Interoperable data model for simulation-in-the-loop
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Abstract—In the context of industry 4.0, where factory compo-
nents become more and more intelligent, the role of virtualization
and simulation becomes central. This paper presents a flexible,
modular, scalable, extensible and interoperable modelling lan-
guage expressly designed to support multi-disciplinary simula-
tions. In particular, the language is based on a meta-model that
provides patterns of both hierarchical and graphical aggregations
and imposes a modelling process based on the principle of
separation of concerns using a layered model. An example of
applying the model to a business use case is also reported.

Index Terms—Digital Continuity, Interoperability, Virtualiza-
tion, Collaborative Simulation, Digital Twin

I. INTRODUCTION

In the manufacturing context, simulation refers to a broad
cluster of methods, techniques and resulting software appli-
cations aimed at modeling and analyzing, through simulated
experiments, the behavior of real production systems [1], [2].
Simulation enables to test the effects of design choices by
exploring what-if scenarios without having to involve the real
shop floor and, potentially, to evaluate its performance even
before it is actually deployed.

Historically designers and managers have used these tools
to perform specific analysis targeting separated factory do-
mains [3] such as process validation, optimization of produc-
tion layouts, scheduling and purchasing forecast, to name a
few. Today, the rising complexity of distributed value networks
calls for systems that extend beyond the single company bor-
ders and disciplinary domains, envisioning the application of
simulation techniques to be integrated into cooperative digital
environments. It is only by abating those barriers that industrial
companies will be able to leverage on the availability of Big
Data, to enable collaborative decision-making processes and
to align intra- and inter-company operations. To fully achieve
these goals, simulation needs to grasp the benefit coming from
the rising of the disruptive changes experienced by its tech-
nological enablers. As more and more factory smart objects,
namely Cyber Physical Systems (CPS), become capable of
establishing a capillary sensing of the shop floor and make
it available in real-time, the distance between the simulation
run-time and the real factory situation results shortened; this
allows moving from what-if analysis of possible scenarios to
the support in now-what decisions by applying simulation to
current production issues. Moreover, since the computational
power and reasoning capabilities are distributed as distributed
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are CPSs, simulation processes can now be distributed and
located closer to shop floor by exploiting emerging paradigms
such as Edge Computing.

However, as [4] points out, there are still relevant gaps
affecting the maturity level in the adoption of these enablers
in simulation and forecasting. First, although high-performing
computing services are available in the Cloud, simulation sitll
under-exploit them, being almost always stuck in a centralized
and localized vision that failed to take advantage of the oppor-
tunities offered by Cloud first and, more recently by the Edge
computing. Even the game-changing possibility to reliably
collect and use in real-time data from the shop floor to mirror
the factory is not currently exploited within simulation tools
still struggling in the definition of virtual factory models and
needing responsive big data management infrastructures [5].
Lack of flexible and extensible data models are hindering
the emergence of multi-disciplinary simulation technologies to
support the virtual investigation in a holistic perspective that
promotes decision-making processes enriched by the analysis
of the multiple domains interacting within the factory [6].
Ultimately, digital models need to evolve coherently with the
growth of production systems along their life-cycles to leap
over both punctual and paradigmatic transformations taking
place in the shop floor and in the information systems that
support them [7].

II. INDUSTRIE 4.0: FILLING THE GAPS

In the current context, dominated by the advent of the
Industrie 4.0, production systems are characterized by a higher
complexity of decision-making processes that are loosely
distributed among the CPSs operating along the entire value
network. It is time to envision interoperable simulation ser-
vices capable to operate near the data sources to support first-
time-right solutions to multi-disciplinary issues occurring in
production, logistics and management processes.

This paper proposes four items that should lead the path of
simulation technologies development to embrace and empower
the digital transformation of industry. First, a virtual interoper-
able shop floor representation, relying on a shared modeling of
core data that can be expanded to suit specific purposes, is re-
quired to sustain integration of different domains and provision
of cloud-based simulation services. Especially SMEs, the least
capable among industrial organizations to access the benefits
of simulation, will profit from this democratizing approach



that removes or reduces the adoption barriers while expanding
the scope of simulation. Interoperability of data models will
pave the grounds for achieving situation awareness, the second
item, that embodies the digital doppelganger (a.k.a. Digital
Twin) concept to create live digital copies of the simulated
environments and processes thus making it possible to oversee
and control them on a factual basis. The achievement of the
first two items will allow simulation to take place in the loop
of factory operations, dramatically changing its role from a
predictive and testing techniques that is use ex-ante to make
decisions on possible designs, to a responsive and holistic sys-
tem to support decision-making in real-time scenarios. Finally,
simulation models will need to be flexible and reconfigurable
to leverage the smart nature of CPSs pursuing the plug-and-
simulate condition, the last item, in which adding of new
resources or modifying their behavior is automatically or semi-
automatically mirrored in the corresponding factory digital
twin. Supporting such ambitious objectives calls for a set of
requirements that data models have to fulfill. To this end, our
data model needs to be:

Expressive - to enable the description of possibly any re-
source or flow involved in production, logistics and
management processes of different industrial domains.

Extensible - to build, upon a core representation of the factory
environment, a growing model ecosystem capable to
maintain the digital information available all along the
factory life-cycle.

Interoperable - to provide users with a personalized view and
proper simulation tools that present the virtual environ-
ment from their own point of view thus supporting the
decision-making processes, activity planning and opera-
tion controlling.

Scalable - that is the ability to function efficiently when the
context is changed in size or volume featuring multi-level
access features and suitable aggregation patterns.

Modular - so that it provides representation building blocks
that can be rearranged and reconfigured to follow the
continuous evolution of the real factory.

III. INTEROPERABLE VIRTUALIZATION AND SIMULATION

For Industrie 4.0, the shop floor ceases to be a rigid environ-
ment, firmly regulated by time-based automation systems; the
whole approach to manufacturing has to be entirely redesigned
to be composed of intelligent elements (from simple sensors to
production machines and robots) that are often identified with
the term CPS [8]. These elements are capable of interacting
with each other, with the environment, and with products
by sharing information on their state, making the entire
production environment highly flexible. In order for this vision
to be achievable, the elements of the digital factory need to
be smart [9], [10], that is, programmable and with sufficient
computational capacity to react to events in the appropriate
time frame; moreover, they must also be connected through
communication channels that guarantee a reduced latency.

The role of communication in smart manufacturing environ-
ments is twofold: on the one hand it guarantees that the actors

at shop floor level can interact, by exchanging valuable infor-
mation, and orchestrate production in a distributed way; on the
other hand it enables the almost real-time monitoring, paving
the way for the creation of CPS digital twins. In fact, the
information collected in large quantities from CPSs can serve
both to refine/learn their behavior in order to obtain always-
accurate simulation models (Real-to-Digital Synchronization),
and to feed the simulation with events and data coming from
the factory in real time (Mirroring). Both features prelude the
integration of simulation in the heart of production process to
exploit its potential not only in the factory design and planning
phase but also in the operative one with a multitude of possible
applications (Simulation-in-the-loop).

Achieving such an ambitious objective confronts us with
a plethora of exiting challenges, including the definition of
a flexible, modular, extensible yet interoperable language to
describe the digital double of the factory to come. In this
paper we present a data model expressly designed to support
simulation in the framework of Industrie 4.0. To provide the
modeler with a powerful and flexible tool, we have built the
data model atop a core language (a meta-model) based on a
mixed white-box/black-box paradigm, generic enough to shape
the traits of any CPS using plain terms like attributes and
artifacts.

Simulation in Industry is fundamentally multidisciplinary,
covering different application domains. Accordingly, depend-
ing on the domain, the same digital twins can be typified
differently as distinct are the objectives of the simulations.
In order to better manage the situation in which different
simulators are involved, but also help modularize the work
of people involved in the modeling, we have brought the
principle of separation of concerns as well as the concept of
artifact to the language. Both these features will be presented
in full detail in the next section, while here we aim at briefly
presenting the intended objectives. As for the former, we have
structured the language so that the digital representation of
a production layout (from a single machine up to a whole
factory) is represented by a set of layers, each devoted to the
description of a particular domain. Consider, for example, the
case where the model should be processed by a Kinematic
and a Discrete Event Simulator (DES). The model in question
will be structured in at least three levels, a first level con-
taining kinematic and 3D models of the entities involved in
the simulation, the second level will contain logical models
describing the behavior of entities in reaction to events, and
the third level will link the physical description to the related
logic. As far as the latter is concerned, the language features
black-box binary items as part of the overall description of
the digital twin. This choice was forced by the fact that
simulators often use very different behavioral models, and they
export them using incompatible (often proprietary) formats.
Thus, a white-box/black-box approach has been adopted to
enable the modeler to define transparent items (e.g., Elements,
Archetypes, and Attributes, see Section IV-A) as well as binary
(and solution dependent) elements.

Figure 1 displays the general architecture of the simulation-
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Figure 1. Architecture supporting the simulation-in-the-loop

in-the-loop system as conceived within the project motivating
our work. The model is created and managed via an open
API. This can be used both by modelers to create the digital
representation of the factory at issue and by simulators. The
model is saved in a repository and continuously updated
through a module in charge of implementing Real-to-Digital
synchronization. As regards the Open API for virtualization
they are structured in two levels. The lower API level allows
the management of core meta-model elements while the upper
level features higher edpoints, specific for each simulation
class. This second level maps the particular concepts of the
domain using the underneath API. In this level all the logic that
enforces a semantic coherence of the domain (e.g. integrity
check, validation) is implemented. Simulation tools outside
the platform will be able to access preferably only the level
that concerns their domain.

The Real-to-Digital Synchronization can be defined as the
process of continuously updating of CPS models stored in the
Model Repository, tracking the evolution of the shop floor.
Having up-to-date models is especially important in simulation
since CPSs along their life cycle are subject to aging, straining,
and reconfiguration processes, which can change their behav-
ior and performance; in this situation the simulation outcomes
may result substantially different from reality and, therefore, of
very limited utility. In order to be able to make decisions based
on reliable simulation models, it is of paramount importance
to detect changes in the CPSs automatically and continuously,
and to adapt parameters and scenarios accordingly. The core of
the synchronization grounds in the processing of data gathered
at shop floor level. Synchronization with shop floor, while
massively involving the digital representation of the factory,
goes beyond the objectives of this document. An extended
discussion of this subject is deferred to future publications.

IV. A MODEL FOR SIMULATION

One of the most common features of manufacturing plants is
that they are mostly designed out of standardized components
(machine tools, robots, etc.) composed in a modular way.
Through a good organization of modules, in fact, it is possible
to speed up engineering as well as the simulation setups,
maximizing the reuse of components. Similarly, simulation
software tools often provides libraries of models that can be
aggregated and extended to assemble a full plant layout. In this
work we aspire to provide the same efficient re-use approach

implementing classes to describe resources, called Archetypes
and Elements, which are instances of such elements and the
components of the plant model. The relationship that exists
between Archetypes and Elements is similar to the one that
exists in Object Oriented Programming (OOP) [11] between
a Class and an Instance (Object) of that class.

Another important requirements is that the resulting data
model shall support semantically meaningful collection of
relations (henceforth referred to as Layers). We deem partic-
ularly important to provide the modelers with a tool to gather
links of the same type. The idea here is to simplify the model-
ing process by dividing the overall models in several levels. By
way of example, a first layer may contain the definition of the
plant topology with its hierarchies of production resources; the
other are graphs that can be used to express relations between
resources. Logical, electrical, and pneumatic layers are just a
few examples of layers. Figure 2 illustrates graphically this
multi-layer modeling approach.

This remainder of section documents the resulting data
model for simulation, which is organized into 9 areas shortly
described below:

Core Model - documents the core classes used for the defi-
nition of entities and relations used in other sections.

Archetype Model - introduces the concepts of Archetypes as
the basis of the model reuse paradigm.

Element Model - this model presents the concept of Element
as the instantiation of an Archetype according to the OOP
approach.

Connection Model - the connection model is devoted to the
definition of the links between two model entities.

Layer Model - presents the concept of layer as a collection
of items that can be further specified using attributes.

Attribute Model - specifies the concept of property to be
used to annotate other elements of the model, namely
Library, Archetype, Artifact, and Endpoint.

Role Model - presents a set of classes that defined the concept
of Role as semantic description to further specify the
constituent elements of the model.

Plant Model - introduces the Plant as an aggregation of layers
representing among other aspects its physical and logical
nature.

Project Model - documents all the classes that represent
multi-plant simulation projects and that enable simulation
tools to share plant models and results.

Logical layer (Dir. Graph)

Physical layer (Dir. Graph)

Physical layer (Tree)

Figure 2. Modeling using superimposed layers
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Figure 3. Class Diagram of the Core model - Part I
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In this paper, nonetheless, due to the limited space available,
only the main concepts and elements of the meta-model will
be presented.

A. Core Model

Our modeling language is entirely upheld by a meta-model
featuring the ground concepts and the sintax of the language.
Nine entities are contained in the core model. Figures 3
and 4 illustrate graphically such entities along with their
relations, using the UML class diagram notation. We have
chosen to divide the core model into two separate diagrams
to improve the fruition. The central components of the model
are: the archetype and the element. These have a symmetrical
structure: both are characterized by one or more roles that
semantically identify them, by a unique identifier within the
model, by attributes that can be complex at will, by endpoints
and artifacts. An element can be defined from an archetype but
unlike OOP this is not strictly necessary. This means that an
element can be defined as a stand-alone component or that it
is possible to add or modify the characteristics inherited from
an archetype.

The other elements of the model are:

Semantics, identification, and grouping of language ele-
ments, namely SemanticRole, AbsldentifiedClass, Abslden-
tifiedSemanticClass, and Library.

Artifacts - references to external relevant models treated as
third-party black-box components (e.g., Geometry Models).

Attributes - properties used by the modeler to specify
Archetypes and Elements.

Endpoints - semantically defined extremes of links connect-
ing Archetypes or Elements. Links, and the rules by which
they can be created, are defined in the Connection Model.

B. Artifact Model

One of the cornerstone requirements that our data model
has to fulfill is to provide support also for black-box attributes,
referred to as Artifacts; it will allow managing elements that
represent information that is processable only by a specific
software solution. An artifact, in our model, can be defined
as an informative fiche containing, among other pieces of
information, a URI that points to a particular file. Four further
specifications are provided off-the-shelf (see Figure 5):

KinematicMode - this class represents a reference to an
external model carring information about the kinematic
behavior of the artifact the model is referred. For instance
a file in COLLADA [12] format also carries information
about the kinematics and could be a candidate for this kind
of model. Nonetheless, specific simulators might use their
own binary format to express kinematic properties.

GeometryModel - this class embodies the concept of a black-
box model holding geometry-related information about the
particular plant resource. 3D models as COLLADA or
JT [13] belong to this particular category.

LogicalModel - this class serves as a reference for models
that define the behavior of plant resources. Such models, ex-
pressed for instance in PLCOpen XML [14], fully describe
the actions of the actors involved in the plant as machines,
CPS, sensors, personnel or software. While other models
describe the static nature of a plant, Logical Models (or
Behavioral models) describe the way the elements react to
events (or clock ticks).

SynchModel - this class represents the synchronization model
defined. In a nutshell, such models are binary files to be
executed by an edge-computing platform to carry out the
real-to-digital synchronization process, that is the mecha-
nism in charge of updating the digital representation of
a plant resource through the processing of data collected
on the shop floor. A comprehensive description of the
synchronization model, the abstractions on which it is
based and its execution mode is beyond the scope of this
document.

C. Connection Model

The connection model, within our model for simulation, is
the part devoted to the definition of the connection mechanisms
between two entities. To this end, the Endpoint class (see
Section IV-A) is extended and the concepts of Link and Con-
nectionLayer are introduced. The concept of link is described
by means of an abstract class (AbsLink) then extended into
two concrete classes (UndirectedLink and DirectedLink). The
UndirectedLink joins together two instances of the Endpoint



Artifact

+uni: URI
+ typs : string

+ format : string

+ amilnterlace : ExtemalDataConnactor

7 i

Figure 5. Class Diagram fo the Artifact Model

Edoirt UndirectedLink

+ Endponta

—
1+ EndpointA 1

UndirsctedCannectionLayer

{ameRole:}

InputEndPoint OutputEndpoint

DiractedComnactionLayer

+ absAltibute

Figure 6. Connection Model

class and represents a connection between the elements to
which the endpoints belong. This link does not provide any in-
formation about the direction of such a connection. To express
the concept of direction, a DirectedLink has to be used instead.
Figure 6 shows the components that shape the connection
model along with the relations that exists among them. The
reader should notice that links are collected within either a
DirectedConnectionLayer or an UndirectedConnectionLayer,
both instantiating the Template class GenericLayer (T). Finally,
the concepts of Endpoint, Link and ConnectionLayer, in their
directed or undirected form, are subject to the constraint
that all the actors must share the same role in order to be
semantically meaningful.

The purpose of this model is to provide the tools (links and
layers) to define aggregations of elements in the form of direct
or indirect graphs. Supporting this aggregation pattern is one
of the model requirements that, together with the hierarchical
aggregation pattern, allows to shape one or more plants by
superimposing different layers. The advantage of this approach
is that it enables distributed, flexible and independent creation
and evolution of the model. Different experts, in fact, can work
in the definition of different elements and connect them by
means of a graph of semantically defined links.

D. Plant Model

The concepts presented so far define a meta-model contain-
ing core items and tools to extend them. Starting from those
core classes, specific manufacturing and simulation concepts
have been devised. The Plant component is one of those, it is
a specification of the Element class featuring set of resources
(physical, logical, and product) as well as their connections.
Furthermore, since one of the goals of our meta-model is
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Figure 7. Class diagram of the Plant model

to enable a layer-based modeling approach wherein different
actors (experts in different domains) can easily collaborate
in defining a complete simulation model (see Figure 2), the
fact that the structure proposed to represent a plant also
includes several layers should not surprise. Some of them are
mandatory and specific as the physical, logical and product
layers, which model hierarchies of physical, logical and prod-
uct entities, respectively. Other are optional like one or more
GenericLayers, which present to model graph-shaped relations
between the elements of the mandatory layers. Furthermore,
Endpoints can be defined to model connections among plants
(via Endpoints).

Plants in turn can be aggregated into their own level that,
together with other pieces of information, defines a Simulation
Project.

V. USE CASE: WHITE-GOODS PRODUCTION

The rationale of this section is to present a use case scenario,
highlighting the way it has been modeled using the proposed
data model. The use case describes the hob handling and
palletizing operations carried out within a real production
plant in Italy. The plant produces over a hundred different
configurations of cooking hobs, belonging to three categories:
gas, electric or pyro-ceramic. The production is organized in
batches; hobs of the same type are aggregated taking into
account different orders. Each batch (and every hob in it)
is identified by a code to ensure a high level of traceability.
For the same reason, as soon as a single hob is released, an
automated reading system records its associated event. The
cooking hobs are realized by different production stations;
each station produces one hob at a time and it is specialized
in producing items of only one category. Seven palletizers
are placed at the end of the stations; they have the task of
aggregating in a pallet elements belonging to the same lot,
assigning a unique 2D barcode to the pallet and placing them
on a conveyor. The length of the conveyor, its average speed
as well as the shelf life of the pallets on it are known. On
the end of the conveyor there is a 2D barcode reader and an
automated sorter system. The sorter has the task of dispatching
the pallets out of the conveyor to different shipping lines. The
plant features 18 shipping lines freely assignable to any type
of product.
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An example of data model instantiation for this use case is
presented in Figure 8; it represents the plant according to the
Plant Model presented in Section IV-C. Following the layered
structure at the basis of the modeling approach enforced by
the data model, the plant is defined as a collection of layers,
and specifically:

« a Physical layer, defining the main elements of the plant
along with their artifacts as geometries, representing 3D
models of the components (conveyors, sorter and bays)
of the graphical simulation model;

« a Logical layer, defining the internal automation logic of
all the components involved in the simulation;

e a Product layer, describing the product stacks and the
single product units composing them.

« a DirectedConnectionLayer named SimulationConnec-
tionLayer, which connects the physical elements and the
logical ones.

VI. CONCLUSIONS

In this paper a flexible and innovative data model explic-
itly designed to support multi-disciplinary virtualization and
simulation within the frame of Industrie 4.0 is presented.
At the same time, we have explained the needs the model
addresses and motivated the decisions made. In what follows
some highlights are reported:

1) In order to grant a high degree of reusability the Object
Oriented Paradigm has been taken as reference to develop
the Archetype-Element duality. In this way the model
enables the creation of libraries of components to be
reused in different simulation/virtualization scenarios.

2) To achieve a high level of abstraction, flexibility, and
compatibility among different simulators a meta-model

featuring a white-box/black-box approach has been pro-
posed.

3) To streamline the process of modeling in a multidisci-
plinary scenario, a layered pattern is implemented and
enforced.

Future work will concentrate on providing the language with
concepts pertaining to the time, and CPS state. In addition, the
language will provide specific constructs for the description of
data flows generated by CPS with the aim of facilitating and
automating the real-to-digital synchronization process.
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