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Abstract—Proactive network maintenance (PNM) is the concept
of using data from a network to identify and locate network faults,
many or all of which could worsen to become service failures.
The separation between the network fault and the service failure
affords early detection of problems in the network to allow PNM
to take place. Consequently, PNM is a form of prognostics and
health management (PHM).

The problem of localizing and classifying anomalies on 1-
dimensional data series has been under research for years. We
introduce a new algorithm that leverages Deep Convolutional
Neural Networks to efficiently and accurately detect anomalies
and events on data series, and it reaches 97.82% mean average
precision (mAP) in our evaluation.

Keywords—machine learning, pattern recognition, anomaly de-
tection, proactive network maintenance

I. INTRODUCTION

PNM is a concept created around 10 years ago in the cable
industry to help manage operations costs as service providers
turned more attention toward bi-directional services. These
data services needed resiliency mechanisms, which in turn
provided opportunities for PNM. Receive modulation error
ratio (RxMER) is a key data element for finding problems
in the network. It is a measurement of the signal to noise on
a per sub-carrier frequency basis. Each sub-carrier frequency
carries a calibrated pilot signal periodically, which provides an
opportunity to measure a calibrated signal level and calculate
a signal to noise ratio. The result is a 1-dimensional data series
of measurements over a span of frequencies. But for most cable
operators today, translation of these data into a decision about
whether there exists an impairment in the signal or not, how
severe, and where it might be located, has been left to experts
to decipher, and at times disagree. By introducing machine
learning techniques to the problem, the industry believes that
this step in the process can be automated and improved.

There are many challenges on detecting patterns from series
of data. For instance, in anomaly detection on time series,
traditional methods like auto-regressive integrated moving
average (ARIMA) and sliding window median, are useful
for detecting sudden changes in the data series. But they
require well defined thresholds and specifically designed win-
dow sizes. These algorithms also cannot recognize the actual

patterns of the anomalies and produce meaningful labels.
Newer methods like long short-term memory (LSTM) can also
be used for detecting patterns or anomalies on data series.
However, compared to convolutional neural network (CNN),
LSTM normally has more parameters and takes more time
and resources to train, and it also has a tendency to overfit
the training dataset. One of our previous research paper[16]
uses compound sliding window median algorithm for region
proposal generation and a fully-connected neural network
for classification. However, the previous research has such a
shortcoming that the region proposal module of the model is
based on smoothing algorithms and is not able to accurately
detect anomalies. In addition, the input of its classification
neural network has data padding on each proposed anomaly,
which significantly increases the amount of data that are being
processed and results in poor inference performance.

Literature in object detection has been showing significant
progress in recent years. Region proposal-based object de-
tection algorithms such as faster R-CNN[1] and regression
based single shot algorithms such as YOLO[2][3], SSD[4], and
Retinanet[5] are showing great performance in object detection
problems. Given that image data are far more complex than
data series, we adopt the architecture of YOLOv3[3] and
develop a single-shot anomaly detector which provides superb
efficiency and accuracy for recognizing anomalies and events
on data series. This novel algorithm uses a Fully-Convolutional
Neural Network and custom feature aggregation layers and
prediction layers to perform localization and classification in a
single step, which significantly improves the localization accu-
racy and classification performance compared to the previous
research[16]. In use cases such as detecting impairments using
cable modems’ Orthogonal Frequency-Division Multiplexing
(OFDM) and Orthogonal Frequency-Division Multiple Access
(OFDMA) RxMER data, we have demonstrated the effective-
ness of our algorithm.

II. BACKGROUND

A. DOCSIS R© Specification Context
The DOCSIS protocol enables two-way radio-frequency

(RF) communication over coax, a technology providing much
of the access network for entertainment programming and
internet access for the world, not to mention a large amount
of networking for businesses.978-1-7281-6286-7/20/$31.00 c©2020 IEEE
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It relies on analog RF transmission of data, and uses a
mix of methods including single carrier quadrature amplitude
modulation, OFDM/A (3.1), SC-QAM (3.0), etc., depending
on the version and implementation.

For a long time, it has included several resiliency mecha-
nisms including Forward Error Correction (FEC), adjustable
profiles with differing data rates per frequency carrier, echo
cancellation, and equalization. These resiliency mechanisms
adjust service to account for plant problems that create impair-
ments to the RF transmission signal. When these adjustments
are made, it indicates in many cases an imperfect transmission
medium. When this imperfection goes beyond the designed
and installed quality level, it indicates network (plant) damage
or degradation. This mechanism therefore can be monitored
to indicate changes or problems in the network (plant). The
operator can know of a problem before the customer is
impacted. When a problem is indicated, a proactive repair
opportunity may be created. PNM is the industry term for
addressing plant problems before service is impacted.

B. Proactive Network Maintenance Description
PNM was envisioned in the cable industry more than a

decade ago, when DOCSIS networks were relatively new,
and resiliency mechanisms were creating the opportunity[14].
Several measures were identified based on then-understood
failure modes and risks associated with deployed technology.
At the time, for example, analog optics were common for
feeding the coax plant, so in some systems optical clipping
was more common than it is today with digital optical systems.
But the coax plant remains and will for some time, bringing
with it several failure modes that result in RF transmission
issues in certain frequencies, and impact on subsequent layers
of the communication connection.

General components and their failure modes in the outside
plant that can appear as impairments in the RF signal include
but are not limited to the following:
• Hard line or drop cable shield, sheath, conductor,

insulator
• Connector center conductor, shield, thread
• Tap cover, connector, electronics
• Splitter, combiner, coupler cover, connector, electronics
• Filter cover, connector, electronics
• Splice wrap, fill, shield connection, conductor connec-

tion, strap
• Amplifier cover, connector, electronics
• Power Supply cover, connector, electronics
• Anchoring various types such as straps, guy wires, and

more.
• Node cover, connector, electronics
General failure modes of the cable plant which impact RF

signal include the following
• Passive loose or misaligned connection, corroded, poor

installation, damage, degradation, wet, cracked, loose
and moving, incorrect part.

• Active poorly made, poorly installed, electrostatic dis-
charge (ESD), lightning, ground fault, degradation or
wear out, damaged, incorrect part.

Measurements identified for proactive network maintenance
in the specification include the following, though some of these
measurements are more general and not specifically identified
for PNM:
• Downstream spectrum capture
• Downstream symbol capture
• Downstream channel estimation coefficient
• Downstream constellation display
• Downstream receive modulation error ratio (RxMER)

per sub-carrier
• Downstream forward error correction (FEC) summary
• Downstream required quadrature amplitude modulation

(QAM) MER
• Downstream histogram
• Downstream modulation profile
• Upstream pre-equalization
• Upstream spectrum capture
• Upstream RxMER per sub-carrier
• Upstream FEC summary
• Power level
For the version of the anomaly detector described in this

paper, we will focus on downstream RxMER per sub-carrier
as the measure used. While not a complete solution for
identifying and removing RF impairments in coax networks,
it is an important measure and can address a very significant
part of PNM. RxMER per subcarrier is a measure of the signal
to noise of each downstream frequency used to carry data to
the cable modems. The cable modem can report these data
because it monitors the frequencies over which it receives
data, and those frequencies occasionally carry calibrated pilot
signals. Those signals are known, so they can be compared
against a received signal to determine a signal to noise ra-
tio. Ideal signals are mostly flat across all subcarriers, with
small amounts of variation acceptable. More detail about this
measure can be found in[8][9][10][11][12]. Many impairments
show up in RxMER per sub-carrier data, visually, statistically,
and otherwise[11].

Impairments that appear in the spectrum (and RxMER per
sub-carrier data) are classified in the cable industry as follows
• Standing waves when an RF signal transmits though

coax and encounters an impedance change, the sig-
nal loses strength in the forward direction, and an
echo returns in the opposite direction. If there are
two impedance mismatches in the line, then an echo
tunnel can form, causing repeating echo signals. When
the impedance mismatches are stable, the echo tunnel
appears in the RF signal as a standing wave, which
impedes the signal in at least two ways: energy loss
due to the impedance mismatches, and noise from the
echo. Both of these factors impact the RF signal. Echo
cancelers can take care of some of the impact at some
points, but only if there is a signal with which to cancel.
Power levels can adjust somewhat for fixed signal level
effects, but not in all cases.

• Resonant peaking sometimes in frequency data we
see certain frequencies with higher energy than others.
We have not seen this in RxMER per sub-carrier data,
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and due to the nature of the measurement we dont
expect to encounter a resonant peaking, though the same
pattern may appear in the data due to other frequencies
experiencing impairment issues.

• LTE or FM Ingress when there are opens in cable plant,
RF from the outside can get into the cable network. FM
and LTE cellular signals (as do VHF and UHF bands)
overlap the spectrum used in DOCSIS networks, so can
appear as noise when the cable plant is open due to
shield failures (shield integrity problems).

• Suck-out An ideal cable plant transmits evenly on all
frequencies, but actual cable plant transmits better at
lower frequencies than at high frequencies, so ampli-
fication is adjusted to make it behave more ideally.
Typically, we see this as a slope in the power levels,
when not adjusted for in transmission. But grounding
issues in the cable plant can lead to some frequencies
being highly attenuated when they should not be. These
appear as a rapid drop in a band of frequencies, like
the energy is being sucked out of the system at that
frequency. The frequencies affected by the suck-out
become unusable when severe enough, and at least must
be compensated for otherwise. Because these problems
can come and go over time and conditions, and often
get worse over time, these are a perfect opportunity for
PNM.

• Roll-off at the edge of a frequency band, frequencies at
the edge can be attenuated more as you get closer to the
edge. This is called a roll-off, and results in frequencies
not being useful near that edge.

• Filter band filters in the plant can protect noise from
getting into the system, but sometimes filters can atten-
uate frequencies on band edges unintentionally. Finding
and removing these issues improves service.

• Adjacency, second order distortion, and phase distortion
are less common. Adjacency may appear as a step in the
data over some sub-carriers. Second order distortion may
appear as noise in RxMER per sub-carrier, and could
potentially be captured by correlating with carrier sig-
nals whose energy appears in other frequencies, though
detecting this impairment type requires correlating with
the sent signal. Similarly, phase distortions require more
than magnitude data (which RxMER per sub-carrier is)
or potentially correlating with the complex I and Q
values of the signal.

As access networks are physically a tree structure, an impair-
ment has different impact on customers connected at different
places of the plant. Taps include filters that protect customers
from some issues. Recognizing RxMER is a measurement of
the signal to noise that is received by the cable modem, and it is
a measurement of the pilot signals only (which are of a known
energy level), not all network problems will be discovered with
RxMER. Further, due to the design of cable plant with diplex
filters and taps, some impairments further downstream from a
given cable modem may not impact that cable modem. These
features help in localizing the problem sometimes.

The distinction between the network fault and service failure
is a lot like the distinction between a software fault and

software execution failure. In software, a fault may not lead to
a failure in all cases, and may not be executed frequently or
ever in an application. Likewise, a network fault may be hidden
by resiliency mechanisms that come with DOCSIS networks
and well-designed cable plant, or the impacted frequencies
may not be used or used at lower data rates to compensate
such that service is not impacted. Yet these impairments can
grow to impact service as a failure, or service conditions can
change such that the fault becomes a service failure.

C. ProOps Environment
We created the Proactive Operations[12][13] (ProOps) plat-

form to enable automation of detection of PNM issues into
operations processes that turn the data into action. This plat-
form enables code modules, referred to as workers, that process
data input to form statistics output. The data can be raw data,
statistics, processed data, or otherwise. The output can be any
statistic including a hard decision point. We direct but do not
require a four layer architecture for organizing the workers in
ProOps to fulfil one or more of the following layers
• Observe collect data from the network elements (usually

cable modems identified by MAC address) and process
into soft decisions or statistics for further analysis.

• Orient analyze the data from the observe layer and
decide what additional data are needed, or more frequent
collection of some data, or a broader scope of the
collection of those data such as over neighbors or over
longer periods of time, for example.

• Decide analyze the data, statistics, and soft decisions
from the first two observe and orient layers to turn
found anomalies in the data into network impairments,
through classification of anomalies, clustering the data
from the network elements, and applying either network
health or severity measurements to quantify the indicated
problems.

• Act by organizing the found problems by severity or
network health scores, we can allow the operator to
select which found issues deserve attention, and what
type of human intervention or further work is needed,
be that a field technician or someone in a network
operations center.

ProOps is depicted in Figure 1 below, with the four layers
represented. Also shown are the configuration interface, control
and scheduling functions, the work queue for workers to
process, and the various types of data stores used. The results
can be observed on a dashboard, which can include maps
showing impairments colored by severity, or graphs of the
network health or impact of impairments that rise to attention,
for example.

ProOps has been built with several types of workers, and
can be configured to use these in various ways. For the sake
of this paper, we will limit the discussion to the anomaly
detector which will process RxMER data from cable modems
and identify anomaly types at the first layer. The subsequent
layer will collect additional information to assist in quantifying
the severity of the found anomalies. Then the next layer will
simply match impairment patterns as a simple clustering, and
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calculate a severity. The final layer presents a sorted list of
the identified impairments to be addressed from most severe
to least. At the point of this writing, only the clustering
mechanism has not yet been built; we anticipate using a k-
means method or like matching algorithm. The focus of this
paper is the anomaly detection worker which is very efficient
and effective at this particular problem.

Fig. 1. Proactive Operations Platform

III. MODEL ARCHITECTURE

The architecture diagram Fig.2 shows the high level ar-
chitecture of our model. The one dimensional convolutional
layers, route layers, up-sampling layers, and 3 prediction layers
are included in the diagram. The shortcut layers, activation
layers, and batch normalization layers are omitted in the
diagram for simplicity.

A. Backbone Network
The backbone network consists of 1-D convolutional layers

with 1-D filters for feature extraction and shortcut layers for
feature aggregation. The first 3 convolutional layers only have
4 filters with kernel size 3 and the maximum number of filters
in the following layers is 64. This is because 1-dimensional
data have much simpler features such that a smaller network
can reach high mAP while featuring great performance and low
resource consumption. Zero padding is used on both sides of
the sample before convolution when the kernel size is greater
than 1. This allows the network to maintain the consistency
and relevance of the feature map sizes.

The shortcut layers perform addition on the feature maps
from the previous layer and the layer it points to. It has
multiple benefits such as smoothing the optimization during
training and preventing the model from being attracted by
spurious local optima as we learned in the previous study[6].

B. Route Layers
The Route layers are used for feature concatenation. When

a route layer only points to one previous layer, the feature map
output from the previous layer is forwarded as the output of
the route layer. When a route layer points to multiple previous
layers, their feature maps are concatenated and forwarded as
the output of the route layer. In our network, features from

lower level layers that contain more original information are
concatenated with outputs from higher level layers to provide
more information to the prediction layer to improve mAP.

C. Up-sampling Layers
The up-sampling layers are used to increase the size of the

feature map from the previous prediction layer (the layer that
predicts at larger grids) to match the size of the forwarded
feature map from lower level layers. In our network we use a
nearest neighbor interpolation algorithm for the up-sampling
process.

D. Activation Layers
Activation functions are implemented as layers in our net-

work. All 1-dimensional convolutional layers are followed with
Leaky Rectified Linear Unit (Leaky ReLU) activation layers
except the 3 convolutional layers before the 3 prediction layers.
The Leaky ReLU activation is calculated as

leaky ≡
{
x, if x ≥ 0

αx, if x < 0
, (1)

where α is 0.1 in our network.

E. Batch Normalization Layers
We use batch normalization layers[7] in between 1-

dimensional convolutional layers to normalize the input layer
by adjusting and scaling the activations. Batch normalization
improves the training speed, stability, and mAP of our network.

F. Prediction Anchors
Instead of predicting the start, end, and the center of

anomalies directly, we use anchors which are a set of hand-
picked priors[1] that the prediction layers use as references.
This simplifies the localization problem and makes it easier
for the network to learn[2]. With this, the center prediction
becomes

p′center = σ(pcenter) + gcenter, (2)

where p′center is the final value of the predicted anomaly center,
σ(pcenter) is the network predicted value pcenter calculated
with sigmoid function

σ(x) =
1

1 + e−x
, (3)

and gcenter is the center of the grid that is performing
prediction where a grid is defined as a prediction unit that
takes input data from one feature map channel and handles
all anomalies which have their center points inside of it. The
width prediction of the anomaly becomes

p′width = epwidth · βwidth, (4)

where p′width is the final value of the predicted anomaly width,
epwidth is the network predicted value pwidth calculated with
exponential function, and βwidth is the width of the current
anchor.
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Fig. 2. Model Architecture

G. Anchor Calculation
We use both K-Means and kernel density estimation (KDE)

algorithm to calculate proper anchor sizes. This allows the
sizes of the prediction anchors to fit the distribution of anomaly
width values in datasets as much as possible, and makes the
problem easier for our network to learn. In our experiments
with cable modems’ downstream RxMER data, the width value
of anomalies ranges from 2 to 416 (with input size 416) as
shown in Table I.

TABLE I. ANCHOR SIZES AT EACH PREDICTION LAYER

Prediction Layer Anchor Sizes

Layer 1 (13 prediction grids) 155, 234, 416

Layer 2 (26 prediction grids) 43, 73, 109

Layer 3 (52 prediction grids) 2, 8, 23

H. Prediction Layers
With specifically designed convolutional layers as the back-

bone, at the first prediction layer, the size of the input feature

map is transformed to

Sfeature = 1×
[
(3+nclasses)×nanchors

]
×
(Sinput

2nγ

)
, (5)

where Sfeature is the total number of values in the feature
map, Sinput is the original input size, nclasses is the number
of classes in the training and testing dataset, nanchors is the
number of anchors that are being used by the current prediction
layer, and nγ is the number of convolutional layers in the
backbone network with stride 2.

The number of grids doubles when it becomes the second
prediction layer for detecting mid-sized anomalies, and it
doubles again when it comes to the third prediction layer for
small anomalies. For instance, when using 1 × 416 as the
input sample size and there are 5 anomaly classes to predict
and 3 anchors at each prediction layer, the size of the input
feature map from a single sample at the first prediction layer
is 1 × 24 × 13. The size becomes 1 × 24 × 26 at the second
prediction layer and 1× 24× 52 at the third prediction layer.

Looking further into the anchor prediction vectors from
the above example, each of the three anchors predicts a
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value pcenter for the center of the anomaly, a value pwidth
for the width of the anomaly, a confidence score pconf for
the objectness of the anomaly, and 5 probabilities for each
anomaly class. The predictions are initially labeled using
softmax function on the class probabilities (if it is multi-label
classification, classes with top n probabilities are selected)
and then filtered by a confidence threshold, which is 0.5
in our network. Non-maximum suppression (NMS) is then
used (only in inference process) to reduce the number of
localization proposals on each anomaly. In our model, we
apply NMS to each class predictions instead of all predictions.
The final output is a list of predictions each consists of a
class label(s), an anomaly confidence score, the center location
of the anomaly (proportional), and the width of the anomaly
(proportional).

IV. TRAINING

A. Datasets
In our experiments, we use downstream receive modulation

order ratio (RxMER) per sub-carrier data captures from cable
modems’ OFDM channels in DOCSIS 3.1[8] networks to
test our algorithms and implementation. DOCSIS 3.1 cable
modems are capable of capturing PHY layer data like down-
stream RxMER per sub-carrier based on requirements defined
in DOCSIS 3.1 CM OSSI specification[9], which makes it a
promising use case for real-world demonstration.

The training dataset contains 45000 RxMER samples and
the testing dataset contains 26000 RxMER samples. Each
sample has 1800 to 2000 sub-carrier MER values that are in
range [0, 63.75]. There are 5 classes of PHY layer impairments
that are labeled in the datasets: LTE ingress noise, wave, roll-
off, suck-out, and spike. The LTE ingress noise is normally
identified as LTE signals that are adding interference to the
OFDM signal through leakage points on the plant or defected
shielding on the modem as shown in Fig.3; wave is identified
by wave shaped impairments (as shown in Fig.5) that affect
the whole spectrum or part of the spectrum and is normally
caused by echos or impedance mismatch; roll-off is identified
as rolling off RxMER values on either side of the OFDM
spectrum as shown in Fig.6; suck-out is identified as dips with
a sharp corner as shown in Fig.4, and is normally caused
by issues on amplifiers; spike is identified as sharp dips as
shown in Fig.3 and Fig.6, and are normally less than 3 sub-
carriers wide. Each impairment on the sample is labeled with
the center of the impairment x (proportional), the width of the
impairment w (proportional), and the class c of the impairment.
Each RxMER sample can have multiple different types of
impairments located at different frequency ranges. Example
plots of RxMER per sub-carrier data captured from cable
modems are shown in Fig.3 through Fig.6, showing various
impairment types.

B. Synthetic Data Generation
To reduce labor work and increase the number of training

samples, we randomly generate synthetic training data based
on human-observed samples and anomalies. For instance, in

Fig. 3. Downstream OFDM RxMER capture with multiple LTE ingress points
and spikes

Fig. 4. Downstream OFDM RxMER capture with multiple suck-outs

Fig. 5. Downstream OFDM RxMER capture with a wave

Fig. 6. Downstream OFDM RxMER capture with a right roll-off and 3 spikes

our datasets, we use randomly generated noisy base samples
as the starting point: spikes are generated randomly on dif-
ferent frequencies with different MER values; suck-outs are
generated using two randomized non-linear functions; waves
are generated from different sine waves; roll-offs are generated
with one non-linear function. All anomalies are added to
different locations on the sample.

The synthetic data are used as an addition to the human
labeled datasets for both training and testing. It significantly
increases the amount of data that joins training, which helps
the model to generalize better. And it adds more samples that
are unseen by the model for validation.
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C. Data Pre-processing with Binning Down-sampling

While all input values are normalized to range [0, 1], the
binning minimum algorithm (algorithm 1) is used for preserv-
ing low values in the original data series while reducing the
input sample size. The algorithm first performs up-sampling
(nearest-neighbor algorithm) on the original sample to make
it become the nearest dividable size Dnearest by the target
sample size, then calculates binning minimum values from the
up-sampled input.

Algorithm 1 Binning Minimum Down-Sampling
Require: Ssize > 0, T > 0, Ssize ≥ T, L = []
m = Ssize mod T
n = (int)Ssize/T
if m 6= 0 then
n = n+ 1

end if
Interporlate(S, n× T )
assert Ssize ≡ n× T
i = 0
while i < T do
Bmin = min(S[i→ i+ n− 1])
L← append Bmin
i = i+ n

end while
return L

D. Data Augmentation

During training, multiple data augmentation techniques are
used to improve training results, improve the model’s gener-
alization ability, and increase the number of training samples.
Each of the data augmentation techniques has a probability of
being selected for each input sample.

1) Scale Shifting: The scale shifting process allows the net-
work to learn samples with different noise fluctuation scales.
The mean value of the sample is calculated at first as

µsample =
1

n

n∑
i=1

vi, (6)

where µsample is the mean value of the sample, n is the number
of values in the sample array, and vi is the ith value.

Then for each original value

vi = (vi − µsample) ·Rscale + vi, (7)

where Rscale is a randomly generated factor in range of
[0.3, 3].

2) Flipping: Flipping allows the network to learn anomalies
at different locations and doubles the total number of samples
for training. The input sample is randomly flipped (left-right),
and the labels are converted if the sample is flipped.

3) Value Floor Shifting: By modifying the floor of the input
sample, the network can adapt to anomalies at different values
levels. For each value vi in the input sample

vi = vi +Rlevel, (8)

where Rlevel is a randomly calculated value in range of
[−0.2, 0.2].

4) Noise Injection: Random noise (not enough to become
anomalies) is added to each value in the input sample to allow
the network to adapt to noisy inputs and multiplies the number
of different samples for training,

vi = vi +Rnoise, (9)

where Rnoise is a randomly generated value in range
[−0.002, 0.002] for each value in the sample.

5) Smoothing: A Savitzky-Golay filter is used to reduce
the amount of high frequency noise in the input sample. This
allows the network to adapt to smooth inputs and again mul-
tiplies the number of different samples for training. Different
filter window lengths (3, 5, 7) are randomly selected during
training for different input samples.

6) Cut and Paste: We randomly move (cut and paste)
anomaly objects on the x-axis of the input sample to improve
the training efficiency on every prediction grid. This increased
the mAP on detecting small and dense anomalies on cable
modems’ OFDM receive modulation error ratio per sub-carrier
data by 4%.

E. Optimizer and Hyper Parameters
Stochastic gradient descent (SGD) is used as the optimizer in

our experiments with 6000 burn-in mini-batches, 0.9 momen-
tum, 1e−3 learning rate, 5e−4 weight decay, and mini-batch
size 32. During the burn-in time, the learning rate increases
gradually until it reaches the target learning rate

αcurrent = min{αtarget(
Nbatches
Nburnin

)4, αtarget} (10)

where αtarget is the target learning rate, αcurrent is the
learning rate of the current iteration, Nbatches is the number
of trained mini-batches, and Nburnin is the number of burn-in
mini-batches.

F. Loss Calculation
Our loss function for training the model is designed with

reference from YOLOv2[2]. To make it more efficient for
our anomaly detection task and better balance loss calculation
between small anomalies and large anomalies, we add scale
weights in the mean square error (MSE) loss for localization
loss calculation. This improves the model’s ability to localize
small anomalies more precisely.

The localization loss of the center prediction is calculated
as

L1 =

Ngrid∑
i=0

Nanchor∑
j=0

Ci

{
[γi(xi − x̂i)]2 + [γi(

√
wi −

√
ŵi)]

2
}
,

(11)
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where Ngrid is the number of prediction grids at the current
prediction layer, Nanchor is the number of anchors used at
the current prediction layer, Ci is the ground truth confidence
which value can be 0 or 1, xi is the ground truth center
location (proportional) of the anomaly, x̂i is the predicted
center location (calculated with the anchor) of the anomaly,
wi is the ground truth width (proportional) of the anomaly,
ŵi is the predicted width (calculated with the anchor) of the
anomaly, and γi is the scale weight of the anomaly

γi = 2− wi, (12)

where wi is in range (0, 1] and anomalies with smaller width
have larger weights. The confidence loss is designed for the
network to converge to a point that background data corre-
sponds to confidence score 0, and anomaly data corresponds
to confidence score 1. The confidence score is first calculated
from the prediction layer’s linear output with sigmoid function

Ĉi = σ(Ĉ ′i). (13)

The confidence loss calculation is based on binary cross-
entropy (BCE) loss, but use different weights for anomalies
and background in order to balance the network’s recall and
precision

L2 =

Ngrid∑
i=0

Nanchor∑
j=0

−1·λconfi [Ci log(Ĉi)+(1−Ci) log(1−Ĉi)],

(14)
where Ci is the ground truth confidence score, Ĉi is the pre-
dicted confidence score, λconfi is the weight of the confidence
loss which can be represented as

λconfi ≡
{
1, if Ci = 1

0.5, if Ci = 0
, (15)

The classification loss is calculated based on BCE loss as

L3 =

Ngrid∑
i=0

∑
c∈classes

−1 · Ci[pi(c) log(p̂i(c))

+ (1− pi(c)) log(1− p̂i(c))],

(16)

The total loss is calculated as

Ltotal = L1 + L2 + L3. (17)

The convergence of the model is shown in Fig.7.

G. Responsible Prediction Layer and Anchor Selection
For each anomaly during training, only 1 prediction layer

out of all 3 prediction layers is responsible for the prediction,
and only 1 anchor out of all 3 anchors is responsible. The
responsible prediction layer and anchor are selected by calcu-
lating which anchor has the best intersection over union (IoU)
against the ground truth anomaly ignoring its center location

Ianchor = argmax
i∈anchors

min(w,Ai)

max(w,Ai)
(18)

where Ianchor is the responsible anchor’s index, w is the
current anomaly’s width, and Ai is the ith anchor’s width.

Once the index of the responsible anchor is calculated, the
responsible prediction layer is determined by where the re-
sponsible anchor is used. Because the loss of all the other
anchors used by 3 prediction layers’ is calculated as that these
anchors see background with no anomaly, the ground truth
confidence scores for these anchors are 0. The predictions
from anchors which have IoU with the ground truth that are
higher than the ignoring threshold Tignore, which is 0.7 in our
experiments, do not join the loss calculation for either anomaly
or the background.

H. Overfitting Prevention and Early Stop
We use a small mini-batch size (32) in training, and use

weight decay to reduce the possibility of overfitting. The
extensive data augmentation during training helps the model
generalize and train as completely as possible. We also validate
the network’s performance every iteration using the testing
dataset and stop the training early.

Fig. 7. Model convergence (each unit is 20 mini-batches)

V. TESTING AND EXPERIMENTAL RESULTS

There are only 69628 parameters in our weight file (283KB
in size) and our network is able to process more than 1000
RxMER captures in one second on a single CPU core. During
testing, we use mAP as the metric to indicate the performance
of the model. The confidence score threshold is 0.5 and NMS
threshold is 0.5. NMS is performed on a per-class basis using
IoU thresholds 0.5 and 0.75. We also performed testing with
soft-NMS[17] with very minor code changes, and slightly
improved the model’s mAP. The inference performance is
compared to the results from a previous research paper[16].

From the results in Table II and Table III we can see that the
algorithm we propose in this paper outperforms the algorithm
from the previous research by a large margin, part of the reason
is that the previous algorithm is not designed to differentiate all
the 5 types of anomalies and it has non-ideal region proposal
generation. The previous algorithm also predicts much slower
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TABLE II. MEAN AVERAGE PRECISION (%) PER CLASS

mAP50 mAP50

(soft-
NMS)

mAP50

(Previ-
ous)

mAP75 mAP75

(soft-
NMS)

mAP75

(Previ-
ous)

LTE ingress 99.21 99.23 73.67 99.13 99.14 60.09

Suck-out 98.35 98.44 62.18 96.16 96.25 48.39

Wave 98.42 98.42 58.93 98.42 98.42 56.82

Roll-off 99.15 99.15 87.36 97.26 97.26 70.61

Spike 93.64 93.89 68.73 93.57 93.83 59.46

TABLE III. OVERALL MEAN AVERAGE PRECISION (%)

mAP50 mAP50

(soft-
NMS)

mAP50

(Previ-
ous)

mAP75 mAP75

(soft-
NMS)

mAP75

(Previ-
ous)

97.75 97.82 70.17 96.91 96.98 59.07

at about 50 samples per second. On the other hand, Soft-NMS
improves mAP on small and medium sized anomalies in our
evaluation. The small difference between mAP50 and mAP75

indicates that our network produces high quality localization
prediction. The lower mAP50 and mAP75 on spike detection
are caused by lower recall which indicates that our network has
difficulties recognizing all of the smallest anomalies especially
when they are densely located. This can be caused by that
the prediction layers have at most 52 grids in prediction
resolution. One grid can produce 3 predictions in which only
1 of them is trained to recognize the anomaly, which means
small anomalies that are close to each other can be missed by
the detector. The performance of our network on small and
dense anomalies can possibly be improved by introducing an
additional prediction layer with 104 grids or larger input sizes
such as 608 or 928. However, in our use case, spikes on OFDM
RxMER captures are minor issues that do not warrant attention
by repair technicians or network operations center personnel.
Therefore, it is not necessary to trade inference performance
for spike detection improvement.

We list example detection results from Fig.8 to Fig.17. Fig.8
shows 3 LTE channels that are interfering with the modem’s
OFDM channel, there is also a spike on the higher frequency
end; Fig.9 shows a large suck-out on the lower frequency
end of the spectrum and 2 spikes; Fig.10 shows a wave that
is interfering the whole channel and a LTE channel that is
affecting the higher frequency end; Fig.11 shows a suck-out
in the middle of the OFDM channel and a right roll-off; Fig.12
shows 7 spikes detected across the channel; Fig.13 shows
a rare capture that 3 suck-outs exist on 1 OFDM channel;
Fig.14 shows that a small LTE impairment is not detected,
which could be caused by that the small LTE impairment is
in the same prediction grid with the larger LTE impairment
on its right side, and one prediction grid can only detect one
anomaly at a time; Fig.15 shows that some small spikes are
not detected, which could be caused by that after many layers
of feature extraction, some details are lost; Fig.16 shows that
a very subtle wave across the OFDM channel is not detected;
Fig.17 shows that a large roll-off is not detected.

Fig. 8. Detection result: multiple LTE ingress points and a spike

Fig. 9. Detection result: a suck-out and 2 spikes

Fig. 10. Detection result: wave and a LTE ingress point

VI. CONCLUSION AND FUTURE WORK

Our key contributions in this paper can be summarized as
follows
• A novel anomaly detector implementation based

on YOLOv3’s network architecture: Based on
YOLOv3’s network architecture, we develop a
Fully 1D-Convolutional Neural Network with 45
1D-Convolutional layers for feature extraction with
significantly less filters. Shortcut layers and route
layers[2] are used with 3 prediction layers to aggregate
features from different scales and perform prediction at
different scales. This anomaly detector achieves very
low resource consumption, very high performance,
and very high mAP. In our evaluation using cable
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Fig. 11. Detection result: a suck-out and right roll-off

Fig. 12. Detection result: many spikes across the spectrum

Fig. 13. Detection result: many suck-outs across the spectrum

Fig. 14. Detection result: a small LTE impairment is not detected

modems’ downstream RxMER data, the anomaly
detector processes more than 1000 cable modems’ data

Fig. 15. Detection result: a few spike impairments are not detected

Fig. 16. Detection result: a subtle wave is not detected

Fig. 17. Detection result: a roll-off on half of the OFDM channel is not
detected

captures every second using a single CPU core at up
to 600 KB memory consumption. Each cable modems’
data capture is a 1-D array that has 1800 to 2000 MER
values.

• A specifically designed down-sampling algorithm which
significantly improves performance while keeping impor-
tant features: The down-sampling algorithm is specifi-
cally designed to pre-process 1-dimensional input data
for performance gains. It significantly reduces the num-
ber of values from the original input and keeps important
features for anomaly detection.

• Data augmentation techniques for anomaly detection on
data series: We specifically develop data augmentation
techniques to improve the training quality, model gener-
alization, and number of training and testing samples.
These techniques significantly reduce the amount of
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manual work and improve the model’s performance.
• Demonstration of leveraging state-of-the-art object de-

tection algorithm in 1-dimensional anomaly detection
problems: We successfully leverage the state-of-the-
art object detection algorithm and transform it into a
promising problem solution for anomaly detection by
changing its network architecture, the loss function, data
augmentation techniques, and significantly improving its
performance.

PNM is a field of work in the cable industry that is
constantly extending with different architectures and updates
to protocols. As ProOps suggests a structure that we believe
can be a model for the industry, built on a model for data
collection for the industry as well, we intend to continue re-
search, prototyping, and validating new PNM solutions for new
updates to DOCSIS networking and technologies involving
optical networks[15] as well.

The anomaly detection solution reported here is very flexi-
ble, applicable to a wide range of related problems, and is eas-
ily extensible. For medium and large impairments, which are
the most important to address, the mAP of our solution is over
98%. Because our model has superb inference performance, we
can focus on improvements in three fronts: additional measures
that may provide additional evidence to improve precision,
focusing on the most severe issues that are more likely to
be problems that need to be addressed, and collecting RxMER
data from neighboring CMs or the same CM over time to
confirm the found issues. As we extend the solution to other
data sources and over time series, we expect mAP to be higher.
Using ProOps as the platform allows us to implement this
approach and adjust settings rapidly as well. But we are already
at a level of performance that a network operations center
person can quickly confirm the most severe problems and gain
order of magnitude efficiencies with human time and expertise.
We also intend to extend the anomaly detection engine into
other spectrum and time series measures, including spectrum
analysis data, pre-equalization coefficients data, various time
series statistics for specific CMs, and perhaps even clustering
of impairments over time and over CMs to improve repair
efficiency.

To further improve our detector’s performance, there are
other state-of-the-art object detection networks we can learn
from such as EfficientDet[18] which uses a weighted bi-
directional feature pyramid network (BiFPN) and a compound
scaling method to reduce network size, improve inference
performance, and improve mAP. The prediction grid layout
can be designed to improve performance on small and dense
anomalies. We can also experiment with neural network based
NMS[19].
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