A Characterization of Scalable Shared
Memories*

Prince Kohli
Gil Neiger
Mustaque Ahamad

GIT-CC-93/04
January 19, 1993

Abstract

The traditional consistency requirements of shared memory are expensive to pro-
vide both in large scale multiprocessor systems and also in distributed systems
that implement a shared memory abstraction in software. As a result, several
memory systems have been proposed that enhance performance and scalability
of shared memories by providing weaker consistency guarantees. Often, different
models are used to describe such memories which makes it difficult to relate and
compare them. We develop a simple non-operational model and identify param-
eters that can be varied to describe not only the existing memories but also to
identify new ones. We show how such a uniform framework makes it easy to
compare and relate the various memories. We also use the model to show that
a well known software solution to the critical section problem can be used to
distinguish the RC;. and RC'), memories explored in the DASH architecture.
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1 Introduction

The programming and performance of parallel and distributed applications depends on
the mechanisms used for sharing state across processors in such systems. Shared mem-
ory is attractive because it simplifies programming since processors can access both
local and remote state using the standard read and write operations. However, the
strong consistency guarantees provided by traditional memories can have a significant
impact on the performance of applications. Strong consistency also limits the scalabil-
ity of shared memory systems. These problems have been recognized both in the study
of multiprocessors, where the hardware provides support for shared memory, and in
distributed systems, where the shared memory abstraction is implemented in software.
As a result, a number of new memory models have been proposed [1,3,5,6,14,15,17]
that seek to enhance performance and scalability by weakening the consistency guaran-
tees provided by shared memory. In the first approach, taken in the systems described
in [1,5,6], strong consistency is only provided for a subset of the operations (e.g. syn-
chronization operations) and other operations can be executed more efficiently due to
their weakened consistency. In these systems, programs that meet certain requirements
(properly labeled or data-race-free) do not need to be aware of the weak consistency and
can be programmed as if the system provides strong consistency. The second approach
is taken in distributed systems [3,15] where the application programmer must directly
program with the weakly consistent memory. It is argued that, for many applications,
programming is simpler than when message passing is used and the weaker memory
consistency leads to improved performance.

Many systems advocate high performance shared memories that provide weaker
consistency guarantees and several such memory models have been proposed. These
memories are defined using different models. For example, Processor Consistency (PC)
as defined by Gharachorloo et al. provides an operational definition by stating how
read and write operations are executed. On the other hand, the Total Store Ordering
(TSO) memory model that is implemented by the SPARC architecture is defined using
an axiomatic approach. The different models used for defining memories make it hard to
relate and compare these memories. In this paper, we present a simple non-operational
model and identify key parameters that can be varied to systematically define and relate
the memories that have been proposed in the literature. The model can also be used
to identify new memories. Memories in our model are characterized by the execution
histories that are allowed by a given memory model. Informally, weaker consistency
places fewer demands on the execution histories and, as a result, permits a larger set
of histories. Thus, we are able to use a set-based approach to relate and compare the
various memories.

We also use our model to demonstrate that Lamport’s Bakery algorithm for solving
the n-processor mutual exclusion problem executes correctly with the release consis-
tency memory model of the DASH system when labeled operations are sequentially
consistent (RC,.) but does not when the labeled operations are only processor consis-
tent (RC,.). This demonstrates that the RC,. and RC,, models differ for applications
that may use read and write operations to achieve mutual exclusion in a shared memory
system.



The paper is organized as follows. Section 2 presents the model and identifies the
parameters that can be varied to obtain the different memories. Several of the memories
are defined using this model in Section 3. Section 4 relates and compares some of these
memories. The Bakery algorithm and its executions on RC,, and RC),, memories are
discussed in Section 5. We compare our results with other related work in Section 6.
In particular, we compare our model to the axiomatic model used in defining TSO [17].
Finally we conclude the paper in Section 7.

2 The Model

This section describes the model that underlies our definitions and results. Our model
is motivated by the ones used by Misra [16] and Herlihy and Wing [10]. We define the
system to be a finite set of processors that interact via a shared memory consisting
of a finite set of locations. Processors execute read and write operations. Each such
operation acts on a named location and has an associated value. For example, a write
operation executed by processor p, denoted by w,(z)v, stores the value v in location z;
a similarly denoted read operation, r,(z)v, reports that v is stored in location . The
execution of a processor is defined by a processor execution history, which is a sequence
of read and write operations. The execution history of processor p, denoted by H,, is
the sequence 0,1,0p2,...,0,,,..., where o, ; is the ¢th operation issued by processor p.
The set of processor execution histories is the system execution history. Thus, a system
execution history H = {H, | p € P} where P is the set of processors in the system.

We characterize various memories by the set of system execution histories that can
be produced when processors execute with a certain type of memory. In particular, we
need to develop rules to determine if a certain system execution history H is possible
with a given type of memory. Our general approach consists of showing that each
processor can assume that the memory has performed some set of operations in a
sequential order. This set of operations must include the processor’s operations and
can also include operations of other processors to shared locations. Since a processor
view is sequential, there is a unique “most recent” write preceding each read operation
and it is required that each read operation return the value written by that write.! As
far as a processor is concerned, it can assume that the shared memory executed only
the operations included in its view, one at a time, and in the order defined by the view.
This exactly defines the state of the memory when an operation is executed by the
processor.

More precisely, for each processor p, there exists an ordered or sequential execution
history S,4s, that includes all operations in H, as well as a subset 6, of operations
from the execution histories of other processors. Furthermore, the value v returned
by a read operation r(x)v is written by a write operation w(x)v that precedes r(x)v
in S,ys, such that there are no other writes to = between these operations in S,ys,.
We say that a sequential history that has this property is legal. We will use 5,45, to
denote the “view” of processor p. Since we allow each processor to define its own view
of shared memory, our model permits us to specify weakly consistent memories that

'We assume that all locations have initial value 0.
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permit processors to observe values written by different processors in different order;
this can happen if different processors have different views.

The consistency guarantees of a memory model place restrictions on processor views
or the sequential histories that can be created for processors. The following parameters
characterize these restrictions:

L. Set of Operations: A history Sp4s, not only includes the operations executed by
p but also operations of other processors. Thus, the membership of 6, needs to
be specified for a given memory model. Two natural choices for the set 6, are,
first, all operations of other processors, and second, all write operations of other
processors. In the first case, each processor’s view of memory must include all
operations executed by the memory system. In this case, we use a to denote the
value of 6, for any processor p in the system and hence refer to Sy,;s, simply as
Sp+a- In the second case, a processor needs to include only the write operations
of other processors; this is plausible since only these operations change the state
of the shared memory. As we will see later, this allows processors to develop
independent views of memory and is used in many of the weaker consistency
memory models. When 6, consists of write operations of processors other than
p, we will denote it by w and hence we will use 5,1, instead of 5,5, .

There exist models that further distinguish memory operations. Examples of
these include labeled operations in release consistency [6] and strong and weak
operations in hybrid consistency [4]. In such models, ¢, might include only a
certain type of read or write operations of other processors.

2. Mutual Consistency: Although processors can define their own views of memory,
there may need to be mutual consistency requirements as the views result from
accessing a shared memory. For example, a memory model may require that all
writes to a given location appear in the same order in the sequential histories
for all processors even when this ordering is not required by (3) below. This
particular form of consistency is equivalent to coherence, which is provided in
several memory models [2,6]. Another example of mutual consistency could be
the requirement that all strong (or labeled) operations appear in the same order
in all processor views.

3. Ordering: Most memory models are such that the order of the operations in
the processor views must reflect somehow the actual ordering of these operations
in system execution history H. Program order is one such commonly used order
which states that o, ; is ordered before o, ; when ¢ < j (0,; and 0, ; are operations
of processor p). A memory model may require that this or some other order
derived from H be preserved between operations when they are included in the
sequential execution history or view of a processor. The following orders are used
in defining many of the memories.

e Program order: For operations o,; and o, ;, we say o,; 7 Op.j when o,;

precedes o, ; in the program, i.e., ¢ < j. In this case, we say o,; ts ordered



before o, ; by the program order. This defines program order to be total on
any processor execution history; it orders all operations of a given processor.

Some memory definitions consider non-blocking operations [7]; after invoking
a non-blocking operation. When considering such operations, an operation
0p,i+1 that follows o,; may bypass it. In other words, o,,;+; may complete
before o,; in some processor view. In this case, all orderings defined by -

may not be maintained. Thus, in such systems operations of a processor are

only partially ordered. We use — to represent this weaker program order
ppo

and write o — 0, if 07 and o0, are operations of the same processor, 01 — 04,
ppo po

and one of the following holds:

— 07 and oy are operations on the same location;
— 07 and oy are both reads or both writes;
— 07 is a read and oy is a write; or

— there is another operation o' at the same processors such that o —
b ppo

o — o,.
ppo

Thus — only partially orders a processor’s operations because the case where
ppo

01 1s a write and oy i1s a read is omitted above.

o Writes-before order: If 0, is a write to some location and o, is a read of the
same location by a processor? (which may be different from the writer), then
01 — 02 if 03 reads the value written by o;. We call this the writes-before or-

der and it captures the natural requirement that, if a read operation returns
the value written by a certain write operation, then the write operation must
be ordered before the read.

o Causal order: The happens-before relation defined by Lamport [12] can also
be adapted to a shared memory system and captures the causal relationship
between the read and write operations. Two operations are ordered by this
relation if they are executed by the same processor or they are related by the
writes-before relation (this is similar to the order established when a sent
message is received) or the transitive closure thereof. For any two operations
o1 and oy in H, 0y — 0 if

— 07 — 09 OT
po

— 07 — 09 OT
wb

— for some operation o', 0; — o and o' — o3,
co co

that is, »= (— U —g)"’
co po w

2We will use single subscripts when the extra information is irrelevant.
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3 Memories Definitions

The model developed in the previous section can be used to define a variety of memo-
ries. Basically, a memory can be characterized by specifying the three parameters we
identified: set of operations, mutual consistency, and ordering.

3.1 Sequential Consistency

We first consider sequential consistency (SC) [13], which is a widely accepted correctness
condition for shared memory. In SC, the results of a system execution history H should
be equivalent to some sequential execution of the operations of all processors in which
the program order between operations is maintained. This can be captured in our
model by requiring that for each processor p, the 6, in 5,5, consist of all operations of
processors other than p. Thus, the view of processor p is defined by a sequential history
Spta (recall that a refers to all operations of other processors). The mutual consistency
requirement is that processors agree on their views or that, for all processors p and ¢,
Spta = Sg+a- The ordering requirement for operations is the one defined by the program
order relation “ﬁ'” In other words, if o - o' in H then o must precede ¢’ in each of

the processor views (S,1,). In the case of SC, the mutual consistency requirement
is redundant. If a sequential history alone meets the other two requirements, then
it includes all operations of all processors and preserves the relationships induced by
program order. Thus, this single history can be the view of each processor and hence
the mutual consistency requirement is trivially satisfied.

To see how memories with weaker consistency require all three kinds of require-
ments, we consider the total store ordering (TSO) [17] and the processor consistency
(PC) [6] memory models that have been implemented in the DASH and SPARC ar-
chitectures, respectively. We then consider other weak memories, including pipelined

RAM (PRAM) [15] and Causal Memory [3].

3.2 TSO

In TSO, processors have local first-in-first-out (FIFO) buffers and a logically shared
memory that is single-ported. A write operation® by a processor simply adds the newly
written value to the buffer. A read operation must return either the most recently
written value from the local buffer or a value must be fetched from shared memory
when one does not exist in the buffer. The buffered writes are sent to the single
memory in FIFO order, and a switch that controls access to the single-ported memory
allows fair access to all processors.

TSO can be easily defined using our model. First, the operations in ¢, included in
the view of processor p are simply the write operations of other processors. In other
words, S,4s, includes not only all operations of p but also all write operations of other
processors. Thus, 6, = w. The mutual consistency condition requires that all write

3The SPARC architecture also includes swap instructions, which can be treated as similar to writes.
For simplicity, we omit them in this discussion.



Figure 1: TSO execution history

operations appear in the same order in all processor views. If we use S,1.,|, to denote
the resulting sequence when all read operations are removed from S, 4,,, then the mutual
consistency requirement of TSO is such that, for all p and ¢, Sy4w|w = Sgtw|w. Thus,
it is guaranteed that writes (or stores) are ordered the same way in all processor views.
Unlike SC, the partial program order “]z) 7 defines the ordering requirements for TSO.

Thus, if 0 — o' and both of these operations appear in S,;,, then o must precede o in
ppo

Sp+w-
The mutual consistency requirement enforces additional orderings that are not in-

cluded in the “—7” order. For example, two writes by different processors are not
ppo

ordered by - but must appear in the same order in all processor views because of the
mutual consistency requirement.

To see that our definition does capture TSO, consider the simple example shown in
Figure 1. Both p and ¢ first write to locations = and y, respectively, and then read the
location written by the other processor. This execution is not possible with SC because
there exists no legal sequential execution that includes all four operations and maintains
the program order dependencies between the operations. However, this execution is
possible with TSO. The values produced by the write operations are buffered and the
memory is not updated with these values when the read operations are executed. Since
no values exist in the buffer for the locations being read, these reads return the initial
values of locations = and y which are 0. Our model can also be used to show that the
execution is possible with TSO. The processor views which include all operations of a
given processor and writes of others can be constructed as follows:

Spw t Tp(y)0 wy(@)1 wy(y)l
Setw t 1Te(x)0 wy(x)l wy(y)l

The order of write operations is the same in the two processor views and ordering

specified by the partial program order “—”is maintained. In particular, the order of
ppo

q’s operations is different from program order; this is allowed because the locations of
the write and read operations are different and the read follows the write.

It is also easy to see that our characterization of TSO is equivalent to the axiomatic
definition given in [17]. The first axiom requires that the memory execute write (store)
operations in a total order. This is captured by the mutual consistency requirement
on processor views in our model. The program orderings between write operations, as
well as those between read and write operations, are precisely the orderings captured
by “52.” The fact that reads return the value written by the most recent write (defined

by the partial program order and the order imposed by memory on write operation) is
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trivially satisfied because processor views are legal. We do not need to explicitly state
termination which is specified by an axiom in TSO. This is because an operation must
appear in some sequential history and hence it must complete (unless the operation is
the last one in a view). In a later section, we provide further comparison between our
definition of TSO and the axiomatic specification given in [17].

3.3 Processor Consistency

We consider processor consistency as defined by Gharachorloo et al. [6]. They give an
operational definition that describes the implementation of PC in the DASH architec-
ture. This definition explicitly requires coherence; that is, for each memory location,
there is a unique ordering of the writes to that location. Similar to TSO, if a processor
executes a write followed by a read of a different location, PC also allows the read to

“bypass” the write. In other words, the partial program order “—7” defines the order-
ppo

ing requirements for the operations executed by a given processor. However, PC does
not require that all writes appear in the same order in processor views. The order-
ings on writes of different processors arise from the following conditions for processor
consistency that are given by Gharachorloo et al.:

1. before a read (LOAD) is allowed to perform with respect to any other processor,
all previous read accesses must be performed, and

2. before a write (STORE) is allowed to perform with respect to any other processor,
all previous accesses (reads and writes) must be performed.

For this definition, one operation is “previous” to another if both operations are by
the same processor and the first precedes the other in program order. The notion of
“perform” with respect to a processor is defined as follows. A read operation o, is
performed with respect to processor p when the value to be returned by o, has been
decided (a write by p to the location being read will not change the value returned by
o). Similarly, a write operation o,, is performed with respect to p when a read of the
same location by p returns the value written by o, or a subsequent write operation
(the notion of “subsequent” is well-defined because the memory is coherent).

These conditions lead to an ordering of writes that is quite different than that given
by TSO. We define PC as follows. Similar to TSO, the view of a processor p includes
not only the operations of p but also the write operations of all other processors. Thus,
Sp+w denotes p’s view. The mutual consistency condition is the following. If we denote
by Sp4wl|wz the sequential history obtained from S, after all read operations (to any
location) and write operations to locations other than z have been deleted, then mutual
consistency for PC requires that, for all processors p and ¢, Sptwlwz = Sqtw|w.z-

It is easy to see that this mutual consistency condition implies coherence. For any
location z, construct a sequential history S, that includes all read and write operations
to = as follows. First, include all writes to @ in the (unique) order ensured by the
mutual consistency requirement of PC. Then, include each read of  (by any processor)
following the write of the value it reads (there may be more than one read of the same
value and the order of such reads by different processors is unimportant). It is easy to



p: w(x)l
q: r(z)l wy)l
r:o r(y)l r(z)0

Figure 2: A PC execution history that is not TSO

see that this results in a sequential execution and that this can be done in a way that
preserves the order of accesses to x. Thus, all operations to a given location are totally
ordered.

For ordering operations within a processor’s view, PC uses a “semi-causality” re-
lation which is similar to the causal relation — defined earlier. The “C—>” relation is

a combination of program order — with the “writes-before” order - that relates a
po w

write operation to any read of the value written. Because PC is coherent (given by the
mutual consistency condition above), it makes sense to also consider a “reads-before”
order that relates a read operation of an old value to a write of a new value. The

semi-causality relation is defined by augmenting the weaker program order (—) with
ppo

weakened forms of the “writes-before” and “reads-before” orders.
The first of these weakened forms is called the remote writes-before order and is
denoted by —. We write 0, — 02 if and only if 01 = w(x)v, 02 = r(y)u and there is

another operation o' = w(y)u such that o; — o’. That is, 0, must be a read from a write
ppo

that followed o; in program order. Note that a normal “writes-before” relation would
have related o' to og; the remote relation relates an earlier write to 0. The second
relation is the remote reads-before order and is denoted by —. We write o — 0 if and
only if o; = r(x)v, 02 = w(y)u, and there is another operation o' = w(x)v’ such that

01 precedes o' in coherence order (i.e., in S;) and o' — 05. Again, there is a two-step
ppo

chain from oy to oz but, in this case, the first link is from a read of an old value (from
x) to the write of a new value (to x). The semi-causality relation, denoted — is the

sem

transitive closure of the union of the partial program order relation —, the remote
ppo

writes-before relation — and the remote reads-before relation —.
Tw rr

We can now specify the orderings that must be preserved between operations in
processor views. If o, and o, are two operations in S,4,, such that o = 0, then o
must precede o; in S,yq.,.

The correctness requirements of TSO are strictly stronger than PC (see next sec-
tion). Thus, all executions that can be obtained with TSO are also executions with PC.
However, there exist PC executions that are not allowed by TSO. Figure 2 shows an
execution that is allowed by PC because the following processor views can be created:

Sprw = wy()1 wy(y)l
Setw t wyp(@)l (@)1 wy(y)l
Srtw s we(y)l r(y)l ()0 wy(x)l
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These views obviously satisfy the mutual consistency as well as the ordering require-
ments of PC. However, it is not possible to create processor views that satisty TSO
requirements. Since TSO requires writes to be ordered in the same way in all views,
wy(2)1 must precede wy(y)l according to ¢’s view. However, r cannot then return 1
when it reads y and 0 (the initial value) for x in the read operation that follows r,(y)1.

Before PC was implemented in the DASH architecture, it was first defined by Good-
man [9]. It was later shown [2] that the two definitions were distinct and incomparable:
neither is stronger than the other.

3.4 Release Consistency

In the DASH architecture, processor consistency is provided only for memory operations
that implement “synchronization” between processors (other memories that provide se-
lective synchronization were defined weak ordering [1] and hybrid consistency [4]). Such
operations are called labeled and others are ordinary. Release consistency (RC) is de-
signed to be used with programs that are properly labeled. Loosely speaking, these are
programs in which all ordinary operations are “bracketed” between labeled operations
that correspond to acquire (read) and release (write) operations on a synchronization
variable. RC ensures that an ordinary operation completes before the following release
operation is performed. Thus, if two ordinary write operations are executed to loca-
tions z and y, they could be propagated independently and their values may arrive in
different order at different caches (coherence is required even for ordinary operations
and hence writes to the same location must arrive in the same order). This provides
added efficiency for ordinary operations. For a program to execute correctly, stronger
consistency needs to be provided for synchronization operations. In [6], two consistency
requirements are identified: RC';. guarantees that labeled operations are sequentially
consistent, and R(C',. guarantees that they are processor consistent.

Our goal is to characterize the behavior of shared memory when it provides RC. We
do not consider here the properties of programs that ensure their correct execution on
such a memory. We need to specify the three conditions identified earlier. In a system
execution with a memory that provides release consistency, there are labeled operations
as well as ordinary read and write operations. As in the case of most of the memories
considered above, processor p’s view must consist of all of its own operations and all
write operations of other processors.* The mutual consistency requirement is that of
coherence (see PC above).

The ordering requirements for RC are somewhat complex. For RC., the labeled
operations are SC, while for RC',., they are PC. This means, in the case of RC';,, that, if
Sp|e is the subsequence of S, containing only labeled operations, then the sequences S, |,
meet the requirements of SC (notice that this implies an additional mutual consistency
requirement on the labeled operations). A similar condition holds for RC,.. All local

*We omit explicit consideration of read-modify-write operations, such as test-and-set. Within our
formalism, these would be treated as write operations in the sense that they would be included in all
processor views.
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operations (including ordinary ones) obey the partial program order —. That is, if oy
ppo
and o, are two operations of p such that o; — o0,, then o; precedes oy in S,. Finally, the
ppo

following conditions control the ordering of ordinary operations with respect to labeled
operations (in all histories):

e Let o be an ordinary operation of p that follows a labeled read operation (acquire)
operation o, of p. Let o, be the write operation (possibly by another processor)
that is read by operation o,. Then , o follows o0, in all histories in which they
both appear.

e If 0 is an ordinary operation of p that precedes a labeled write operation (release)
operation o, of p, then o follows o0, in all histories in which they both appear.

(The first condition is slightly more complex because the acquire operation, which is
a labeled read, does not appear in the views of all processors.) These two conditions
ensure that ordinary operations are ordered, in all views, between the labeled operations
that “bracket” them.

3.5 Other Memories

We can also use our model to define other memories that have been presented in the
literature. In particular, we consider PRAM and causal memories.

PRAM [15] “pipelines” writes to memory, allowing the effects of writes (as perceived
by other processors) to be arbitrarily delayed. An operational definition of PRAM is
as follows: Assume each processor on a reliable network has a complete copy of a
global shared memory. Reads and writes are performed on local memory: reads return
the local value, writes update the local copy and broadcast the update. Processors
receive and process these updates asynchronously and atomically (with respect to local
operations). Broadcasts of update values are reliable and point-to-point ordered (all
updates from a processor are received in order, but the relative order of updates from
distinct processors may vary).

The copy of memory at each processor implements its view of the shared memory.
Since the processor only executes its operations and received writes of others, 6, con-
sists of the write operations of other processors. PRAM has no mutual consistency
requirement. Since writes from other processors arrive in FIFO channels, they are ap-
plied by a processor to its copy in program order. Thus, the ordering requirement can
be specified by “;;.” PRAM thus allows the execution shown in Figure 3, which is not

allowed by TSO. Notice that, after each processor reads the value written by itself, p
then reads the value written by ¢ and ¢ reads the value written by p. This is allowed
by PRAM because each processor could receive the value written by the other after its
first read operation and then update its copy with the value received in the message.
The second read operation would then return the value written by the other processor.
In fact, Sp4w = wp(z)l rp(x)] we(x)2 rp(x)2 and Sypw = wy(2)2 ry(2)2 wy(z)l re(x)l
are processor views that satisfy the PRAM requirements. The execution is not TSO
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Figure 3: PRAM history that is not allowed by TSO

P (@) wi)
g: r(y)l w(z)l r(z):
r(z)l

2
r: w(@)2 r(z)l r(z)l r(y)l

Figure 4: Causal history that is not allowed by TSO

because no processor views exist in which each processor orders the writes the same
way and their read operations return the values shown in the execution.

Causal memory [3] is similar to PRAM in the sense that processor views include
local operations and write operations of other processors. Also similar to PRAM, causal
memory has no mutual consistency requirement. However, the ordering requirement
is stronger than that of PRAM. In particular, causal memory requires that the causal
order “—” be preserved between operations in processor views, whereas PRAM requires
only the “—” order be maintained. Because the causal order is stronger than program

order, theI]’Deo exist execution histories that are allowed by PRAM but not allowed by
causal memory. Figure 4 shows an execution that is allowed by causal but not by TSO.
It is allowed by causal because the following processor views exist that maintain causal
order between operations.

Sptw + wp(x)l wy(y)l wy(z)l w,(x)2
Setw - wp(@)l wp(y)l re(y)1 we(

2)1 we(x)2 ry(x)2
Srtw W ()2 wy(z)l r(z)l w,(y) 1

1
1 r(z)l r.(y)l

The execution is not TSO because ¢’s view implies that w,(z)2 must have been per-
formed after w,(xz)1 by the memory but, in that case, r’s read of & cannot return 1.
Notice that, in causal memory, once r returns the value 1 for z, it must also return
the value 1 for y because it establishes a causal order between w(y)l and r’s read of
y and there are no other writes to y. In PRAM, r need not return 1 when it executes
the read operation for location y (it could return the initial value) because the message
containing y’s value might not have arrived at r.

4 Relating Memories

We have shown how several memories can be defined precisely using our model. The
model also allows us to relate various memories. For example, if we can demonstrate
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Figure 5: Relationship Between Memories

that TSO is strictly stronger than PC, it immediately follows that any application
programmed to execute with PC can also execute correctly with TSO. A comparison
can also provide intuition for the cost of implementing various memory models. A
model that provides weaker consistency guarantees can usually be implemented less
expensively than one with stronger consistency.

Our model provides a natural framework for relating and comparing memories. A
memory model is characterized by the set of system execution histories that are allowed
by the model (it must be possible to create processor views that include the specified
set of operations and meet the ordering and mutual consistency requirements of the
model for each system history included in the set). Thus, to show that one memory
model A is strictly stronger than B, we need to show that each system execution history
allowed by A is also a system execution history of B. Furthermore, there must exist
histories allowed by B that are not histories of A. We can also use a Venn-diagram
representation (see below) for the set of histories allowed by various memories. In this
representation, if A is strictly stronger than B then A is contained in B.

Figure 5 shows how the memories we discussed in the previous section are related.
SC is the strongest and hence the set representing it is contained in the sets of all
other memories. PRAM is the weakest memory: we have already argued that it is
weaker than causal memory; it is not hard to show [2] that it is also weaker than PC.
TSO is weaker than SC but is strictly stronger than both PC and causal memory.
Causal memory and PC are not comparable. This is because, while causal memory’s
ordering condition requires the stronger causal order, it lacks PC’s mutual consistency
requirement.

The relationships above are not hard to prove. For example, we prove that TSO
is strictly stronger than PC. In the previous section, we demonstrated an execution
history that is allowed by PC but not by TSO. Here, we show that every TSO system
execution history is also allowed by PC. Let H be a TSO execution history. Since H is
TSO, there must exist processor views S,1,, for each processor p such that

1. for all processors p and ¢, Sy4w|w = Sgtw|w, and
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2. partial program order “—7” relationships between operations are preserved in the
ppo

Sp_|_w7S.

PC also requires processor views to contain write operations of all other processors.
We show that the 5,4, given by TSO can also be used to demonstrate that H is PC.
Since Spiwlw = Sgtwlw for all p and ¢, it also follows that S,i1w|wz = Sgtw|ws and
hence the mutual consistency condition of PC is satisfied by the TSO processor views.

It only remains to be seen that operations ordered by the semi-causality relation “—7

appear in the same order in the S,4,’s. Recall that the same partial program oi’edTrér
is used by TSO and PC. Thus, the only order that PC requires but which might not
be maintained by the S,4,’s is the semi-causality order established when a processor
p executes a read operation o, that returns a value written by processor ¢ and p # q.
In this case, the write operation of ¢ must precede o, in S,4,, since the views are legal
and any writes of p following o, must come after this read operation. Thus, the write
of ¢ will precede the writes following o, in 5,4, and hence in all processor views due

to (1) above. We can extend this argument to cover cases where “— 7 orderings are

introduced via several processors. Thus, TSO executions are also executions allowed

by PC.

5 An Algorithm that Distinguishes RC,. and RC),

It has been claimed that the RC;, and RC,, memory models should be equivalent for
most practical applications. Gharachorloo et al. [6] state that “[f]or all applications
that we have encountered, sequential consistency and processor consistency (for special
[labeled] accesses) give the same results.” In other words, programs that execute cor-
rectly on RC;, memory should also execute correctly when they are run on a system
that provides RC,, memory. In this section, we show that a well-known algorithm that
uses read and write operations to implement access to a critical section distinguishes
RC,. and RC,.. The Bakery algorithm that was proposed by Lamport [11] executes
correctly with RC,. but fails when it is run on RC\,, memory.

Figure 6 shows the code for the Bakery algorithm, which controls access to a critical
section that is shared by n processors numbered 1 to n (the code shown is for proces-
sor p;. (We make the assumption that variables used for synchronization (choosing and
number) are not accessed in the critical or remainder sections. We also assume that
other shared variables are accessed only in the critical section.) The correct execution
of the algorithm assumes that the data used by it is stored in sequentially consistent
shared memory. When this is true, the algorithm ensures that at most one proces-
sor can be in the critical section at any given time and that the solution is free from
deadlocks and starvation. To execute the algorithm on an R(C';. memory, we label all
read and write operations of the code shown in Figure 6 except the ones in the critical
and the remainder sections. Thus, all memory operations that are executed to gain
access to the critical section or to release it are labeled. It is not hard to see that the
program will now be properly labeled (see above). Gibbons, Merritt, and Gharachor-
loo [8] showed that any program proved correct with SC will remain correct if properly
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shared choosing[n] : boolean /* Initially false */
number|[n] : integer /* Initially 0 */
local 7 : integer

while true do
w(choosing[i])true
mine = 1 + max{number(j] | j # i} /* reads the array number */
w(number[i])mine
w(choosing[t])false
for j =1 ton do
if j # ¢ then
repeat
test = r(choosing[j])
until not test
repeat
other = r(number[j])
until other = 0 or (mine,¢) < (other,j) /* do lexicographic comparison */

Critical section
w(number[i])0

Remainder section

Figure 6: Lamport’s Bakery algorithm as executed by processor p;

labeled and run with RC.. Thus, the Bakery algorithm can correctly control access
to a critical section when run with RC,,.

The Bakery algorithm fails to execute correctly when the memory model is changed
to RC\,.. The labeled operations are now guaranteed only to be PC. Consider the same
labeling as before and the case in which n = 2. It is not hard to construct an execution
that admits the following local subhistories for p; and ps:

-+ - wi(choosing[0])true, ri(number[1])0, wi(number[0])1,
w1 (choosing|0]) false, r1(choosing[1])false, r1(number[1])0, Critical section, - --; and

-+~ wsy(choosing|[1])true, ro(number[0])0, we( number|1])1,
wz(choosing[1]) false, ro( choosing[0])false, ro(number(0])0, Critical section, - - - .

These two executions could occur because each processor can order the writes of the
other after all of its own operations (that is, after it determines that it is safe to
enter the critical section). In this case, both processors will enter the critical section
simultaneously, a violation of correctness.
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Intuitively, the failure of the algorithm is in part because it does not take advantage
of the coherence provided by the memory. This is because no shared location is written
by more than one processor. Thus, the Bakery algorithm shows that RC,, and RC,.
differ in power for applications that implement processor coordination with read and
write operations.

6 Comparison with Related Work

In this paper, we have focused on developing a uniform framework that can be used
to define a variety of memories. We do not define new memories and thus our goal
differs from many of the papers that introduce new memories. Other papers that have
had similar goals are [16] and [17]. In [16], only atomic memory is considered, and this
is stronger than sequential consistency. In [17], the TSO memory model is introduced
using an axiom-based specification which can be used to capture several memories. The
axiom-based model is also formal and precise and can be used to define and relate the
memories as we have done in this paper.

We prefer the model used in this paper for several reasons. First, it is implementa-
tion independent but captures the essence of how memories can be implemented. For
example, the per processor view can be thought of as the behavior of a local cache;
the set of operations and the ordering requirements for the view specify how the cache
should be accessed and updated. Also, processor views are a natural extension of how
sequential consistency is defined and understood. SC requires all processors to agree
on their views, whereas weaker memories allow them to differ in the set of operations
they include and also in the ordering between the operations. Finally, we do not need
to state termination explicitly; the fact that processor views are sequential histories
and an operation needs to be included in some view implicitly requires termination of
the operation. Also, we believe that the parameters of the model identified by us make
it easy to relate and compare the various memories.

7 Concluding Remarks

It is difficult to relate and compare the numerous scalable or high performance mem-
ories that have been proposed because they are often defined using different models.
We developed a framework that allows the characterization of many of the existing
memories. [t identifies the parameters that can be varied to get the various memories
and provides us a simple technique to relate the memories. We used our model to
characterize memories that include sequential consistency, processor consistency, re-
lease consistency, total store ordering, PRAM and causal. The model makes it easy
to understand the relationships between the memories. We also used it to show that
the Bakery algorithm, which can be used to implement n-processor mutual exclusion,
fails to execute correctly when memory provides release consistency and the labeled
(or strong) operations are processor consistent. This shows that the the RC,. and
RC',. models are not identical when read and write operations are used to implement
processor coordination.
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We have focused on the characterization of and the relationships between different
existing memories in this paper. However, the model also helps us in identifying new
memories. For example, a mutual consistency condition that requires coherence can be
added to causal memory or perhaps such coherence can only be required for labeled
operations. The model can also help us to precisely characterize the program model for
a given memory which can be used to identify the programs that will execute correctly
on a certain weak memory when they are correct on sequentially consistent memory.
We will address these issues in our future work.
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