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Abstract—It is important to identify the change point of a
system’s health status, which usually signifies an incipient fault
under development. The One-Class Support Vector Machine (OC-
SVM) is a popular machine learning model for anomaly detection
and hence could be used for identifying change points; however,
it is sometimes difficult to obtain a good OC-SVM model that
can be used on sensor measurement time series to identify the
change points in system health status. In this paper, we propose
a novel approach for calibrating OC-SVM models. The approach
uses a heuristic search method to find a good set of input data
and hyperparameters that yield a well-performing model. Our
results on the C-MAPSS dataset demonstrate that OC-SVM can
also achieve satisfactory accuracy in detecting change point in
time series with fewer training data, compared to state-of-the-
art deep learning approaches. In our case study, the OC-SVM
calibrated by the proposed model is shown to be useful especially
in scenarios with limited amount of training data.

Index Terms—Support vector machine, change point detection

I. INTRODUCTION

In system health monitoring, it is important to identify the
change point, which usually signifies an incipient fault under
development [1]. Change point detection aims to find out
when a system starts to shift away from its normal health
condition into a faulty state. From a preventive maintenance
perspective, it indicates that a maintenance action should be
taken soon to intervene the degradation process in order to
avoid further damage [2]. Although system degradation is
a gradual and complicated process, its development can in
general be segmented into four discrete stages [3]: 1) normal
degradation, 2) transition region, 3) accelerated degradation,
and 4) failure; see Fig. 1 for a detailed illustration. We are
interested in locating the transition region, a.k.a. the “knee” of
the trajectory of the degrading health index.

In practice, change point detection is often a challenging
task, especially in Cyber-Physical System (CPS) applications.
As pointed out by authors of [4], conventional change point
detection models are often based on strong prior assumptions
about the generative process that produces the observed data;
however, the assumptions may not hold true for actual systems,

which results in unsatisfactory performance of such methods.
As another approach to tackle this challenge, various learning-
based approaches have also been employed to distinguish
different states in time series data. These approaches can be
generally classified into supervised and unsupervised learning
methods. In supervised learning, each data point is associated
with a label that tells the category the point belongs to. Based
on the supervisory information, a supervised learning algorithm
infers a decision function that can be used to assign labels to
data points; ideally, the learned decision function can generalize
well to unseen new data points. In the Fault Detection and
Diagnosis (FDD) literature, supervised methods have been
shown to be effective at distinguishing healthy and faulty
states, when labels for training data are available. In fact,
in real applications it is very difficult to obtain labels that
accurately indicate the change point locations of training
data, making it a challenge to apply supervised methods
for change point detection. Even if we have detected the
existence of faults, we do not know when the fault starts to
develop. Unsupervised approaches, e.g. One-Class Support
Vector Machine (OC-SVM) [5] and autoencoders [6], are
more suitable in such scenarios where there are not enough
labeled data for differentiating a system’s health status. Still,
in OC-SVM and autoencoder approaches, we need to provide
a training dataset that comprise of mostly fault-free data.
In addition, the choice of hyperparameter may also greatly
impact the model’s performance. Without labeled data for cross-
validation, it is a challenging task to select the input data and
the hyperparameters.

In this paper, we address these challenges by proposing a
heuristic approach for calibrating OC-SVM models. During the
calibration, besides the hyperparameters, we also controlled
how much training data is used for training the OC-SVM
model. The calibrated OC-SVM model is used for detecting
the change points in timeseries data. In particular, we study
scenarios where: 1) the system can be assumed to be healthy
from the start of until a point where faults start to develop, and
ends up in a fault state, 2) the degradation can be viewed as an
approximately monotonic process. We believe that such setup
is representative of many real-world degradation processes. To
validate our proposed approach, we conducted a case study on978-1-5386-8357-6/19/$31.00 ©2019 IEEE
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Fig. 1: The four stages in a typical degradation process [3].

the C-MAPSS dataset [7], and demonstrated strong empirical
performance in detecting change points.

The remainder of this paper is organized as follows. In
Sec. II, we give necessary background on OC-SVM. Next
in Sec. III, we discuss on our proposed search framework in
details. A brief description about the C-MAPSS flight engine
dataset is provided in Sec. IV, and experimental results is
presented in Sec. V. We conclude the paper in Sec. VI and
discuss future directions.

II. ONE-CLASS SUPPORT VECTOR MACHINE

A one-class SVM (OC-SVM) [5] model denotes an unsuper-
vised machine learning model that learns a decision function
for estimating the support of a dataset. This property makes it
applicable to outlier detection. In literature, it has been applied
to areas such as fault detection, intrusion detection, and forgery
signature detection [8]. An OC-SVM model is trained on data
mostly from one class (usually the “normal” class). The trained
model can be used to classify new data as similar or different
to the training set. This is useful for outlier detection because
there are usually very few examples for outliers (anomalies or
faults), which makes it difficult to train a two-class classifier
to distinguish them.

To obtain more versatile decision boundaries with OC-SVM,
kernel functions are often used to map the original feature space
into higher-dimensional spaces. Let Φ : X → Z be a mapping
from the original data space to a higher-dimensional feature
space. To train an OC-SVM model, we solve the following
quadratic program.

min
w,ξi,b

1

2
‖w‖22 +

1

νm

m∑
i=1

ξi − b (1)

s.t. ∀i = 1, 2, . . . , N

ν ∈ (0, 1], ξi ≥ 0,

w · Φ(zi) ≥ b− ξi.

Where ξi is a slack variable for data point i. ν takes a value
between 0 and 1; it upper bounds the fraction of training errors
and lower bounds the fraction of support vectors. As a result,
a non-zero ν will allow an OC-SVM model to exclude some
of the training data as outliers from the normal class. We use

the following decision function, to decide whether or not an
input x belongs to the normal class.

f(z) = sign (w · Φ(x)− b) =

{
+1 normal,
−1 outlier.

(2)

In this study, we choose Radial Basis Function (RBF) kernels
in our OC-SVM formulation because they do not assume any
parametric form of the data distribution, and thus they are
suitable for capturing data of complex shape. A RBF kernel
has a form K(zi, zj) = exp

(
−γ‖zi − zj‖2

)
, where γ controls

the width of the RBF kernel used for training. The larger γ is,
the smaller the width of the kernel. If gamma is too large, the
model will overfit the data and will not capture the shape of
the data distribution.

III. HEURISTIC OC-SVM CALIBRATION APPROACH

Both the input training data and the choice of OC-SVM
hyperparameters can influence the prediction performance of
OC-SVM models. The choice of the two hyperparameters ν
and γ can greatly affect the prediction performance of the
model. In fact, these hyperparameters are coupled, because
ν regulates the percentage of outliers in the training data. If
we choose a small ν, then we must ensure that 1 − ν of
the training data are from the positive class. We are facing a
dilemma here: to obtain a good OC-SVM model for change
point detection, we must ensure that the training data contains
few outliers, which requires us to know the location of the
change points a priori. To resolve the dilemma, we resort
to a heuristic scheme to search for a suitable assignment of
input data and hyperparameters as our hypothesis, such that
the predictive outcome matches the hypothesis itself. Since
the training of OC-SVM is achieved by solving a quadratic
optimization problem, it can be done efficiently with state-of-
the-art optimization tools. The fast training time of OC-SVM
enables us to use a heuristic optimization approach to search
for an optimal configuration, which will be introduced next.

Let us index the m system instances under study by
1, 2, . . . ,m. By assumption, the systems all degrade in an
approximately monotonic fashion. We designate their respective
change points by a vector ρ = (ρ1, ρ2, . . . , ρm), where each
ρi ∈ (0, 1) is a number representing the portion of life span
when the ith system hits its change point. For example, ρi = 0.7
means that engine i is healthy in the first 70% of its life
span before reaching the change point. By fixing ν to a small
positive value, we look for an assignment of ρ where the
input data are mostly healthy (from the positive class). The
decision variable (γ,ρ) now consists of m+ 1 dimensions. A
sensible hypothesis of (γ,ρ) will yield an OC-SVM model
whose prediction will agree with the hypothesis. We use a
Differential Evolution (DE)-based heuristic search scheme to
find (γ,ρ). For guiding the heuristic search, a loss function
is needed to evaluate the goodness of fit of each hypothesized
hyperparameters. Analogous to hypothesis testing in statistics, if
a hypothesis (γ,ρ) does not yield a prediction that is consistent
with itself, we can claim that the hypothesis is probably not
true.



A. Loss Function for Examining the “Goodness of Fit” of a
Hypothesis

In our scenario, each hypothesized ρi signifies the position of
change point (as a percentage value) of training system instance
i. Let the actual position (in cycles) of the change point be
ci. In other words, the first ci cycles can be assumed healthy
(labeled 1), while the rest are assumed unhealthy (labeled
0). For each hypothesis (γ,ρ), we will check how consistent
it is with the learned OC-SVM classifier and its associated
classification results by using the loss function as described
below.

L(γ,ρ) =

m∑
i=1

log_loss
(
y(i), z(i)

)
, (3)

where y(i) is the hypothesized label assignment with the first
ci elements being 1’s, and otherwise 0’s. z(i) is the predicted
label assignment from the trained classifier.

When a trained classifier is applied to an unseen system
instance, its change point can be derived by finding the point
in life that gives the lowest cross-entropy loss (i.e., log loss).

B. Differential Evolution for Hyperparameter Optimization

DE is an evolutionary algorithm that is commonly used for
solving global optimization problems. The DE optimizes a
problem by maintaining a population of candidate solutions
and creating new candidate solutions by combining existing
ones according to some simple formulae. Candidate solutions
that receive better scores are kept and will be used for
generating new candidate solutions during the next generation.
The optimization problem is thus treated as a black box, and
the DE procedure does need gradient information to optimize
it. With the loss function described above, we can use DE to
search for a hypothesis whose prediction result is consistent
with the hypothesized hyperparameter assignment itself. It is
worthy to note that there does not need to be an “accurate”
optimum, because the change point actually is an interval
instead of a single point. Our purpose is achieved, as long as
the found change point falls within the transition region.

In this work, we use DE [9], [10] as our search framework.
It is worthy to note that, besides DE, other heuristic search
algorithms such as Bayesian optimization [11], [12] and
simulated annealing [13] may also be applied here. It is part
of our ongoing work to test out the effectiveness of these other
search algorithms.

IV. C-MAPSS DATASET

A. Organization of the C-MAPSS Dataset

The C-MAPSS dataset [7] was originally released in the
PHM-08 Challenge. The dataset was generated by a high-
fidelity engine simulator. During the simulation for each engine,
some fault was injected at a given time and persisted throughout
the remaining flights. The degradation process over the lifespan
of an engine is described as a multivariate timeseries consisting
of a few hundred data points (cycles). Each data point is a 21-
dimension vector corresponding to 21 sensor readings. Because

little system-specific knowledge about the engines was given,
useful information needs to be mined from data themselves,
making the learning problem a data-driven task. Since each
timeseries describes the run-to-failure process of an engine,
we also know the Remaining Useful Life (RUL) of the engine
at each time instant.

The original goal of the PHM-08 Challenge was to stimulate
the development of data-driven RUL estimation methods. Since
the release of the C-MAPSS dataset, many different RUL
estimation approaches are seen in literature. A comprehensive
review of the published results can be found in [3]. The
dataset consists of four parts (FD001-FD004) that represent
an increasing level of complexity. FD001-FD003 can be seen
as special cases of FD004. The FD001 data represent the
simplest scenario, where the engines are operating only at
sea level, and are injected with only one type of fault. The
FD004 data involves two fault types and six flight conditions.
The review paper [3] noticed that many publications used only
FD001, the most basic scenario, for validating their algorithms;
their actual performance on more realistic scenarios such as
FD004 is thus doubtful. Because of this, the FD004 data are
used to validate our approach in the experiment.

Given the ground truth RUL number at each observed data
point, the RUL prediction problem can be formulated as a
regression problem. Supervised learning methods, such as
neural networks, can be used to establish a mapping between
feature vectors and RUL. Due to their ability to capture complex
temporal relationship among data, a number of papers [14],
[15] employed variants of Recurrent Neural Network (RNN) to
model the functional mapping and reported to yield satisfactory
results.

B. Change Point Detection with WTTE-RNN

An accurate RUL regression model, however, does not
directly serve our purpose of change point identification.
Recently, Martinsson proposed a novel RNN architecture
called WTTE-RNN1 [16] that provided additional insight into

1The name WTTE-RNN stands for “Weibull Time To Event Recurrent
Neural Network”.
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Fig. 2: We implemented and trained a WTTE-RNN model in Keras,
using all 249 engines from FD004. Trends of predicted α and β on
engine instance 166.
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Fig. 3: (a) The predicted β values on all 249 engine instances using our approach (b) The β values predicted by another WTTE-RNN model
that is trained using only 20 engine instances for comparison purposes. The β values are signified by different colors.

the degradation process. Not only can WTTE-RNN provide
uncertainty estimation about the predicted RUL, but it also
indicates potential changes in the health status. Since the C-
MAPSS dataset itself does not provide ground truth information
about the change point location for each engine, so we need
another approach for validating our proposed approach. In this
study, we used the segmentation results given by the WTTE-
RNN as the ground truth to benchmark our proposed OC-SVM
approach.

Here we brief describe the WTTE-RNN approach. WTTE-
RNN is a RNN architecture for time-to-event prediction. As
with other RNN architectures, a WTTE-RNN model makes
prediction at each time step based on previous input sequences.
Specifically, at each time step t, the model predicts two numbers
αt and βt, the two parameters of a Weibull distribution that
characterize the RUL at time t. The predicted αt parameter
represents the expected RUL value at time step t, and βt
quantifies the associated uncertainty of the RUL prediction. By
feeding the observed timeseries data into the trained WTTE-
RNN network, we will obtain sequences of predicted α and
β values, which reflect the updating prediction on the system
health status.

To illustrate the performance of WTTE-RNN on the C-
MAPSS dataset, we implemented a WTTE-RNN model in
Keras, and trained the network using all 249 engines from
FD004. As an example, Fig. 2 plots the produced α and β
evaluations for engine 166. It can be seen that the produced αt
is able to predict the RUL with good accuracy, especially when
the engine is close to its End of Life (EoL). In addition, the
β values are large when the engine is healthy, and decreases
rapidly when the engine moves towards the EoL. Intuitively, it
is usually difficult to predict RUL accurately when an engine
is healthy, resulting in relatively high β values, and easier
to predict RUL when an engine moves towards its EoL. In
particular, we can also observe a short period of increase
in β value before it rapidly drops, which indicates higher
uncertainties values in this region. We show the predicted β
value on all 249 engines as a heatmap in Fig. 3a. It can be
seen that the phenomenon mentioned above appears in almost
all the engines. Martinsson conjectured [16] that the elevated
uncertainty values are due to the transition from the healthy

state to a fast degradation phase, i.e. the “knee” in Fig. 1. More
details about the WTTE-RNN approach are beyond the scope
of this paper, and we refer interested readers to [16] for a more
in-depth discussion.

Although WTTE-RNN has demonstrated promising results,
the model when trained with data from only 20 engines fails
to give satisfactory results. The resulting β predictions, as
displayed in Fig. 3b, do not clearly indicate the change points.
This suggests that the performance of this approach might
be affected when training data are limited. It will be shown
shortly, our approach in comparison requires much fewer data,
making it advantageous when the available amount of data is
limited.

V. EXPERIMENTAL RESULTS

We randomly selected m = 20 out of a total of 249 engines
as the training set, and used the rest as the test set. In our
experiment, the population consisted of 105 individuals, and
was evolved for 10 generations. We fixed ν = 0.05 during
the heuristic search to reduce the complexity. To further
reduce the search space, we assumed the first 50% of the
observed data for each training engine is healthy, i.e. ∀i, 0.5 ≤
ρi ≤ 1.0. Because a good value for γ could vary much
(typical values between 10−2 and 102), in our DE procedure
we search for log10 γ ∈ [−2, 2] instead. We implement the
algorithm in Python using the OneClassSVM module from
scikit-learn for training OC-SVM classifiers, and the
differential_evolution module from scipy as the
framework for implementing the DE search procedure.

After evolving for 10 generations, the DE search procedure
returned the optimal OC-SVM model configuration with γ =
3.59, as well as the change point locations for the 20 engines
in the training set. To obtain the change point of the rest of
the engines, we used the method mentioned in Sec. III. The
identified change points by our approach are plotted as the blue
points in Fig. 4. As can be seen, for most of the engines, the
change points identified by our algorithm match the transition
region (white regions with high β values) given by WTTE-
RNN. Although the OC-SVM model lacks the ability to predict
the RUL, it still identifies the correct change point locations.
As opposed to the WTTE-RNN that needs a large amount
of data to train (249 engines was used in this example), our



Fig. 4: The change points (blue dots) identified by the OC-SVM
approach for all 249 engine instances.

OC-SVM model was trained with data from only 20 engines.
This shows that our proposed OC-SVM calibration approach,
as a data-efficient method, can find its use in scenarios with
limited available data.

VI. CONCLUSIONS

OC-SVM is a popular unsupervised machine learning model
for anomaly detection; however, there are practical concerns
when applying this model for timeseries change point detection.
The performance of the OC-SVM model depends highly on
choice of both the training data and the hyperparameters,
making it hard to train a good model in the absence of labeled
data for cross validation. In this paper, we attempt to address
this challenge by using a heuristic method to search for a
suitable model that explains the data. Our experiments on
the C-MAPSS dataset have shown promising results, which
indicates the usefulness of our proposed approach as a data-
efficient way to infer the location of change points in system
degradation process.
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