

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/121460

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/121460
mailto:wrap@warwick.ac.uk

Automatic PLC Code Generation Based on Virtual
Engineering Model

Mohammad Jbair, Bilal Ahmad, Mus’ab H. Ahmad, Daniel Vera, Robert Harrison, Tony Ridler
E-mail: {Mohammad.Jbair, B.Ahmad, M.Ahmad.8, D.A.Vera, Robert.Harrison, T.Ridler} @warwick.ac.uk

WMG, University of Warwick, CV4 7AL, Coventry, West Midlands, UK

Abstract— Today’s automotive firms, regardless the
systems they use (e.g. mass production, mass customisation,
just-in-time, etc.) face common challenges that can result in
sudden and frequent disruptions across the supply chain.
Manufacturing systems should rapidly respond to these
disruptions. This can be made possible by introducing new
smart engineering methods and technologies to enable
realisation of high level of reconfigurable and dynamic
manufacturing processes to improve the overall performance
of manufacturing plants. This paper investigates a
methodology to develop a digital model for a fuel-cell assembly
system and then utilises the developed model to automatically
generate machine’s Programmable Logic Controller (PLC)
code, connectivity, and process data records. These
automatically generated parts can then be used in order to
create a Cyber Physical System (CPS). The aim of this paper is
to demonstrate the automatic generation of the control code
and structure it in order to be effectively and efficiently used in
industrial applications. The on-going DIGIMAN project [1],
which aims to deliver a proof of process fuel-cell assembly
system for the automotive industry, is being used as a proof of
concept to validate the proposed methodology and framework.

Keywords—Cyber Physical Systems; Automatic PLC Code
Generation; Virtual Engineering; Digital Twin

I. INTRODUCTION

Recent initiatives, such as Industrie 4.0, promises the
introduction of smart manufacturing to address the
challenges faced by the manufacturing industry. Smart
manufacturing is aimed to bridge the gap between digital and
physical environments with the goal of optimising design,
deployment and operation of manufacturing processes.

Virtual engineering and modelling tools are widely used
in industry, particularly in automotive manufacturing, offer
powerful capabilities and functions throughout both system
and product lifecycles. However, to a large extent, the use of
virtual engineering is currently confined to the design phase.
There is a need to extend the use of digitalisation to
deployment and operation phase. In this context, this paper is
looking into development of virtual models of manufacturing
systems that can be used to automatically generate structured
PLC code, where this code can be deployed directly to
manufacturing application. The paper investigates the current
methods and practices to create a PLC code manually and
automatically.

Furthermore, it investigates the existing engineering tools
that consider automatic generation of a PLC code, identify
the gap in these practices and propose a methodology to
bridge this gap. Therefore, the novelty of this research is to
automatically generate a structured PLC code that meets
manufacturing applications requirements, and in-line with
both maintenance and operation’s needs in order to facilitate
monitoring, troubleshooting, and diagnostics activities.

II. LITERATURE REVIEW

A. PLC Software Development

PLC programming languages are widely based on
IEC61131-3 standard, published in 1993 to standardise PLC
programming languages. It defines five languages; Ladder
Diagram (LD), Function Block Diagram (FBD), Structured
Text (ST), Instruction List (IL), Sequential Function Chart
(SFC) [2]. PLC vendors have widely adopted these
languages. However, it is been observed, according to the
survey conducted in [2], that the use of these programming
languages mostly do not follow a standardised practice from
code structuring perspective. Some companies (both system
integrators and end-users) often define their own software
structure standard to promote common look and facilitate
monitoring, troubleshooting, and diagnostics activities. This
also allows programmers to copy code from previous
projects and edit it to match new project’s requirements. The
choice of the programming languages depends on many
factors such as programmer knowledge, complexity of
automation task, and modification / troubleshooting
frequency. Nevertheless, there is no preference to one
language compared to others.

PLC software is developed either manually by a
programmer or automatically using engineering tools. The
sections below provide a brief overview of the existing
practices for both methods within automotive industry.

B. Manual PLC programming Practices within
Automotive Industry

Complexity of automation tasks in automotive industry
often leads to complex PLC code. Most of the major
automobile manufacturers intend to use a standard software
structure and often force their machine builders to follow it.
However, some engineering practices are widely adopted
and most of the manufacturers have derived their software

structuring from them. The following illustrates these
practices:

Structured Transfer-Machine EDDI Programming System
(STEPS) [3]:

STEPS was developed by Ford Motor Company and was
extensively used across a number of Ford plants globally.
STEPS was an evolution of EDDI and thus adopted a
number of features from EDDI (Error Diagnostic Dynamic
Indication), which was originated in 1980’s. A number of
features were refined to meet the requirements of all machine
types used by Ford and was published to all machine vendors
of Ford Motor Company. STEPS used only LD
programming language. It focused on machine maintenance
and diagnostics such as displaying fault messages in a
meaningful manner, and enhancing fault detection and
diagnostic functions of machine control code. The program
structure consists of: 1) Standard beginning; contains all
ladder logic for machine modes of operations (manual and
automatic) and ensure homing before start. 2) Machine
Control Zone; to control an operation for the machine
equipment. 3) Constantly Monitored Zone (CMZ); monitors
all machine safety interlocks such as emergency stop, safety
door, etc. 4) Hardware module signals; controls I/O modules.
5) Interface to Operator Terminal; controls the HMI and 6)
Standard End; vendor Specific Logic.

Structured Transfer-Machine EDDI Programming System
Function Block (STEP FB) [4]:

STEPS FB is designed to simplify STEP programming
structure. Instead of using zones and repeating the same
program in all other zones. STEP FB divides the machine
into a number of components, each component is
programmed using LD or ST language, and one main
machine sequence that controls all of the components
programmed using SFC language. STEPS FB code structure
is: 1) Main Control; mode of operations, stop cycle, and go
home control. 2) SFC Control; an SFC sequencer to program
machine components such as Robot, Lift table, etc. 3)
Component Blocks; piece of program that used to control
one component of the machine. 4) Constantly Monitored
Zone (CMZ). 5) HMI; controls the HMI and its messages. 6)
IO Mapping; maps the I/O modules for the machine.

Ford And Siemens Transline (FAST) [5]:
FAST programming practice is a result of cooperation

between Ford Motor Company and Siemens Company. It
was released in 2013 for powertrain production machinery.
FAST uses LD as a main programming language, though
there is no emphasis on use of a specific language for
vendor-specific function blocks. The structure of code for
implementing control functions is very loosely defined, said
that it allows flexibility to programmers to write code for
most of the control functions as they want. FAST assumes
that a machine consists of a maximum number of six stations
and each station contains a number of components and a
sequence of operation. FAST code structure includes: 1)
Main Program; where all machine and its stations codes are
called. 2) Machine Block; programs machine interlocks,

alarms and power diagnostics. 3) Station Blocks; control
station mode of operation, station alarms, station HMI,
station components, communication, traceability and station
sequence of operation. 4) Safety Block; monitors all machine
safety inlocks.

Function Orientated Modularisation (FOM) [6]:
FOM was introduced by ThyssenKrupp System

Engineering (TKSE) GmbH in 2007. This practice considers
a production system hierarchy concept. A production system
is composed of Areas, each Area consists of a number of
Stations. The sequence of operations for a Station is
controlled via Process Steps, each Process Step controls
number of Units. Units are FBs that controls actuators.
FOM uses LD programming language for the high-level
structure of the code. However, most of the software blocks
such as Process Steps and Units are written in Instruction
List. The structure of the code is modular and facilitates code
reusability to a great extent.

C. Automatic PLC programming Generation Practices

Automatic code generation is a transformation of
machine control behaviour, defined in a higher level of
abstract during design phase, into a code that can be
implemented directly into the automation system [7].
Typically, machine behaviour data are available and can be
extracted from design tools that are used to define control
behavior of a machine [8].

A number of researchers presented a framework and
methods for automatic PLC code generation. Birgit Vogel-
Heuser [9] suggested a framework to generate PLC code
from Unified Modelling Language (UML) model. Real-Time
Studio from Artisan was used in this research as a modelling
tool. This tool defines system architecture as a prerequisite to
the code generator, which in turns automatically creates IEC
61131-3 codes (SFC and ST). The generated code is
structured for machine troubleshooting purposes. However,
all FBs are programmed using ST language, which creates
complexity and difficulty in reconfigurations and adding new
functions to the machine. Martin Bergert [10] presented a
framework for PLC code generation based on digital process
information, modeled in DILMILA Process Engineer (DPE).
The presented framework translates XML file that contains
the machine specifications and generated by PDE into IEC
61131-3 code (SFC and FB). Other research conducted by
Michael Steinegger [11], proposed a conceptual method to
generate a PLC code from manufacturing process-
engineering tools. However, this research does not
demonstrate a practical solution for the proposed method.

In addition to the academic research, a number of control
vendors also developed automatic code generation tools,
such as Mitsubishi Adroit Process Suite (MAPS), Schneider
Unity Application Generator (UAG), Beckhoff TwinCAT
automation interface and other vendors [8]. These tools aim
to automatically generate the PLC code based on a pre-
defined workflow that needs to be configured by the PLC
programmer, this workflow is usually integrated within the
tool.

D. Virtual Engineering of Manufacturing Systems

The purpose of virtual engineering tools is to create a
digital model of manufacturing systems. Typically, virtual
models consist of three main aspects: mechanical, electrical
and control. Mechanical: such as geometry, layout, and
kinematic. Electrical: such as power consumption, power
efficiency, and power management. Control: such as
machine software logic and communication links. The
designed digital model allows investigation of system
behaviour, as a result of components interactions by using
simulation feature. The dynamic model allows validation of
the system logic, as well as optimisation of the machine
processes.

A wide variety of virtual engineering tools are available
in the market to assist in designing and engineering of
manufacturing systems. Siemens NX Mechatronics Concept
Designer [12], Process Simulate, Dassault Systems DELMIA
[13], WinMOD [14] and VueOne [16] are examples of these
tools. These tools allow simulation of manufacturing systems
in a 3D environment and enable linking the physical
Inputs/Outputs with the virtual processes to ensure
continuous alignment between cyber and physical worlds. As
a result, a closed loop system is implemented, and
optimisation can be achieved through manufacturing
system’s life cycle.

E. Limitations and Gaps of Current Researches and
Practices

Most of the existing automatic code generation
approaches are considered as impractical or providing
incomplete solution and thus have not been put into
industrial practices. Most of the carried out academic
research ignore existing best practices in programming PLCs
and do not meet manufacturing applications’ operational and
maintenance requirements, which make activities such as
machine troubleshooting are very difficult to perform. On the
other hand, virtual engineering tools that are widely used in
industry, mainly focus on process modelling and simulation,
and do not consider the entire manufacturing lifecycle. These
tools often fail to consider control system deployments,
especially for PLC and HMI, which in return results more
engineering time, waste of resources, and increase the overall
project cost [15].

Therefore, this paper aims to propose a methodology to
address these limitations in order to improve manufacturers’
competitiveness and achieve the high demand for
reconfigurability.

III. METHODOLOGY

The proposed methodology in this paper aims to generate
the PLC code based on the control behaviour represented by
a digital model within a virtual engineering tool. The
generated code is structured in a way that can be practically
used in industrial application, which been represented in
section IV, and considering code traceability,
reconfigurability and ease of troubleshooting and
maintenance activities.

A. VueOne Virtual Engineering Toolset

VueOne is a virtual engineering toolset used in this
research work. VueOne is developed by the Automation
Systems Group (ASG) at the University of Warwick [16].
This toolset consists of Editor, Viewer, Mapper, and
Gateway. It facilitates machine lifecycle engineering and
development including kinematic modelling and simulation,
process planning, and mechanical and control design.
VueOne facilitates component-based approach to enable
component reusability and system reconfigurability.
Modelling in VueOne can be broadly categoriesed into: 1)
component modelling (e.g. sensor, actuator) and 2) system
modelling. Components encapsulate data that defines
component geometry using VRML 3D model, kinematics
and control behaviour. Components can be saved in a library
and be utilised throughout the machine lifecycle. System
modelling can be carried out by assembling components and
defining sequence of operations that define relationships and
interactions between the utilised components. VueOne uses
STD (State Transition Diagram) for control behavior
definition that is compliant with IEC 61131-3 for process
definition.

B. Research Framework

The framework targets to generate structured PLC
control code by extending the capabilities of VueOne toolset.
This can be seen in Fig. 1 where authors’ contributions are
highlighted in green colour. The contributions are in the form
of extending VueOne Mapper capabilities, so that the
outcome from VCG will include: PLC Function Blocks
(components FBs), Process Sequence of Operations,
Machine Connectivity, and Machine Digital Twin Data
Records.

The proposed framework aims to integrate and optimise
the engineering phase for the PLC programming. At the
design phase, machine mechanical and control behaviour
(including components behavior and sequence of operations)
are designed using VueOne Editor, then this design can be
exported in XML format to VueOne Code Generator (VCG),
which noted as the first input1 in Fig.1.

Each component of the machine is represented by a
Function Block (FB) in PLC Library. The FBs are generic
ready-made templates to control machine components. For
example, a double acting cylinder component has a double
acting cylinder FB in the PLC library. FBs are programmed
and validated, then issued as an initial or revised version in
the PLC library. It is important to mention that these FBs
need to be programmed only once in a PLC engineering tool
at the very initial phase of FBs development, thereafter they
can be published as the second input2 to VCG for future
reuse. To generate the PLC code, input1 (XML file) and
input2 (FBs templates) need to be fed to VCG, and then each
machine component is required to be mapped to its
equivalent FB from the PLC library.

Fig. 1. Research Framework

C. PLC as a Component in Cyber Physical System (CPS)

The framework proposed in this paper aims to extend the
PLC code generation and includes not only the basic PLC
code to execute the automation task, but also, to generate all
communication blocks and machine physical process values
(digital twin data records). The communication blocks are
required to connect the PLC with the plant central database
via Internet of Things (IoT) protocol such as Open Platform
Communication Unified Architecture (OPC UA) to create a
connected digital twin and gain the benefits of data analytics
and smart services such as Cause and Effect application as
shown in Fig. 1. Once the PLC has the required code for
physical process automation, connected with virtual world
via IoT, and feedback all process values in real time, then
this PLC will be acting as a component of a Cyber Physical
System (CPS).

IV. PROOF-OF-CONCEPT IMPLEMENTATION

The case study in this paper demonstrates the use of
VueOne toolset in order to automatically generate the PLC
code for the Proof-of-Process (PoP) Demonstrator Polymer
Electrolyte Membrane (PEM) fuel cell assembly system used
in DIGIMAN project. The assembly system consists of four
stations (i.e. cell manufacturing, fuel-cell test, fuel-cell
stacking, and fuel-cell stacking test stations.) The overall
assembly process is divided into zones, each zone consists of
a number of workstations. PEM fuel-cells are manufactured
in the first station. Each PEM cell consists of multiple layers
of different material (cell layers), each layer is built using a
pick and place or lamination process by dedicated stations
within the PoP Demonstrator [1]. After cell manufacturing,
each cell is tested. Then, a pack of the validated discrete cells
is assembled into a fuel cell stack. Finally, Fuel-cell stack is
tested in the fuel-cell stacking test station. For this case
study, first station of the PoP Demonstrator is used. Siemens
S7-300 PLC is used in the proof-of-concept implementation
for this paper.

A. Methodology Workflow Implementation

The framework proposed in section III-B aims to
facilitate the development of machine engineering lifecycle,
by including functionality to automatically generate control

code from VueOne toolset. The implementation shall include
virtual model engineering, PLC library development and
VCG configuration, below sections demonstrates the
implementation of this methodology:

Virtual Model:
The virtual model is a machine representation in a digital

form. Fig. 2 shows virtual model of the fist station of the PoP
Demonstrator, which developed in VueOne Editor.

The PLC control system requirements for this station
mainly include:

1) Station sequence of operation: it describes a set of
operation steps that Anode station needs to perform in order
to assemble Anode layer.

Fig. 2. Anode station model in VueOne Editor from DIGIMAN project

2) Mode of operations: manual and automatic modes.
During manual mode, the station steps are performed using
buttons on the HMI, whereas the automatic mode executes
machine sequence automatically without any human
intervention. Automatic mode consists of three cycles;
continuous cycle, single cycle and dry cycle, continuous
cycle executes the sequence automatically for every machine
cycle, single cycle executes the sequence only once, and dry
cycle executes the sequence for every cycle but without
material. 3) Safety machine interlocks: to ensure the
operations of machine are executed in a safe manner. 4)
Machine components alarms & diagnostics: to allow faster
and efficient maintenance and troubleshooting. 5) Machine
connectivity via OPC UA: the machine needs to
communicate with the virtual world via IoT protocols such
as OPC UA. 6) Machine data records: the machine should
feedback the physical process data to the virtual world in
order to create a connected and synchronised digital twin.

The control behaviour for PoP Demonstrator station is
configured within the virtual model by using the state
transition diagram as show in below Fig. 3:

Fig. 3. Process component STD in VueOne Editor

PLC Library:
VCG maps each component from the modeled machine

with a FB from the PLC library. Fig. 4 shows the interface of
a template FB with all inputs/outputs interfaces. Although
machine components functionalities are different, the
structure of FBs is same for all components. All FBs are
programmed using LD language and published with version
control in the library.

The FB considers two mode of operations; automatic and
manual modes, if automatic mode is selected, then based on
the sequence of operation, the automatic command for the
component will be performed using “Auto Cmd” input.
“Handshake” input will be activated when the machine
sequence of operation executes all steps. If manual mode is
selected, then buttons from the HMI will operate the
component using “Man Cmd” input. During movement from
home to work positions, safety interlocks are checked using
“Home Interlocks” and “Work Interlocks” inputs. “PDIs”
inputs represent the physical inputs from the machine and
“PDOs” are the command to generate physical outputs.
When the automatic or manual command is activated, a fault
timer will trigger to check the physical feedback. If this
feedback is not activated within the “Fault Timer” time, then
a “Fault” will be generated. Fault can be reset using “Fault
Reset” input.

“Alarm” output is acting as the diagnostics feature for the
machine during operation and maintenance. The output is a
value range between 1 to 10, this output helps the user to
monitor and diagnose the machine during operations. Each
number indicates an alarm state of the component, for
example, number 1 indicates unit component is faulty,
number 7 indicates unit inhibit, etc. “Data Record” output is
an array of component’s process values that communicated
back to the central database in order to create the connected
digital twin. This output will be triggered once the
component end of operation or movement is completed.

DIGIMAN project has utilised this FB template in order
to generate machine components FBs, such as multi-position

Fig. 4. Function Block example from PLC Library

electrical cylinder, pneumatic cylinder, Robot arm for pick
and place and other components.

VueOne Code Generator (VCG):
In order to generate the target control code, VCG

interface is used as shown in Fig. 5. It lists all components,
which have been imported from the XML file and lists all
FBs for the components. By selecting the component (left
side) and then select FB (right side), the VCG links the
component with the FB and create the PLC FBs. Finally, the
user can generate the PLC code using code generation
function provided in the VCG interface. The Process
Sequences is generated automatically based on the STD
diagram that programmed in the virtual model as one-to-one
generation to a FB, this FB uses S7 Graph programming
language.

The automatically generated PLC code from VCG is
structured to meet the operational and maintenance
requirements and bridge the gap that described in section I-E.
A brief description of the code structure is given below, and
Fig. 6 has demonstrated the structure as a hierarchy diagram.

1 Main program OB1 calls production line areas’ FBs.
2 Every area consists of a number of stations.
3 Each station calls number of Process Steps.
4 Each Process Step calls the main sequence of

operation and units (components) related to that
operation sequence.

Fig. 5. VueOne Mapper Interface

Fig. 6. PLC code structure generated from VCG

B. VCG code generation for DIGIMAN case study

The case study considers the first station of the PoP
Demonstrator (Anode station), which places the Anode layer
of the PEM fuel cell. The digital model for this station has
been illustrated in Fig. 2 and process sequence has been
explained in Fig. 3. The generated code from VCG tool is
shown in below Fig. 7.

Fig. 7. Anode station PLC generated code from VCG tool.

V. CONCLUSION AND FUTURE WORK

The paper demonstrates structured PLC automatic code
generation based on virtual engineering model and process
planning data available in VueOne toolset. The generated
code has been structured in order to be in-line with currently
manual programming practices used in industrial
applications. The generated code can be monitored and
changed by technicians if required (such as bypassing an
interlock due to a faulty sensor). Furthermore, it considers
simple programming style for easy code tracing, machine
monitoring and diagnostics, maintenance activities, and
machine future reconfiguration and upgrades activities. This
research paper also considers another angle of the PLC code
generation, which is connectivity and machine data records.
This is an important aspect of smart manufacturing systems,
where the PLC needs to be a part of the CPS and provide all
required IoT connectivity as well as real time process data to
feed it back to the virtual world and create a connected
digital twin.

The case study implementation was carried out on a full-
scale industrial machine. The proposed framework was
validated on the Anode station. Moreover, the created data
records are stored in a central database (digital twin) for
further data analytics by the Cause and Effect application,
which been developed by DIGIMAN stakeholders.

Future work will show how this methodology can be
extended to generate the PLC code for the entire DIGIMAN
stations, and validate and evaluate the generated code for
further components within this project such as VFD, RFID
tag, smart sensors and actuators.

VI. ACKNOWLEDGMENT

The research leading to these results has received funding
from the Fuel Cells and Hydrogen 2 Joint Undertaking under
grant agreement No 736290, DIGIMAN. This Joint
Undertaking receives support from the European Union’s
Horizon 2020 research and innovation programme,
Hydrogen Europe and Hydrogen Europe research. The
authors gratefully acknowledge the contribution of Dr. Tony
Wilson (Intelligent Energy), David Urquhart (WMG) and
Jiayi Zhang (WMG).

VII. REFERENCES
[1] H. 2020, “DigiMan Project.” [Online]. Available:

http://digiman.eu/index.php. [Accessed: 12-Nov-2018].
[2] V. Hajarnavis, K. Young, V. Hajarnavis, and K. Young, “An

investigation into programmable logic controller software design
techniques in the automotive industry,” 2015.

[3] F. M. Company, “STEPS Specification,” 1996.
[4] F. M. Company, “DVM4 Auto Station Engine Assembly

Specification.”
[5] Siemens, “PTO Manufacturing Engineering FAST PLC Structure

Manual,” 2012.
[6] ThyssenKrupp, “STEP 7 Programming Course FOM Training

Course,” 2002.
[7] S. Lee, M. A. Ang, and J. Lee, “Automatic generation of logic

control,” p. 2006, 2006.
[8] M. Jbair et al., “Industrial Cyber Physical Systems : A Survey for

Control-Engineering Tools.”
[9] B. Vogel-heuser, M. Ieee, D. Witsch, and U. Katzke, “Automatic

Code Generation from a UML model to JEC 61131-3 and system
configuration tools,” pp. 1034–1039, 2005.

[10] M. Bergert, C. Diedrich, M. Germany, J. Kiefer, and T. Bär,
“Automated PLC Software Generation Based on Standardized
Digital Process Information Institute of Automation Technology (
IFAT) Function and Production Modeling (GR / EPF),” pp.
352–359, 2007.

[11] M. Steinegger and A. Zoitl, “Automated Code Generation for
Programmable Logic Controllers based on Knowledge
Acquisition from Engineering Artifacts : Concept and Case
Study,” no. Xml, pp. 1–8, 2012.

[12] Siemens, “NX MCD.” [Online]. Available:
https://www.plm.automation.siemens.com/global/en/products/me
chanical-design/mechatronic-concept-design.html. [Accessed:
12-Nov-2018].

[13] D. Systems, “Delmia.” [Online]. Available:
https://www.3ds.com/products-services/delmia/. [Accessed: 25-
Jan-2018].

[14] “WinMOD.” [Online]. Available: http://www.winmod.de/en/.
[Accessed: 25-Jan-2018].

[15] M. Pellicciari, A. O. Andrisano, F. Leali, and A. Vergnano,
“Engineering method for adaptive manufacturing systems
design,” pp. 81–91, 2009.

[16] R. Harrison, D. Vera, and B. Ahmad, “Engineering Methods and
Tools for Cyber-Physical Automation Systems,” vol. 104, no. 5,
pp. 973–985, 2016.

