A Hybrid Shared Memory/Message Passing
Parallel Machine

Matthew 1. Frank
Mary K. Vernon

Technical Report #1150

May 1993

A Hybrid Shared Memory/Message Passing Parallel Machine’

Matthew 1. Frank and Mary K. Vernon

Computer Sciences Department
University of Wisconsin—Madison
Madison, WI 53706
{mfrank, vernon} @cs.wisc.edu

Abstract

Current and emerging high-performance parallel com-
puter architectures generally implement one of two types
of communication mechanisms: shared memory (SM) or
message passing (MP). In this paper we propose a
hybrid SM/MP architecture together with a hybrid
SM/MP programming model, that we believe effectively
combines the advantages of each system. The SM/MP
architecture contains both a high-performance coherence
protocol for shared memory, and message-passing primi-
tives that coexist with the coherence protocol but have no
coherence overhead. The SM/MP programming model
provides a framework for safely and effectively using the
SM/MP communication primitives. We illustrate the use
of the model and primitives to reduce communication
overhead in SM systems.

1. Introduction

Two data communication mechanisms currently dom-
inate in existing and emerging large-scale parallel com-
puters. In the Message Passing (or Distributed Memory)
model, each processor has its own private main memory
and communicates with other processors only by sending
and receiving messages. The Shared Memory model
comes in two main flavors. In the Static Shared Memory
(or Non-Uniform Memory Access, NUMA) model, each
processor is physically adjacent to a portion of global
memory and communicates with other processors by
reading and writing locations in its own or other portions
of the shared memory. In the Dynamic Shared Memory
(i.e., the Cache-Coherent or Distributed Shared Memory)
model, shared data resides in a physically distributed
memory and is (automatically) replicated, on demand, to
provide processors with fast access to local copies.

Dynamic Shared Memory systems are easier to pro-
gram in that shared read-only structures may be
efficiently accessed by all processors without re-naming,
and shared writable objects may migrate from processor
to processor as necessary to balance the computational

TThis work was supported in part by the Nation-
al Science Foundation (CDA-9024618, CCR-9024144).

load. However, the data replication comes at the cost of
1) overhead for keeping the copies of shared data
coherent, 2) fixed size data transfers (corresponding to a
cache block or a page in virtual memory), and 3) a more
complex programming model that includes some under-
standing of how the fixed-size copies of shared data are
kept coherent. The ultimate viability of dynamic SM sys-
tems will depend on several factors, including the
efficiency of the programming model, coherence mechan-
isms, and communication primitives, and the simplicity of
the required hardware and/or compiler support. We
address some of these issues in this paper.

Previous work on dynamic SM systems has focused on
1) mechanisms that guarantee that accessible local copies
are coherent within some memory consistency model,
and 2) the use of pre-fetching, update coherence primi-
tives, and/or multi-threading to hide memory latencies.
In this paper we take a different approach. We propose a
simple message-passing facility for overlapping commun-
ication and computation in dynamic SM systems. A key
idea is that a copy of a shared memory block that is not
guaranteed to stay coherent can be viewed as a message
that can be sent from one cache or memory to another.
Destination processors can read such messages using a
special read operation, so as not to accidentally read a
message when reading a coherent value was intended.
Like standard MP primitives, our proposed primitives and
programming model expose the communication overhead
of the machine so that programmers and compiler writers
can easily evaluate communication costs. Unlike stan-
dard MP primitives, our proposed primitives are tightly
integrated in the shared memory architecture (with only
minor additional hardware support), such that shared
objects need not be renamed, messages need not interrupt
destination processors, and messages can be used in some
cases simply to reduce coherence overhead.

In section 2 we provide some background and more
detailed motivation for our proposed SM/MP primitives.
In section 3 we define the new primitives and the SM/MP
programming model, and in section 4 we discuss the
implementation of the primitives in an SM/MP architec-
ture. Section 5 compares our proposed primitives with
various ideas in the previous literature.

To appear in the proceedings of the International Conference on Parallel Processing, August 1993

2. Background: Dynamic Shared Memory

Previous studies have observed that the dynamic
shared memory programming model must include the
notion of non-uniform memory access times, since pro-
grams developed using uniform memory access seman-
tics have notoriously poor performance [Ande9l,
Cher91a, Hill90, Lin90, Mart89]. What is required is an
approximate model of the coherence operations that pro-
vides a framework for assessing trade-offs between logi-
cally partitioning the data among the processes and
balancing the computational load among the processes.
We provide an informal model which provides a basis for
our SM/MP programming model, and then comment on
some disadvantages of the SM communication primitives.

Due to the benefits of read sharing as well as the over-
head of updating all copies on all write operations, the
following rules provide a minimal model for most high-

performance coherence protocols:l

1. An ordinary read operation retrieves a shared copy of
the page or block from main memory unless the pro-
cessor already has a shared or exclusive copy.

Side effect: If another processor has an exclusive copy
of the page or block, the exclusive copy will be
changed to a shared copy.

2. An ordinary write operation retrieves an exclusive
copy of the page or block from main memory, unless
the processor already has an exclusive copy.

Side effect: All other shared or exclusive copies of the
page or block are destroyed.

Retrieving, modifying and/or destroying copies at remote
memories involves communication. As in the MP model,
non-local operations are viewed as expensive, the exact
cost being machine-specific.

Using the above model, efficient SM programs will
often have similar partitioning of the computational load
as their MP counterparts, due to similar models of when
communication occurs. However, there are several
disadvantages of the shared memory communication
primitives. Ordinary read and write operations allow
communication and computation to be overlapped only if
multithreading is used. Prefetching may be used to
address this problem, but requires the consumer(s) to
request the data (at an appropriate time) and requires
communication for the producer to regain write access to

Note that the model can be augmented or adapt-
ed to systems with additional communication primitives
such as read-exclusive and write-update operations, as
well as to systems that use compiler-assisted coherence
protocols in which incomplete data-dependence informa-
tion may cause extra, unnecessary invalidation messages.

the data. Alternatively, an update protocol might be used
to update rather than invalidate the consumers’ copies.
However, in hardware coherence protocols this forward-
ing is done each time a processor writes a word in the
block; and in any case, all copies are updated whenever
forwarding is done. In iterative algorithms where not all
consumers need to receive the data in every iteration, the
update operation has particularly high overhead. The
above coherence overheads include unnecessary traffic
over the interconnect as well as unnecessary memory
access latencies.

3. The SM/MP Programming Model

In this section we propose extensions to the dynamic
SM programming model that 1) allow communication to
take place with no coherence overhead and 2) facilitate
maximal overlap of communication and computation. An
efficient implementation of the model that can be
integrated with any coherence protocol is outlined in sec-
tion 4.

3.1. MP Primitives for Dynamic Shared Memory

We propose a new type of copy of a shared memory
block or page, called possibly-stale. These copies serve
as messages that can be sent from one processor to
another using the MP-send and MP-read operations
defined below. In some cases, the communication imple-
mented by MP-send and MP-read will only work prop-
erly if a program can insure that sequential MP-sends to
some particular destination will execute in the order they
are generated. We define an MP-sync operation that can
be used to guarantee this ordering. For cases where the
process that computes a value does not know the identity
of the consumer, and/or cases where the consumer can
more effectively schedule the message transmission, we
define an MP-prefetch operation that allows the consumer
to fetch a message. Thus, the following primitives are
defined to manipulate possibly-stale blocks:

e MP-send: The MP-send operation creates a new copy
of a specified block or page and sends the copy to a
specified processor. The new copy is of type possibly-
stale. The destination processor keeps the new copy
unless it already has a shared or exclusive copy of the
block.

e MP-read: The MP-read operation returns a value from
a shared, exclusive, or possibly-stale copy of the block.
If the processor does not have a copy of the block, the
MP-read operation retrieves a new copy of type
possibly-stale.

o MP-prefetch: The MP-prefetch operation retrieves a
copy of the block, of type possibly-stale, unless the
processor already has a copy.

e MP-sync: The MP-sync operation completes when all
previous MP-operations issued by the processor have

completed. MP operations that are issued after the
MP-sync operation will be delayed until the MP-sync
completes.

Typically, the processor issuing an MP-send operation
has recently modified the location and thus has an
exclusive copy of the block. As under the MP model, the
processor issuing the MP-send may re-write the block
without incurring any coherence overhead since the pro-
cessor retains the block in state exclusive. The new
possibly-stale copy is allowed to become incoherent, but
can only be read using the MP-read primitive. (An ordi-
nary read or write operation by a processor will replace a
possibly-stale copy with a shared or exclusive copy,
respectively.) From this perspective the possibly-stale
copy is a message, and the MP-send and MP-read primi-
tives can be used together to implement a restricted but
useful form of message passing communication.

MP-send operations are treated as write operations in
the memory consistency model; thus the processor may
not be required to wait for these operations to complete
except at specified synchronization points. Additionally,
the programmer must keep in mind that the MP-read
operation can return the value of a possibly stale copy, or
the value of a coherent copy of the data. In this sense, the
primitives must be used in a way that, for a correct
SM/MP program, deleting the MP-send operations and
replacing MP-read operations with ordinary reads will
yield a program that is functionally the same.

3.2. Examples

We present two examples of the use of the SM/MP
model. In both examples, explicit MP operations appear
in the program, but might alternatively be generated by a
compiler. Also, explicit MP-send operations operate on
data objects; we assume that the compiler will optimize
these operations by appropriately deleting duplicate
operations for the same block or page. The first example
is an iterative chaotic SOR algorithm where communica-
tion is reduced by calculating a schedule, either determin-
istically or probabilistically, which determines how often

initialize x, A;
Spawn P threads;
task k:
Apply-MP-read x;
repeat until x converges
for each i in thread k's partition of x
x; = £(A, x):
compute subset-of-P to receive x
MP-send (x; , subset-of-P);

Figure 1. Chaotic SOR: SM/MP Algorithm (One Process)

a process sends updated values to each other process (e.g.
[Fuen92]). Due to the chaotic nature of the algorithm,
processes are allowed to use stale values if they have not
received the update. Note that MP-prefetch operations
can be used instead of the MP-send operations to imple-
ment a similar communication schedule. In this example,
the MP primitives are highly efficient, whereas standard
prefetching or update-write operations would have
significantly higher overhead.

The second example is one in which two processes
communicate via a circular buffer, as is often done in
pipelined and other course-grain dataflow algorithms
(e.g., [Schn®9]). In contrast to the previous example, the
possibly-stale copies are known to be up-to-date at the
time of the MP-read operations. Thus, the MP primitives
are used to implement the shared buffer synchronization
and to reduce coherence overheads as compared with
write-update protocols and standard prefetching.

Buffer[B] of items:;

/* producer’s buffer index */
i =1, copy_of_1i = 1;

/* consumer’'s buffer index */
i =1, copy_of_3j = 0;

Producer
Apply-MP-read copy_of_j;

repeat
while not (i == copy_of_j)
i := (i + 1) mod B;

create value in Buffer([il;
MP-send(Buffer[i], Consumer);
every Nth iteration
MP-sync;
copy_of_1i := i;
MP-send(copy_of_i, Consumer);

Consumer
Apply-MP-read copy_of_i, Buffer;
repeat
while not(j == copy_of_1i)
j := (j + 1) mod B;
use item in Buffexr(j]:;
every Nth iteration
MP-sync;
copy_of_J = J;
MP-send(copy_of_j, Producer);

Figure 2. Communication Using Circular Buffers: SM/MP

Implementation

4, The SM/MP Architecture

The communication primitives defined in section 3 can
be integrated with dynamic shared memory coherence
protocols with very little increase in hardware complex-
ity. Below we illustrate this for a generic directory-based
cache coherence protocol with cache block states
exclusive, shared, and invalid.

Table 1 specifies the actions taken by the cache in
response to MP requests issued by the processor as well
as MP operations that come in from the network. A new
cache block state, possibly stale is used to implement the
MP operations. No other new storage is required in the
memory system. In particular, the state of the blocks in
the directory is never modified by the MP operations.

MP-send requests are translated into remote MP-put
requests if the processor has a shared or exclusive copy of
the block. Otherwise, the cache forwards the MP-send
request to the directory.

For a network MP-put request, if the block containing
the word isn’t present in the cache, new space is allocated
for the block and the new data is stored in state possibly
stale. If the block is in state possibly-stale, the new data
overwrites the existing block. If the block in state shared
or exclusive (or some other coherent state), the copy in
the destination cache is either coherent with the copy
from which the MP-put was generated, or is more recent
than that copy, or is going to be invalidated by the write
operation that generated the value in the MP-put. In all
of these cases, it is safe to ignore the incoming MP-put.

For processor MP-read requests, the cache responds
with the data if the block is in any valid state. Otherwise,
the cache issues a remote MP-get request, which returns a
copy of the data that will not be kept coherent by the
hardware. A processor MP-prefetch request leads to a
remote MP-get request unless the processor has a
coherent copy of the block, in which case the MP-
prefetch is ignored.

Finally, an ordinary processor read or write request
purges the block if it is in state Possibly Stale, and fetches
a coherent block. When a block in state possibly stale is
deleted from the cache, no write-back occurs.

The proposed MP primitives integrate simply and
easily with hardware cache coherence protocols. Imple-
mentation can similarly be integrated with distributed
shared memory protocols (a.k.a. virtual shared memory)
and/or with compiler-assisted coherence protocols.

5. Comparison with Previous Approaches

Prefetching techniques have been the principal
approach advocated in the literature for reducing read
latencies (i.e., for overlapping communication and com-
putation) in large-scale SM systems. Synchronized pre-
fetching techniques have been proposed [Good89] for

Table 1: State Transitions for MP Requests
in the SM/MP Coherence Protocol

Cache Block Next .
Request State State Action
Shared‘ or Unchanged forward MP-put request
Processor Exclusive to remote processor
MP-send Possibly Stale forward MP-send
. Unchanged .
or Invalid request to directory
Shared or Unchanged forward Ack
Network Exclusive chang to sender
MP-Put Possibly Stale | Possibly insert block & forward
or Invalid Stale Ack to sender
Processor Not Invalid | Unchanged return value
MP-read . Possibly forward MP-get
Invalid .
Stale request to directory
Shared or :
Processor Exclusive Unchanged no action
MP-prefetch | Possibly Stale | Possibly forward MP-get
or Invalid Stale request to directory
Processor . forward get-S
Read Possibly Stale Shared request to directory
Processor . . forward get-X
Write Possibly Stale | Exclusive request to directory
Network . Possibly .
Invalidate Possibly Stale Stale no action

simulating producer-initiated data transfers (in certain
cases) in dynamic shared memory systems. These opera-
tions allow a prefetch to be issued early and to remain
pending in the memory system until a new value is
released by another processor. Recent examples include
QOLB [Jame90], Notify [Cher91b], and cooperative pre-
fetch [Hill92]. The advantages of the SM/MP primitives
include: 1) simpler hardware support, 2) more general
and efficient support for multiple consumers, 3) lower
overhead and a simpler programming model in many
cases (such as those illustrated in section 3.2). Whether
synchronized prefetching or synchronized MP-
prefetching would be desirable in an SM/MP system is an
open question.

Write-update operations, which update rather than
invalidate all copies of a block whenever a particular pro-
cessor writes the block, are available in some systems
[Leno92] and have recently been advocated as a tech-
nique for overlapping communication and computation in
SM systems [Cart91, Rost93]. Our SM/MP primitives
have some features in common with write-update primi-
tives. Key differences include: 1) the explicit use of pos-
sibly stale copies allows the MP-send operations to be
optimized and used more selectively than write-updates,
2) the MP-prefetch primitive, and 3) the SM/MP pro-
gramming model that aids in identifying cases where the
MP operations might be advantageous.

Lee and Ramachandran [Lee91] have proposed a selec-
tive WRITE-GLOBAL primitive, as well as primitives
that read and write only the local cache, to support imple-
menting a weak-consistency coherence model in
software. They also propose that the software use the
local-only operations for private variables, to avoid
false-sharing conflicts in some cases where private and
shared data are assigned to the same cache block.

Kranz et. al. have recently proposed integrating
message-passing primitives into dynamic shared memory
systems [Kran93]. Their principle motivations were to
bundle data into large messages, and to combine syn-
chronization with data transfer. Key differences in the
SM/MP approach include: 1) the MP primitives are
embedded in the shared memory hardware, and 2)
SM/MP messages do not interrupt the destination proces-
sor. It remains an open question whether the SM/MP
model should be augmented to include an MP-send-and-
interrupt primitive.

6. Summary and Conclusions

In this paper we have proposed a set of message pass-
ing primitives for dynamic shared memory systems. We
have developed the hybrid SM/MP architecture by care-
fully extending SM systems to incorporate key perfor-
mance features of MP systems. This involved introduc-
ing a new state for cache blocks or memory pages, called
possibly-stale, that can only be read by a special MP-read
operation, as well as the view that blocks in this state are
messages. The two most significant advantages of the
proposed primitives are the simplicity of their implemen-
tation, and the simplicity of the model they support for
overlapping communication and computation. We have
also shown that the primitives allow the elimination of
unnecessary coherence overhead in certain important
cases. We thus believe that these primitives may be use-
ful in improving the viability of Dynamic Shared
Memory systems for parallel computing.

Key questions we are currently investigating include
the performance benefits of the proposed SM/MP primi-
tives for various applications, whether there exist exam-
ples where a variant of synchronized prefetch can
improve the performance of an SM/MP architecture (thus
justifying the memory system storage for pending
requests), whether an interrupting MP-send operation is
desirable, and whether applying existing compiler tech-
nology for distributed memory machines to SM/MP sys-
tems can yield improved performance as compared with
existing compilers for dynamic shared memory systems.

References

[Ande91] Anderson, R. J. and L. Snyder, “A Comparison of
Shared and Nonshared Memory Models of Parallel
Computation”, Proc. of the IEEE, Vol. 79, No. 4 , April
1991, pp. 480-487,

[Cart91] Carter, J. B., J. K. Bennett and W. Zwaenepoel,
“Implementation and Performance of Munin”, Proc. 13th
ACM Symp. on Operating System Principles, Pacific
Grove, CA , pp. 152-164, October 1991.

[Cher91a] Cheriton, D. R., H. A. Goosen and P. Machanick,
“Restructuring a Parallel Simulation to Improve Cache
Behavior in a Shared Memory Multiprocessor: A First
Experience”, Int’l. Symp. on Shared Memory
Multiprocessing, Tokyo , pp. 109-118, April 1991.

[Cher91b] Cheriton, D. R., H. A. Goosen and P. D. Boyle,
“Paradigm: A Highly Scalable Shared-Memory
Muiticomputer Architecture”, Computer, Vol. 24, No. 2 ,
February 1991, pp. 33-46.

[Fuen92] Fuentes, Y. O. and S. Kim, “Parallel Computational
Microhydrodynamics: Communication Scheduling
Strategies”, AIChE Journal, Vol. 38, No. 7, July 1992, pp.
1059-1078.

[Good89] Goodman, J. R., M. K. Vernon and P. J. Woest, “A
Set of Efficient Synchronization Primitives for a Large-
Scale Shared-Memory Multiprocessor”, Proc. 3rd Int’l
Conf on Architectural Support for Programming
Languages and Operating Systems, Boston , pp. 64-75,
April 1989.

[Hill90] Hill, M. D. and J. R. Larus, “Cache Considerations for
Multiprocessor Programmers”, Cominunications of the
ACM, Vol. 33, No. 8, August 1990, pp. 97-102.

[Hill92] Hill, M. D., J. R. Larus, S. K. Reinhardt and D. A.
Wood, “Cooperative Shared Memory: Software and
Hardware for Scalable Multiprocessors™, 5th Int’l. Conf. on
Architectural Support for Programming Languages and
Systems, Boston , pp. 262-273, October 1992.

[Jame90] James, D. V., A. T. Laundrie, S. Gjessing and G. S.
Sohi, “Distributed-Directory Scheme: Scalable Coherent
Interface”, IEEE Computer, Vol. 23, No. 6, June 1990, pp.
74-71.

[Kran93] Kranz, D., K. Johnson, A. Agarwal, J. Kubiatowicz
and B. Lim, “Integrating Message-Passing and Shared-
Memory: Early Experience”, to appear Symp. on
Principles and Practice of Parallel Programming
(PPoPP), May 1993.

[Lee91] Lee, J. and U. Ramachandran, “Architectural Primitives
for a Scalable Shared Memory Multiprocessor”, 3rd ACM
Symp. on Parallel Algorithms and Architectures, pp. 103-
114, July 1991.

[Leno92] Lenoski, D., J. Laudon, K. Gharachorloo, W. Weber,
A. Gupta, J. Hennessy, M. Horowitz and M. S. Lam, “The
Stanford Dash Multiprocessor”, Computer, Vol. 25, No. 3,
March 1992, pp. 63-79.

[Lin90] Lin, C. and L. Snyder, “A Comparison of Programming
Models for Shared Memory Multiprocessors”, Int’l. Conf.
on Parallel Processing, Vol. 11, August 1990, pp. 163-170.

[Mart89] Martonosi, M. and A. Gupta, “Tradeoffs in Message-
Passing and Shared-Memory Implementations of a
Standard Cell Router”, Proc. Int’l. Conf. on Parallel
Processing, Vol. 111, August 1989, pp. 88-96.

[Rost93] Rosti, E., E. Smirni, T. D. Wagner, A. W. Apon and L.
W. Dowdy, “The KSR1: Experimentation and Modeling
of Poststore”, to appear Proc. of the 1993 ACM Sigmetrics
Conference, May 1993,

[Schn89] Schneider, D. A. and D. J. DeWitt, “A Performance
Evaluation of Four Paralle! Join Algorithms in a Shared-
Nothing Multiprocessor Environment”, Proc. 1989
SIGMOD Conf., Portland, Oregon , June 1989.

