Disparity: Scalable Anomaly Detection for Clusters

Narayan Desai, Rick Bradshaw, Ewing Lusk
Argonne National Laboratory, Argonne, Illinois 60439
{desai,bradshaw,lusk }@mcs.anl.gov

Abstract

In this paper, we describe disparity, a tool that does
parallel, scalable anomaly detection for clusters. Dispar-
ity uses basic statistical methods and scalable reduction
operations to perform data reduction on client nodes and
uses these results to locate node anomalies. We discuss
the implementation of disparity and present results of its
use on a SiCortex SC5832 system.

1. Introduction

System monitoring is an important function of clus-
ter system software. The information gathered in the
monitoring process is used in diverse tasks, ranging
from scheduling decisions to problem detection and his-
torical trend analysis.

Disparity is a parallel program that periodically
computes a set of statistics describing the distribution
of an arbitrary set of variables across a set of nodes of a
parallel machine. If this set reflects values that should
be relatively constant across the nodes at a given time,
then the distribution can be examined for anomalous
behaviors that indicate failures or preferably incipient
failures.

The data collected on large systems tends to be vo-
luminous; disparity takes two main approaches to ad-
dress this issue. It performs data summarization using
basic statistical techniques, and it performs anomaly
detection using per metric thresholds. In this paper, we
discuss the design and implementation of disparity
and its use on a SiCortex SC5832 system.

This work is an outgrowth of the research described
in [1]. Whereas that research validated the utility of
MPI libraries for system tools, this work addresses
monitoring problems with parallel techniques.

2. Related Work

Many monitoring systems for clusters exist. These
systems typically specialize in scalable information col-
lection. That is, their technical focus is the collection of
large quantities of data for analysis. Supermon [6], for
example, focuses on causing minimal application per-
turbation. This approach has been successful, result-
ing in sample rates in excess of 1 kHz. Other moni-
toring systems, such as Ganglia [5], focus on histori-
cal trend information and wide-area aggregation. NW-
Perf [3] has a minimal perturbation goal similar to Su-
permon; however, it provides job-specific performance
metrics. The goal in this case is not to monitor overall
system performance but to locate application-specific
problems.

The three systems share a number of design deci-
sions. They all use a hierarchical, aggregative data for-
mat, with multilevel hierarchies to scale node or site
counts. Moreover, they all use a variety of ad hoc par-
allelism: Supermon and NWPerf uses an aggregation
tree, while Ganglia uses IP multicast to collect data.
Most important, all these systems strive to provide as
much metric data as possible from the client nodes to
some central location.

As these system-monitoring tools become more ef-
fective, more data is collected. Similarly, as system sizes
continue to grow, more clients must be monitored. The
confluence of these factors creates a greater-than-linear
growth in the sheer quantity of monitoring data. This
growth in turn creates another issue for monitoring sys-
tems: data interpretation. Specifically, collecting large
amounts of data consumes large amounts of resources,
often leaving few resources for real-time data interpre-
tation.

Disparity uses a different approach. It is written as
a parallel program that performs simultaneous analy-
sis and summarization. This approach reduces the over-
all amount of data collected and more readily reveals
patterns in the underlying data.



3. Design

The purpose of disparity is to provide scalable sys-
tem summaries of node metrics that can be used to de-
tect anomalies. In developing the system, we therefore
focused on two areas: tool scalability and pattern recog-
nition.

3.1. Scalability

Two scalability-related issues were problematic. The
first involved building a scalable software infrastruc-
ture for large-scale serial services. Many system ser-
vices, and all existing monitoring systems, are funda-
mentally serial services. That is, all clients communi-
cate with one or more servers, and each of these trans-
actions is serial. Constructing a scalable software in-
frastructure for large-scale serial services is costly and
onerous.

One solution is to write tools as parallel applica-
tions. This change allows client nodes to contribute re-
sources to shared goals in a scalable fashion. Moreover,
as the number of clients grow, the resources dedicated
to the solution of a given problem are scaled at the
same rate.

Accordingly, we implemented disparity as an MPI
program. MPT is nearly ubiquitous on scalable systems,
and it frequently provides access to the fastest networks
and the highest-quality parallelism. This approach, dis-
cussed in detail in [1], provides an appealing workload
for shared systems.

The second scalability-related issue we focused on
was the sheer volume of data involved. To address
this issue, we implemented various statistical opera-
tions as scalable reductions, allowing the summary of
client metrics to be both scalable and representative.
The anomaly detection process also uses these same op-
erations; hence it is scalable as well.

3.2. Anomaly Detection

Anomaly detection was another objective in the de-
sign of disparity. The basic process is as follows. Data
is collected, some basic statistics are generated, and
the data is postprocessed to locate outliers. In order
for this process to be scalable, all clients must have ac-
cess to the collective statistics. Hence, the reduction
must be broadcast to all nodes. Once all clients have
the statistics, each can calculate in parallel whether it
is an outlier. Outliers are assumed to be the interest-
ing features: they provide a low-resolution “map” that
can be used to find interesting areas to explore fur-
ther.

The process itself is simple. The difficult part is the
definition of expected condition patterns. For exam-
ple, a common pattern present in many (though not
all) parallel programs is a uniform distribution of sys-
tem load. Hence, users must be able to represent value
distributions to disparity.

Three mechanisms have been implemented in
disparity to describe value patterns. The first uses
static maximum or minimum bounds for variance can
bracket values in a range of a fixed size. For exam-
ple, the maximum amount of variance could be fixed
at .25; the middle of could be set at the mean value of
load average, with the range of conforming values ex-
tending .25 above or below the mean value. All nodes
with nonconforming values are flagged as anoma-
lies. The second mechanism uses a variance multiplier.
The third mechanism is a hybrid, combining the pre-
ceding two schemes to provide a flexible description
of allowed ranges with static minimum or maxi-
mum bounds.

4. Implementation

The implementation of disparity is nearly a tran-
scription of the architecture described above. We
have implemented custom MPI operations to calcu-
late mean, standard deviation, minimum, and maxi-
mum. All of these values are calculated through two
reductions.

A single execution occurs as follows. Disparity
gathers one or more metrics on each node. This pro-
cess results in a series of floating-point numbers on each
client. Two parallel reductions are then used to cal-
culate the mean, variance, minimum, maximum, and
standard deviation for each metric. The result is a sin-
gle summary of each metric across all nodes in a scal-
able manner.

Once the mean and standard deviations have been
calculated, they are distributed to all nodes. This
data is used to perform thresholding. Upon startup,
disparity is given a series of parameters that describe
the usual distribution. If a node is outside the normal
distribution, it is marked as an outlier.

The user-visible result of this process is a combina-
tion of the summary information and a list of the out-
liers. This data can be used to further guide informa-
tion gathering.

4.1. Metric Detection

Disparity supports the gathering of various met-
rics on Linux systems. It reads this information directly



out of /proc. This mechanism is fairly efficient; how-
ever, it is platform specific.
Several probes are included with disparity.

e Free and used memory
e Free and used swap

e Load average

e Number of CPUs

e Network statistics

e Disk statistics

The probes are run on each node running an disparity
process. They return a single floating-point number on
standard output. Disparity then reduces this value.
For more detail about these probes, see Section 5.

4.2. Thresholding

Disparity processes node metrics during summa-
rization. Metric summaries allow the easy identifica-
tion of patterns in the metrics. Once the patterns are
understood, a threshold definition can be provided for
each metric. This threshold describes normal patterns
in the metric; clients that fall outside this pattern are
flagged as failures.

Thresholds can be defined a few ways. The simplest
involves uniform patterns, in which all values should
be identical. Similarly straightforward are static distri-
butions, in which all values should fall in a static size
range. This second type of threshold has an autocali-
brating property: the range is specified, but the range’s
location is not.

More complicated thresholds can also be defined,
based on the values of standard deviation or variance.
Using these values allows the threshold to describe
highly dynamic patterns that autocalibrate, not only
to current metric values, but also to the current distri-
bution.

5. Results

Once disparity was implemented, we began to
gather metric summaries across one of our clusters. Mo-
tivated by the fact that one of our clusters is nearly six
years old and that hardware failures are frequent, we
decided to use disparity to locate these failures. We
therefore wrote a probe to detect each of the main hard-
ware failure cases:

e CPU count
e Memory count

e Swap size

e Clock skew

e Network statistics

We then used disparity to locate variance in the
results of these probes.

5.1. Variance

The first three of the tests expect uniform results
across nodes, as this system is homogeneous. For ex-
ample, all compute nodes should have two CPUs. We
set the failure threshold to any values below the max-
imum. Hence, when the test is run, any nodes having
fewer than two CPUs will be detected as errors. Us-
ing a symbolic threshold provides automatic calibra-
tion; any homogeneous cluster can use this threshold.
We note, however, that if all nodes are failing, the auto-
calibrating threshold will not detect this failure.

Error thresholds for the remaining two fitness tests
are slightly harder to construct. While the values are
expected to be clustered closely, they are not expected
to be the same in all cases. For each of these, we de-
fined a static allowed variance threshold. For clock
skew, nodes with a range no larger than 0.5 seconds
fall within the success threshold. Similarly, a static vari-
ance of four Myrinet routes are allowed, as several rea-
sonable scenarios allow the addition or loss of Myrinet
routes without causing failures.

At this point, summaries of metrics across the en-
tire system became less useful. Statistical summaries
could be calculated scalably, but the utility of the re-
sults varied widely. To understand the reason, consider
load average measurements taken across a large num-
ber of nodes, each performing a different task. The
distribution of load averages is likely to be uniformly
spread across a large range of values. Moreover, out-
liers in this metric are not likely to be indicative of
failures.

To address this issue, we placed nodes into task-
based groupings based on current job activity. Each
node was put into a group for its current job or into
an idle partition if no job was currently running. Our
assumption was that nodes involved in parallel jobs
have roughly similar performance characteristics. We
had observed that as the scale of parallel systems in-
creases, application programmers have treated nodes
collectively, thereby dramatically reducing “one-off”
activities of nodes.

Our task-based groupings alleviated this problem,
stabilizing summaries for activity-based metrics consid-
erably. Hence, we were able to analyze activity-based
data in a meaningful way.

We currently gather up to 13 metrics, including load
average, used memory, network transmission rates, and



disk read and write rates. These metrics allow us to
detect several types of activity imbalances that occur
frequently in active jobs. The metrics also allow us to
detect stray processes on idle nodes.

5.2. Performance

We conducted one performance test with
disparity, using an MPI implementation based
on MPICH2. Each data point consists of the aver-
age time of 100 reductions at each size.

Our test was run on a SiCortex SC5832 system. We
used the vendor implementation of MPI, which is based
on MPICH2. We varied the number of nodes and the
number of metrics reduced. Multiple metrics can be re-
duced simultaneously, so the cost of additional metrics
is low.

"disparity-test-runs" ——

08,8812 -~
a.8011 -

.06l
08,6808
08,0808 -
08,8807
8.8006 -
0.6805
08,0884 -
8,0803
08,8802 - &

0.680681 16000

Figure 1. Multiparameter Performance

As the performance numbers in Figure 1 show, pro-
cessing statistics with this mechanism is fast and scal-
able; the largest runs included nearly 6,000 cores. More-
over, it is efficient enough to be performed at rates in
excess of 15 kHz. While using disparity at this rates
would be foolish, its ability to run at high frequencies
demonstrates the low perturbation effect it can have
on time-sharing systems.

We note, however, that the largest runs have quite
inconsistent performance. We expect that these issues
are due to operating system noise [4]. The implementa-
tion of AllReduce used in the SiCortex MPI implemen-
tation is particularly sensitive to OS noise in the soft-
ware release used for testing; because of disparity’s
heavy use of AllReduce, these effects are pronounced.

6. Conclusions and Future Work

Disparity offers several invaluable characteristics
when compared to other data collection systems. Its
overall architecture provides a scalable, representative
summary of metrics across large systems. The pro-
cess allows one to easily locate atypical nodes. Fur-
ther, disparity does not require any scalable infras-
tructure; the workload is split evenly across clients.

Disparity cannot easily replace traditional moni-
toring systems because it does not provide persistent
metric storage or long-term trend information. It does,
however, provide a view of system metric relationships
and patterns that enable efficient evaluation of over-
all usage and performance.

The disparity approach holds much promise, par-
ticularly as systems continue to grow. We plan to en-
hance this approach in several ways.

One important enhancement addresses the fact that
because of the similarity requirement caused by the
metric summary process, our current approach does
not lead to a simple clusterwide monitoring system.
We therefore intend to build an aggregation mecha-
nism with the aim of supplanting the traditional mon-
itoring system.

Application perturbation is another area that war-
rants investigation. As system sizes continue to grow,
compute node operating systems are pruned to support
only important functions. Even if the compute node OS
remains Linux, some system functions are often dis-
abled for performance reasons [4]. Monitoring systems
frequently require a per node presence and can con-
sume large amounts of resources depending on the res-
olution of data collected. We believe that we can min-
imize application perturbation by using our scalable
anomaly detection routines to cause increased data col-
lection during “interesting” intervals.

Several algorithmic enhancements could be useful as
well. We are particularly interested in the use of multi-
metric thresholds and in the calculation of system sum-
maries in a single pass.

Moreover, a better mechanism for metric acquisition
is needed. We currently collect data manually, from lo-
cal resources (e.g., /proc on Linux). Needed is an ex-
tensibility mechanism so that new metrics can be incor-
porated without incurring serious performance penal-
ties.

One other area of investigation concerns tool use.
Disparity can already be used with parallel tools such
as MPISH [2], but integration is also possible with other
tools. The wide availability of a scalable tool composi-
tion environment would enable ad-hoc construction of
sophisticated system management tasks.



Finally, while MPI is a good fit for long-running ap-
plications that require scalability, it is not yet clear that
MPI is appropriate for long-running tools that must
cope properly with failures. System tools are used for
diagnosis and recovery of failure conditions; currently
existing MPI implementations are overly sensitive to
such failures. More exploration of this area is needed
in order to fully understand the infrastructure require-
ments of parallel system tools.

Acknowledgments

This work was supported by the Mathematical, In-
formation, and Computational Sciences Division sub-
program of the Office of Advanced Scientific Comput-
ing Research, Office of Science, U.S. Department of En-
ergy, under Contract DE-AC02-06CH11357.

References

[1] Narayan Desai, Rick Bradshaw, Andrew Lusk, and Ew-
ing Lusk. MPI cluster system software. In Dieter Kranzl-
muller, Peter Kacsuk, and Jack Dongarra, editors, Recent
Advances in Parallel Virutal Machine and Message Pass-
ing Interface, number 3241 in Springer Lecture Notes in
Computer Science, pages 277-286. Springer, 2004.

[2] Narayan Desai, Andrew Lusk, Rick Bradshaw, and Ew-
ing Lusk. MPISH: A parallel shell for MPI programs. In
Proceedings of the 1st Workshop on System Management
Tools for Large-Scale Parallel Systems (IPDPS ’05), Den-
ver, Colorado, USA, April 2005.

[3] R. Mooney, R. Studham, K. Schmidt, and J. Nieplocha.
NWPerf: A system wide performance monitoring tool for
large linux clusters. In Proceedings of the 6th IEEE In-
ternational Conference on Cluster Computing (CLUS-
TERO04). IEEE Computer Society, 2004.

[4] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin.
The case of the missing supercomputer performance:
Achieving optimal performance on the 8,192 processors of
ASCI Q. In Proceedings of SuperComputing 2003, 2003.

[5] Federico D. Sacerdoti, Mason J. Katz, Matthew L.
Massie, and David E Culler. Wide area cluster monitor-
ing with Ganglia. In Proceedings of the 5th IEEE Interna-
tional Conference on Cluster Computing (CLUSTERO03),
pages 288-298. IEEE Computer Society, 2003.

[6] Matthew J. Sotille and Ronald G. Minnich. Supermon: A
high-speed cluster monitoring system. In Proceedings of
the 4th IEEE International Conference on Cluster Com-
puting (CLUSTER02), pages 39-46. IEEE Computer So-
ciety, September 2002.



