Examining how the performances vary across different
languages could be an interesting avenue for future research.

VII. CONCLUSION

Clone detection is a widely studied field in software en-
gineering research. However, techniques for cross-language
clone detection are not extensively explored compared to
their single-language counterpart. Here we proposed a novel
data augmentation technique that uses a transcompiler (a pre-
trained deep learning model for source-to-source translation)
for cross-language clone detection. Our experiment shows that
such data augmentation improves the performances of cutting-
edge cross-language clone detection models. We also exploited
a single-language model for detecting cross-language clones
through source-to-source translation. The performance of the
single-language model surpassed the current baseline by a
large margin. This opens up an opportunity to further examine
single-language clone detection models to understand how the
transcompilers could be combined more effectively to achieve
even better cross-language clone detection performances. In
the future, we envision applying explainable AI techniques
to further explain the power of data augmentation and to
develop techniques to select the augmented data appropriately
to further enhance the effectiveness of our approach.

VIII. ACKNOWLEDGEMENT

This work was supported by NSERC Discovery, CFI-JELF,
and NSERC CREATE graduate program on Software Analyt-
ics Research (SOAR) grants.

REFERENCES

[1] M. F. Zibran, R. K. Saha, M. Asaduzzaman, and C. K. Roy, “Analyzing
and forecasting near-miss clones in evolving software: An empirical
study,” in 2011 16th IEEE international conference on engineering of
complex computer systems, pp. 295–304, IEEE, 2011.

[2] I. D. Baxter and C. W. Pidgeon, “Software change through design main-
tenance,” in 1997 Proceedings International Conference on Software
Maintenance, pp. 250–259, IEEE, 1997.

[3] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272), pp. 368–
377, 1998.

[4] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto, “Soft-
ware quality analysis by code clones in industrial legacy software,” in
Proceedings Eighth IEEE Symposium on Software Metrics, pp. 87–94,
2002.

[5] A. Hanjalić, “Clonevol: Visualizing software evolution with code
clones,” in 2013 First IEEE Working Conference on Software Visual-
ization (VISSOFT), pp. 1–4, IEEE, 2013.

[6] D. Mondal, M. Mondal, C. K. Roy, K. A. Schneider, Y. Li, and S. Wang,
“Clone-world: A visual analytic system for large scale software clones,”
Visual Informatics, vol. 3, no. 1, pp. 18–26, 2019.

[7] C. Tao, Q. Zhan, X. Hu, and X. Xia, “C4: Contrastive cross-language
code clone detection,” in 2022 30th IEEE/ACM International Conference
on Program Comprehension (ICPC), pp. 413–424, 2022.

[8] J. H. Johnson, “Visualizing textual redundancy in legacy source.,” in
CASCON, vol. 94, pp. 9–18, Citeseer, 1994.

[9] T. Diamantopoulos and A. Symeonidis, “Employing source code in-
formation to improve question-answering in stack overflow,” in 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories,
pp. 454–457, IEEE, 2015.

[10] P. Mayer, M. Kirsch, and M. A. Le, “On multi-language software
development, cross-language links and accompanying tools: a survey
of professional software developers,” Journal of Software Engineering
Research and Development, vol. 5, pp. 1–33, 2017.

[11] G. Mathew, C. Parnin, and K. T. Stolee, “SLACC: Simion-based
language agnostic code clones,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, pp. 210–221, 2020.

[12] L. Nichols, M. Emre, and B. Hardekopf, “Structural and nominal cross-
language clone detection,” in International Conference on Fundamental
Approaches to Software Engineering, pp. 247–263, Springer, 2019.

[13] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pp. 783–794, IEEE, 2019.

[14] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting code clones with
graph neural network and flow-augmented abstract syntax tree,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pp. 261–271, IEEE, 2020.

[15] S. B. Ankali and L. Parthiban, “Detection and classification of cross-
language code clone types by filtering the nodes of antlr-generated parse
tree,” International Journal of Intelligent Systems and Applications,
vol. 13, no. 3, pp. 43–65, 2021.

[16] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to rep-
resent programs with graphs,” in International Conference on Learning
Representations, 2018.

[17] K. W. Nafi, T. S. Kar, B. Roy, C. K. Roy, and K. A. Schneider, “Clcdsa:
cross language code clone detection using syntactical features and api
documentation,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 1026–1037, IEEE, 2019.

[18] D. Perez and S. Chiba, “Cross-language clone detection by learning over
abstract syntax trees,” in 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), pp. 518–528, IEEE, 2019.

[19] S. Yu, T. Wang, and J. Wang, “Data augmentation by program transfor-
mation,” Journal of Systems and Software, vol. 190, p. 111304, 2022.

[20] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmen-
tation for deep learning,” Journal of big data, vol. 6, no. 1, pp. 1–48,
2019.

[21] B. Roziere, M.-A. Lachaux, L. Chanussot, and G. Lample, “Unsu-
pervised translation of programming languages,” Advances in Neural
Information Processing Systems, vol. 33, 2020.

[22] M. L. Collard, M. J. Decker, and J. I. Maletic, “srcML: An infrastructure
for the exploration, analysis, and manipulation of source code: A tool
demonstration,” in 2013 IEEE International Conference on Software
Maintenance, pp. 516–519, IEEE, 2013.

[23] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” Queen’s School of Computing TR, vol. 541, no. 115, pp. 64–
68, 2007.

[24] F. Al-Omari, C. K. Roy, and T. Chen, “Semanticclonebench: A semantic
code clone benchmark using crowd-source knowledge,” in 2020 IEEE
14th International Workshop on Software Clones (IWSC), pp. 57–63,
IEEE, 2020.

[25] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions on
software engineering, vol. 33, no. 9, pp. 577–591, 2007.

[26] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in 2015 IEEE international conference on software
maintenance and evolution (ICSME), pp. 131–140, IEEE, 2015.

[27] W. S. El-Kassas, B. A. Abdullah, A. H. Yousef, and A. M. Wahba,
“Enhanced code conversion approach for the integrated cross-platform
mobile development (icpmd),” IEEE Transactions on Software Engineer-
ing, vol. 42, no. 11, pp. 1036–1053, 2016.

[28] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), (Minneapolis, Minnesota),
pp. 4171–4186, Association for Computational Linguistics, June 2019.

[29] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[30] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A pre-trained model for
programming and natural languages,” in Findings of the Association
for Computational Linguistics: EMNLP 2020, (Online), pp. 1536–1547,
Association for Computational Linguistics, Nov. 2020.

[31] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang, G. Li, L. Zhou, L. Shou,
L. Zhou, M. Tufano, M. GONG, M. Zhou, N. Duan, N. Sundaresan,
S. K. Deng, S. Fu, and S. LIU, “CodeXGLUE: A machine learning
benchmark dataset for code understanding and generation,” in Thirty-
fifth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 1), 2021.

[32] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” Advances in neural information processing
systems, vol. 27, 2014.

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[34] J. S. Bradbury, J. R. Cordy, and J. Dingel, “Comparative assessment
of testing and model checking using program mutation,” in Testing:
Academic and Industrial Conference Practice and Research Techniques-
MUTATION (TAICPART-MUTATION 2007), pp. 210–222, IEEE, 2007.

[35] C. K. Roy and J. R. Cordy, “A mutation/injection-based automatic frame-
work for evaluating code clone detection tools,” in 2009 international
conference on software testing, verification, and validation workshops,
pp. 157–166, IEEE, 2009.

[36] J. Svajlenko and C. K. Roy, “The mutation and injection framework:
Evaluating clone detection tools with mutation analysis,” IEEE Trans-
actions on Software Engineering, vol. 47, no. 5, pp. 1060–1087, 2019.

[37] Y. Fujiwara, N. Yoshida, E. Choi, and K. Inoue, “Code-to-code search
based on deep neural network and code mutation,” in 2019 IEEE 13th
International Workshop on Software Clones (IWSC), pp. 1–7, IEEE,
2019.

[38] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,” in
International conference on machine learning, pp. 3835–3845, PMLR,
2019.

[39] M. Lei, H. Li, J. Li, N. Aundhkar, and D.-K. Kim, “Deep learning
application on code clone detection: A review of current knowledge,”
Journal of Systems and Software, vol. 184, p. 111141, 2022.

[40] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization,”

in 2008 16th IEEE international conference on program comprehension,
pp. 172–181, IEEE, 2008.

[41] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“Sourcerercc: Scaling code clone detection to big-code,” in Proceedings
of the 38th International Conference on Software Engineering, pp. 1157–
1168, 2016.

[42] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in 29th International
Conference on Software Engineering (ICSE’07), pp. 96–105, IEEE,
2007.

[43] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep learning
code fragments for code clone detection,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 87–98, IEEE, 2016.

[44] G. Zhao and J. Huang, “Deepsim: deep learning code functional similar-
ity,” in Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 141–151, 2018.

[45] A. V. Phan, M. Le Nguyen, and L. T. Bui, “Convolutional neural
networks over control flow graphs for software defect prediction,”
in 2017 IEEE 29th International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 45–52, IEEE, 2017.

[46] X. Ji, L. Liu, and J. Zhu, “Code clone detection with hierarchical atten-
tive graph embedding,” International Journal of Software Engineering
and Knowledge Engineering, vol. 31, no. 06, pp. 837–861, 2021.

[47] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu, et al., “Graphcodebert: Pre-training code repre-
sentations with data flow,” arXiv preprint arXiv:2009.08366, 2020.

[48] X. Cheng, Z. Peng, L. Jiang, H. Zhong, H. Yu, and J. Zhao, “Clcminer:
detecting cross-language clones without intermediates,” IEICE TRANS-
ACTIONS on Information and Systems, vol. 100, no. 2, pp. 273–284,
2017.

[49] T. Vislavski, G. Rakić, N. Cardozo, and Z. Budimac, “Licca: A tool for
cross-language clone detection,” in 2018 IEEE 25th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
pp. 512–516, IEEE, 2018.

[50] G. Mathew and K. T. Stolee, “Cross-language code search using static
and dynamic analyses,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 205–217, 2021.

[51] N. D. Bui, L. Jiang, and Y. Yu, “Cross-language learning for program
classification using bilateral tree-based convolutional neural networks,”
in Workshops at the Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[52] J. Svajlenko and C. K. Roy, “Bigclonebench,” in Code Clone Analysis,
pp. 93–105, Springer, 2021.

[53] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Thirtieth AAAI conference on artificial intelligence, 2016.

[54] H. Zhang, Z. Li, G. Li, L. Ma, Y. Liu, and Z. Jin, “Generating adversarial
examples for holding robustness of source code processing models,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 1169–1176, 2020.

[55] M. Pradel and K. Sen, “Deepbugs: A learning approach to name-based
bug detection,” Proceedings of the ACM on Programming Languages,
vol. 2, no. OOPSLA, pp. 1–25, 2018.

[56] R. Compton, E. Frank, P. Patros, and A. Koay, “Embedding java
classes with code2vec: Improvements from variable obfuscation,” in
Proceedings of the 17th International Conference on Mining Software
Repositories, pp. 243–253, 2020.

[57] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu, “Fair and balanced? bias in bug-fix datasets,” in Proceedings
of the 7th joint meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 121–130, 2009.

[58] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,”
in 2014 IEEE International Conference on Software Maintenance and
Evolution, pp. 476–480, IEEE, 2014.

[59] Z. Gong, P. Zhong, and W. Hu, “Diversity in machine learning,” IEEE
Access, vol. 7, pp. 64323–64350, 2019.

	I Introduction
	II Background
	II-A Code Clone
	II-B Source-to-source translation
	II-C Pre-trained Models
	II-D Data Augmentation
	II-E Mutation Analysis in Code Clones
	II-F Graph Matching Network (GMN)

	III Related Work
	III-1 Single-Language Clone Detection
	III-A Cross-Language Clone Detection
	III-B Source Code Augmentation

	IV Research Methodology
	IV-A Problem Formulation
	IV-B Data Augmentation using Transcoder
	IV-C Mutation Based Augmentation
	IV-D GMN with Transcompiler
	IV-E Models and Datasets
	IV-F Evaluation Metrics
	IV-G Experimental Settings

	V Results
	V-A Answering RQ1: Impact of data augmentation through source-to-source translation
	V-B Answering RQ2: Comparing mutation based augmentation with transcompiler based augmentation
	V-C Answering RQ3: Extending single-language model for cross-language clone detection

	VI Discussion
	VI-A Generalizability of Our Approach
	VI-B Threats to validity

	VII Conclusion
	VIII Acknowledgement
	References

