Early Analysis of Cyber-Physical Systems using
Co-simulation and Multi-level Modelling

Tim Broenink
University of Twente
Enschede
The Netherlands
t.g.broenink @utwente.nl

Thomas Nigele
Radboud University
Nijmegen
The Netherlands
t.nagele@cs.ru.nl

Abstract—The multi-disciplinary nature of the design of cyber-
physical systems makes it hard to gain insight in the system
behaviour early in the design process. Our aim is to allow
the designers to analyse the integration of system components
as well as the behaviour of the complete system in an early
stage. This is achieved by creating abstract component models
and refining them throughout the design process. After every
refinement cycle, the models can be co-simulated to analyse the
behaviour of the system, supporting design decisions. The co-
simulation is created based on existing standards such as HLA
and FMI and uses a domain-specific language to construct a
co-simulation automatically. This approach is illustrated using a
case study which resembles a confidential industrial case.

Index Terms—Cyber-physical systems, System design, System
analysis, Co-simulation, Multi-level modelling, Concurrent devel-
opment, HLA, FMI

I. INTRODUCTION

The development of a cyber-physical system (CPS) is a
complex multidisciplinary process. After the formulation of
the requirements, a system architecture is defined with mech-
anical components, computing platforms, software compon-
ents, etc. When integrated, these parts should together lead to
a system that meets the requirements. Typically, however, the
test and integration phase reveals many issues, leading to a lot
of rework and project delays. To detect issues earlier in the
development process, many methods for model-based control
are proposed [11][9][8]. Our aim is to support an efficient
and effective model-based method for CPSs that supports the
industrial development process.

In this paper we focus on a method that uses co-simulation
of models to analyse system behaviour in the early phases of
development. Since multiple disciplines are involved, each one
having its own modelling technology, the co-simulation of a
number of different types of models has to be supported. The
construction of such a co-simulation should be easy to allow
fast design space exploration and industrial usage. Moreover, it
should be possible to start with abstract models and gradually
refine them into more detailed models, finally leading to a
realisation in terms of hardware or code. The co-simulation
should allow combinations of models at different levels of
abstraction.

Our co-simulation technology is based on two standards.
The Functional Mock-up Interface (FMI) [3] aims for interop-

978-1-5386-8500-6/19/$31.00 ©2019 IEEE

Radboud University & ESI (TNO)
Nijmegen & Eindhoven

Jan Broenink
University of Twente
Enschede
The Netherlands
j-.f.broenink @utwente.nl

Jozef Hooman

The Netherlands
hooman@cs.ru.nl

erability between models from different tools. The High-Level
Architecture (HLA) [1] can be used to synchronise multiple
simulations. The manual construction of a co-simulation using
these standards is far from trivial and time consuming. Also
adaptations after changes, e.g. in interfaces of components,
take a considerable amount of time. Since this can be a
blocking factor for industrial applications, we provide a high-
level language, automating the construction of a co-simulation
to a large extent. It allows developers to design components
in their own modelling tools while still being able to construct
a virtual prototype easily, thus supporting the concurrent
development of these components.

The development of models of the components is an iter-
ative process. Every development cycle adds more details or
fixes issues from the previous version of the model, working
towards a realisation of the component. For instance, an ab-
stract model may only contain information on the movements
of a component while a more detailed model might also
describe the motor that is responsible for the movement. When
the model is mature enough, the model may be realised into
actual hardware or software.

Our approach is illustrated by the design of a small CPS
in our lab which reflects the characteristics of a confidential
industrial case we are working on. We show that a virtual
prototype of the system can already be constructed during the
early phases in the development process. We start with rather
abstract models of the components until enough information
is available to create a co-simulation to analyse the design.
Next, the models are refined, adding more detail and obtaining
more accurate simulation results. This allows for the design of
system-level features using co-simulation. Finally, the models
are realised into a real CPS.

The remainder of this paper is structured as follows. Sec-
tion II summarises related work. Section III explains the
system that was designed, after which Section IV describes the
design flow that was used as well as the interfaces between
the models. Section V describes how the initial models for
the design were created. Section VI provides the method that
was used to create the co-simulation and Section VII describes
how the design was refined using the co-simulation. We briefly
explain the realisation of the system in Section VIII, round up
with the results in Section IX and conclude in Section X.

133

II. RELATED WORK

For the creation of co-simulations based on the FMI stand-
ard, approaches have already been developed. The INTO-
CPS [10] project provides a tool chain to construct co-
simulations from sets of FMI compliant models. The INTO-
CPS tool chain, however, relies on a specific set of tools and
requires quite some meta-modelling in order to create a co-
simulation. The use of an HLA implementation as master
algorithm for FMI has been proposed in [2]. [19] describes
a method to create an HLA wrapper for FMI. Also, [14]
demonstrates an approach to automatically integrate FMUs
into one HLA co-simulation. However, this approach also
requires quite some meta-models to be created. These meta-
models would need to be updated when the models are
changed, which we intend to do frequently.

For the design of CPSs, tools and methodologies exist
that tackle the challenges inherent in these systems [7]. [8]
proposes a model based approach to deal with these chal-
lenges. A heterogeneous simulator, the Ptolemy framework,
was proposed in [6]. The DESTECS project [16] deals with co-
modelling, co-simulation and co-designing supervisory con-
trol models [4]. The TERRA tooling [12], provides for co-
simulating real-time control models using FMI and CPS [5].
[18] proposes a method to generate simulatable models from
multi-domain functional descriptions of systems.

III. CASE STUDY: SLIDERSETUP

A system which we call
the SliderSetup serves as
case study throughout this
paper to illustrate our meth-
odology The SliderSetup
consists of two independent
axes, each having a slider
— encircled in blue in Fig-
ure 1 — that can be moved
along its axis. One axis is
located at the bottom while
the other is positioned on
top. A thread coil can be attached on each of these sliders.
The goal of the SliderSetup is to unwind the threads from
one of the coils onto the other coil by letting the sliders orbit
around each other without colliding. From this behaviour, the
following requirements are specified.

Figure 1. The SliderSetup with thread
coils attached to the sliders.

1) The system is capable of (un)winding the thread coil at
a minimum speed of 2 rotations per second.
2) The components of the system may not collide.

The SliderSetup consists of six components, which are
displayed in the component architecture in Figure 2. Each
slider is moved by a motor which is controlled by its own
controller. These controllers are controlled by a supervisory
controller. The supervisory controller receives its input from
management software that is used by the user to control
the behaviour of the system, such as moving the sliders to
specified positions.

For the development of ‘
the SliderSetup, the col-
laboration of different dis-
ciplines is required. Both ‘
the management software 1 1
and supervisory control- Bottom Controller
ler are developed by the I T
software engineers, while
the controllers and physical
sliders are developed by the
mechatronic engineers.

Management software ‘ 4

Supervisory Controller (ECS) ‘

Embedded

‘ Top Controller

‘ Top Slider ‘ ‘ Bottom Slider ‘

Figure 2. Overview of the component
architecture of the SliderSetup.

IV. SYSTEM DESIGN

For the development of the SliderSetup, the design method
outlined in [4] is used. Figure 3 shows an overview of this
design flow. When using this design flow, three parts are re-
quired: the plant dynamics, the control laws and the embedded
control software (ECS). These three parts correspond with the
components displayed in Figure 2.

Electronics design Software design
a)# b)

ECS software
architecture
c)

<> (G)UI, Supervisory, Control laws Plant dynamics
Sequence, Safety (Loop control,CT) Y

o
(2
2
e

Controller design Mechanics design

Plant dynamics
<

Iie

—

Time Triggered &
Discrete Event software
Simulation time
Real-time

Figure 3. An overview of the design flow used for the SliderSetup [4],
showing the different stages of the models and implementations.

To be able to construct a co-simulation of these three parts,
the interfaces between them should be defined. Deciding on
the interfaces requires information on the actuators and sensors
that are present and the information that needs to be shared
between component models. Although the exact implementa-
tions of these components of the system are determined by the
system requirements and the available options, the interfaces
between them can be decided on very early in the design
process. This section briefly describes the design decisions
made and the resulting interfaces and implementations for the
three parts mentioned above.

A. Plant dynamics

Based on the speed requirements for SliderSetup, a belt
was chosen to actuate the slider. This belt is driven by an
electromotor, which is selected based on two factors. First, the
velocity requirement of the slider requires a certain amount
of torque. Secondly the motor should be easily controlled
using available motor drivers. The selected motor and driver
combination should be driven by a voltage and can be enabled
and disabled. The sensor on the slider senses the position of
the slider in a way that yet has to be determined. This results
in the plant model having two inputs: a voltage and an enable

134

signal; and a single output: a sensor value representing the
position. These are all connected to the controller.

B. Control laws

The control law of the system is largely based on the plant
dynamics. Depending on the application, a certain control
mode needs to be implemented. For the SliderSetup the
decision was made to implement three different control modes:

o A fast control mode using linear control.

« A controlled move using a motion profile.

« A constant velocity mode.

These three modes require different inputs from the su-
pervisory controller, which are converged into one set of
attributes: a mode selector, a set-point input — either velocity or
position — and a duration for the controlled move. Furthermore
the controller outputs an estimated position of the slider to the
supervisory controller.

C. Embedded control software

The initial design of the ECS is purely based on the inputs
and outputs of the controller to which it is connected. It is
designed to control two axes and supports default sequences
of actions that should be executed, such as setting values
for the setpoints and modes of the axes. The management
software is ignored at this stage, since it is not part of the
core functionality of the SliderSetup itself. Only when this
functionality is sufficiently developed, this software is added.

V. MODELLING

For stages one and two of the design flow as outlined in
Section IV, three models are required: the plant dynamics, the
control laws and the embedded control software (ECS). These
models correspond to the sliders, controllers and supervisory
controller in Figure 2 respectively. Each of these models starts
as an abstract model and is gradually refined to improve
the accuracy of the model. This section briefly describes the
component models that are developed.

A. Plant dynamics

The model of the plant consists of two continuous-time
models that are developed in 20-sim'. The models for both
slider axes are functionally identical. They describe the beha-
viour of the motor, the driving electronics, the transmission to
linear motion and the sensor. The plant dynamics also includes
a 3D kinematics model, which can be used for collision detec-
tion. The plant dynamics model should eventually correspond
to the slider axis that is realised. Each instance of this model
will be connected to the corresponding controller.

B. Control laws

The controller model is a discrete-time model of software
that is also developed in 20-sim. The model contains the
control laws to control the axis as well as the processing
required for the sensors. This model is eventually realised as
a piece of software. The controller is connected with both the
supervisory controller and the motor.

'http://www.20sim. com/

C. Embedded control software

The model of the ECS is a discrete-time model of the
software that coordinates both controllers and provides a
connection for the management software. It is developed
using the Parallel Object-Oriented Specification Language
(POOSL) [17], which is a discrete-time modelling language
that is suitable for modelling software architectures. The
supervisory controller controls the controllers and provides an
interface for user control and status monitoring. The model
should be realised into a software component that runs on an
embedded board in the system.

VI. CO-SIMULATION

This section briefly outlines the standards and techniques
that are used for the construction of co-simulations.

A. Functional Mock-up Interface

Our methodology is primarily based on the use of the
Functional Mock-up Interface [3] as default model format.
The FMI is a standard interface that can be used for model
exchange and model simulation by other tools. Consequently,
the FMI standard is very suitable for co-simulation, although
it still requires some master algorithm to synchronise time
and attributes between the models participating in the co-
simulation. The standard is widely supported by modelling
tools such as 20-sim, Modelica? and Simulink?.

B. High-Level Architecture

The High-Level Architecture [1] is a standard for co-
simulation of models from different tools. It describes a
software interface that participating models should comply
to as well as a set of rules that ensure proper simulation
behaviour. An implementation of HLA includes a Run-Time
Infrastructure (RTT) that coordinates the co-simulation. Within
HLA, a co-simulation is called a federation while a single sim-
ulation is called a federate. Every co-simulation — including
models and their attributes — is described in a configuration
XML. Different implementations of HLA are available, both
commercial and open source.

C. CoHLA

Our methodology entails many small changes to the com-
ponent models during the development process. Since HLA
requires wrappers for the models to communicate with the RTI,
these wrappers are changed frequently. Also, the configuration
XML has to be adapted upon every change in a model.

Configuring HLA (CoHLA) is an open source* Domain
Specific Language (DSL) that was introduced in [13]. CoHLA
allows the user to easily specify a co-simulation of different
models. From such a co-simulation specification, the previ-
ously mentioned wrappers and configuration files are gener-
ated, enabling the automatic construction of a co-simulation.
CoHLA allows the user to specify federate classes for the

2https://www.openmodelica.org/
3https://www.mathworks.com/products/simulink.html
4https://github.com/phpnerd/cohla

135

models in terms of input and output attributes. Listing 1
displays an example of such a federate class specification.

}
DefaultModel "SliderAxis.fmu"

1 FederateClass Axis {

2 Type FMU

3 Attributes {

4 Input Boolean enable
5 Input Real voltage

6 Output Real encoder
7 Output Real position
8

9

0

i

}

Listing 1. Federate class specification in CoHLA.

Listing 2 shows a small example of a co-simulation defin-
ition in CoHLA. A co-simulation is defined as a set of
model instances of classes that have been specified previously,
together with a set of connections that specify how the
attributes from these models are connected to each other. For
convenience, the displayed definition is only a subset of the
instances in the SliderSetup.

1 Federation SliderSetup {

2 Instances {

3 bAxis : Axis

4 bController : Controller

5 svc : SuperVisoryController

6 }

7 Connections {

8 { bController.encoder <- bAxis.encoder }
9 { bAxis.voltage <- bController.voltage }
10 { svc.b_pos <- bController.encoder }

11 { bAxis.enable <- svc.bottomEnable }

12 { bController.mode <- svc.b_mode }

13 { bController.setpoint <- svc.b_setpoint }
14 }

15 }

Listing 2. Co-simulation definition in CoHLA.

From such specifications, all the necessary code for an
HLA co-simulation is generated. The generated code includes
a wrapper for each of the models, configuration files and a
runscript to easily start the co-simulation. Currently, there is
support for the open source RTI called OpenRTI°, POOSL
models and models compliant with the FMI standard. CoHLA
also adds support for logging, design space exploration, fault
injection and collision detection using 3D models.

Since CoHLA makes the construction of a co-simulation
fast and easy, it stimulates the use of co-simulations at
all levels of abstraction. This provides feedback on design
decisions and early detection of integration issues.

D. CoHLA co-simulation of SliderSetup

To create a co-simulation of the SliderSetup using CoHLA,
we have specified federate classes for all component models
described in Section IV. These federate class specifications are
similar to the specification displayed in Listing 1. From these
class specifications, a co-simulation definition is created that
is similar to Listing 2. The co-simulation consists of two axis
simulations, two controller simulations and one supervisory
controller. We also added a logger to be able to review
the simulation execution afterwards and a collision detector
federate to verify that the axes do not collide with each other.

Shttps://sourceforge.net/projects/openrti/

This co-simulation is executed using our initial set of
abstract models. Based on the results of the co-simulation,
we move on to the next step — refining the models — which is
described in Section VII.

VII. SYSTEM REFINEMENT

With the co-simulation it is possible to simulate the com-
plete system using the abstract models. This system-level sim-
ulation can analyse behaviour of the system and can be used
for designing system-level features. Given that these features
are implemented in multiple components of the system, they
require a simulation of the complete system to analyse their
functionality. The benefits of being able to simulate in this
early stage of the system development are illustrated in this
section.

A. System level analysis

The models described in Section V correspond to the second
stage of the design flow illustrated in Figure 3. Traditional
co-simulation methods would require a merge of all software
models into a single model or an implementation of the control
software, which corresponds to the third stage of the design
flow. Our approach allows the co-simulation of the separate
software and controller models from the current stage. Thus,
the interaction between the different parts of the system can
be analysed in an earlier stage of the development.

The early detection of issues was also observed in the
SliderSetup. As mentioned, the motion controller has multiple
modes of movement: a fast travel, a controlled travel, and
a speed mode. During early system-level analysis, the system
would sometimes not respond to a controlled move. Simulation
showed that when the controller changed mode and setpoint
at the same time, or the setpoint before the mode change, that
the mode change would not be processed correctly, resulting
in a very slow movement, or no movement at all.

Due to the early detection, the supervisory control could
be changed to always change the mode before changing the
setpoint. If this error was only detected later in the design
process we expect it to take more effort to change the control
structure to guarantee this timing.

B. Feature co-design

Adding more detail or new features to the system may
require changes in multiple sub-systems. When these changes
are implemented using the co-modelling approach as posed
in [15], the updated components can be co-simulated to
validate the new feature. This allows for a shorter feedback
loop on the consequences of the change.

An example of this process is the design of the sensor
system for the SliderSetup. The sensor available on the motor
of the setup is an absolute rotation sensor. However, as the
motor turns multiple times during the slider movement, the
position of the slider carriage is not exactly known. Thus it
was decided to implement a limit switch on one side of each
axis. Consequently, when the carriage hits the limit switch, its
position is known.

136

To implement this, all sub-models required changing. The
switch itself was added to the plant model, as well as the
aliasing/modulus behaviour of the motor position sensor. This
also scaled the signal of the position to be in rotations instead
of in distances. In the controller, the new sensor value needed
to be interpreted correctly. This included scaling the value,
“unwrapping” the motor aliasing, and the processing of the
limit switch. It also required an extra connection between the
controller and the plant model. In the supervisory controller,
initialisation behaviour needed to be implemented. An axis
should be initialised before it is used, by moving to the limit
switch slowly until it is touched.

After adapting these changes in the models, the updated
system could be analysed using the co-simulation. This allows
the initialisation procedure to be tested, thus validating the new
homing behaviour. Furthermore this validation showed a flaw
in the implementation of the control laws, as the correction of
the position due to the limit switch was interpreted as a large
change in position, and thus in velocity. This change resulted
in an (in)appropriate correction by the controller. While this
was not a problem in the simulation, this could have been
damaging when testing on the real hardware. In this case the
flaw was detected quickly and could be fixed appropriately.

VIII. REALISATION

From the last set of models that is co-simulated, the step
towards realisation is small, since these models already contain
a lot of details. The physical SliderSetup is built using rapid
prototyping techniques based on the 3D models, which have
also been used for the collision detection. For the motors and
driver electronics a Raspberry Pi 3 is used in combination
with a driver board that is capable of driving both motors
and interfacing with the sensors. IO drivers for this board
are already implemented in a Yocto Project® image for the
Raspberry Pi 3. It also functions as the embedded computer.
The other component models are implemented together as one
software component that runs on the embedded board.

The embedded software consists of two parts, each matching
one of the models. Since 20-sim is able to generate C++ code
from a model, this will be used to generate the code for the
control loop. The remainder of the software consists of a JSON
socket interface that interacts with the control loop together
with the hardware interface. This software must be developed
manually as there is no direct model to code transformation
available.

This is, however, not difficult, as the POOSL model already
shows the structure of the software. The logic itself is basically
a one-to-one translation from POOSL to C++, which is quite
simple and might even be automated in the future. Implement-
ation of the software can be split up into three steps.

1) Implementation of the interface to the management soft-
ware. This can be tested without requiring the embedded
board.

Shttps://www.yoctoproject.org/

2) Implementation of the control loops. This requires the
software to be tested on the Raspberry Pi instead of
testing it on the development system.

3) Implementation of the interface to the hardware com-
ponents. This step requires all hardware to be in place
to properly test all software functionality.

After assembly of the system and installation of software,
the system was up and running. The resulting system is shown
in Figure 1.

IX. RESULTS

The realised system functions as expected and can be
controlled using the management software that is connected
to the embedded board. The system initialises correctly and
moves with sufficient velocity, meeting the first requirement.
The initialisation procedure is chosen to minimise the chance
of having the two axes collide. This behaviour was verified
using the collision simulator, meeting the second requirement.

As a result of the design flow that was used, a set of models
with different levels of detail has been developed. An overview
of these different iterations of models is shown in Table I,
showing the stages of the design flow, the features and details
added, and how the models have been simulated (individually
or as co-simulation).

Stage Added features or details Simulatability
la Kinematics of sliders Individual
1b Transmission Individual

Co-simulation
Co-simulation
Runnable

Physical setup

2a Motor dynamics, control law

2b Sensors, initialisation
3 Code implementation, IO drivers
4 Hardware implementation

Table I
AN OVERVIEW OF THE DIFFERENT STAGES IN THE DESIGN FLOW.

The results of the simulations of the stages have been
compared to each other and to the real motion of the sys-
tem. This comparison is presented in Figure 4, showing the
response of the SliderSetup based on a step input of 5 cm.
The ideal motion is based on the velocity required to meet the
first requirement. It is assumed that the system accelerates to
and decelerates from this velocity instantly. When the motor
dynamics have been added (stage 2a) the system responds
slower then expected. After the sensor processing is added
to the system (stage 2b), the controller of the system is tuned
to reach the fast motion again.

Although the physical SliderSetup has a slight overshoot, it
responds to the setpoint change sufficiently fast. The difference
between stage 2b and the physical setup is due to a parameter
mismatch between the simulated plant dynamics and the real
plant. To reduce this mismatch, the physical plant could be
measured to identify its parameter values, which could be used
to improve the simulation accuracy. Since we only intend to
illustrate the method, this step is left out of the example.

The realisation of the software is rather straightforward. The
software structure is already defined in the POOSL model
and after each of the three steps specified in Section VIII
a working piece of software could be tested. Throughout

137

1072
T
6 N
l',.”
S
— a4l ; |
E 4 i
i
g i
= [
8 i
~ 20 i —— Setpoint ||
i - - - Ideal motion
;" ------ Stage 2a
0 i ----- Stage 2b | |
i - U Real Slider
| ! I I I i T
e N = © ® = ™ <
o e =] [— —
Time [s]

Figure 4. The step response of the simulations and physical SliderSetup to
a fast move command to move the slider from 0 to 5 cm.

the implementation, testing of the software requires more
hardware components to be connected, which fits in the
development process. Because of the hardware that is required,
the simulatability of the software is then noted as ’Runnable’
in Table I. Due to the fact that the implemented software has
the same connections and functionality as the model of the
software, the realised system behaves as could be expected
from the co-simulations that were executed during the design
process.

X. CONCLUSION

In this paper we have shown how co-simulation and multi-
level component modelling support the design of a cyber-
physical system. Being able to simulate the models on system-
level in an early stage of the development provides the
opportunity to detect potential integration issues in both the
field of hardware and software. Consequently, it requires less
effort to address these issues compared to when they are
detected in later stages. This would be the case when more
traditional co-simulations approaches are used.

We illustrated this by developing a CPS using this approach.
Here, we built a virtual prototype in an early stage of develop-
ment, which allowed us to tackle some integration issues early.
The approach also facilitates the concurrent development of
component models. Once an interface between the components
has been defined, our approach makes it easy to simulate
them together, allowing the models to be developed rather
independently from each other.

After having realised the system, we found that the beha-
viour as simulated by the models was accurate enough to make
design decisions during the development process.

For future work it is interesting to improve the way the
software model is implemented. Although some parts of the
software were already generated, some implementation work
was done manually, that might have been synthesised by
using code generation. The system level behaviour was now
analysed using manual evaluation of the simulation results.

Future research could determine methods to automatically
analyse and test system behaviour.

REFERENCES

[1] IEEE Standard for Modeling and Simulation (M&S) High Level Ar-
chitecture (HLA)— Framework and Rules. IEEE Std 1516-2010, pages
1-38, Aug 2010.
M. U. Awais, P. Palensky, A. Elsheikh, E. Widl, and M. Stifter. The
high level architecture RTI as a master to the Functional Mock-up
Interface components. In 2013 International Conference on Computing,
Networking and Communications (ICNC), pages 315-320. IEEE, 2013.
T. Blochwitz, M. Otter, et al. The Functional Mockup Interface for
tool independent exchange of simulation models. In 8th Modelica
Conference, pages 105-114, 2011.
J. F. Broenink and Y. Ni. Model-driven robot-software design using
integrated models and co-simulation. In Embedded Computer Systems
(SAMOS), 2012 International Conference on, pages 339-344. IEEE,
2012.

J. E. Broenink, P. J. D. Vos, Z. Lu, and M. M. Bezemer. A co-design
approach for embedded control software of cyber-physical systems. In
2016 11th System of Systems Engineering Conference (SoSE), pages
1-5, June 2016.

J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A
framework for simulating and prototyping heterogeneous systems. 1994.
P. Derler, E. A. Lee, and A. S. Vincentelli. Modeling cyber—physical
systems. Proceedings of the IEEE, 100(1):13-28, 2012.

J. C. Jensen, D. H. Chang, and E. A. Lee. A model-based design
methodology for cyber-physical systems. In Wireless Communications
and Mobile Computing Conference (IWCMC), 2011 7th International,
pages 1666-1671. IEEE, 2011.

G. Karsai and J. Sztipanovits. Model-integrated development of cyber-
physical systems. In IFIP International Workshop on Software Tech-
nolgies for Embedded and Ubiquitous Systems, pages 46-54. Springer,
2008.

P. G. Larsen, J. Fitzgerald, et al. Integrated tool chain for model-based
design of Cyber-Physical Systems: The INTO-CPS project. In 2016 2nd
International Workshop on Modelling, Analysis, and Control of Complex
CPS (CPS Data), pages 1-6, April 2016.

P. G. Larsen, J. Fitzgerald, J. Woodcock, C. Gamble, R. Payne, and
K. Pierce. Features of Integrated Model-Based Co-modelling and Co-
simulation Technology. In Software Engineering and Formal Methods,
pages 377-390. Springer, 2018.

Z. Lu, M. M. Bezemer, and J. F. Broenink. Model-Driven Design of
Simulation Support for the TERRA Robot Software Tool Suite. In
Communicating Process Architectures 2015, Canterbury, UK, pages 143
— 158, England, Aug. 2015. Open Channel Publishing Ltd.

T. Nigele, J. Hooman, T. Broenink, and J. Broenink. CoHLA: Design
Space Exploration and Co-simulation Made Easy. In IEEE Ist Industrial
Cyber-Physical Systems (ICPS 2018), pages 225-331, May 2018.

H. Neema, J. Gohl, et al. Model-Based Integration Platform for
FMI Co-Simulation and Heterogeneous Simulations of Cyber-Physical
Systems. In Proceedings of the 10th International Modelica Conference,
number 96, pages 235-245. Linkoping University Electronic Press;
Link&pings universitet, 2014.

Y. Ni. System Design Support of Cyber-Physical Systems, a co-
simulation and co-modelling approach. PhD thesis, University of
Twente, Enschede, Netherlands, June 2015.

K. G. Pierce, C. J. Gamble, Y. Ni, and J. F. Broenink. Collaborative
Modelling and Co-Simulation with DESTECS: A Pilot Study. In 3rd
IEEE track on Collaborative Modelling and Simulation, in WETICE
2012, pages 280 — 285. IEEE-CS, June 2012.

B. D. Theelen, O. Florescu, et al. Software/Hardware Engineering with
the Parallel Object-Oriented Specification Language. In 5th Conference
on Formal Methods and Models for Codesign, MEMOCODE ’07, pages
139-148. IEEE Computer Society, 2007.

J. Wan, A. Canedo, and M. A. Al Faruque. Functional model-based
design methodology for automotive cyber-physical systems. [EEE
Systems Journal, 11(4):2028-2039, 2017.

F. Yilmaz, U. Durak, K. Taylan, and H. Oguztiiziin. Adapting Functional
Mockup Units for HLA-compliant distributed simulation. In Proceed-
ings of the 10 th International Modelica Conference; March 10-12;
2014; Lund; Sweden, number 096, pages 247-257. Linkoping University
Electronic Press, 2014.

[2]

[3]

[4]

[5]

[6]

[7

—

[8]

[9

—

(10]

[11]

[12]

[13

[14]

[15]

[16]

(17]

(18]

[19]

138

