
Technical Report

Department of Computer Science
University of Minnesota
4-192 EECS Building
200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 97-029

Statement Re-ordering for
DOACROSS Loops

by: Ding-Kai Chen and Pen­
Chung Yew

A pre liminary version of this paper appeared in ICPP '94

Statement Re-ordering for DOACROSS Loops *

Ding-Kai Chen

dkchen@mti.sgi.com

Silicon Graphics

Computer Systems

April 13, 1995

Abstract

Pen-Chung Yew

yew@cs.umn.edu

Dept. of Computer Science

University of Minnesota

In this paper, we propose a new statement re-ordering algorithm for DOACROSS loops that overcomes some of the problems

in the previous schemes. The new algorithm uses a hierarchical approach to locate strongly dependent statement groups and

to order these groups considering critical dependences. A new optimization problem, dependence covering maximization,

which was not discussed before is also introduced. It is shown that this optimization problem is NP-complete, and a heuristic

algorithm is incorporated in our algorithm. Run-time complexity analysis is given for both algorithms. This new statement

re-ordering scheme, combined with the dependence covering maximization, can be an important compiler optimization to

parallelize loop structures for large scale coarse and fine grain parallelism.

Keywords: Compiler Optimization, Data Dependence, Doacross Execution, Redundant Synchronization Elimination,

Statement Re-ordering.

•Tois work was supported in part by lhe National Science Foundation under Grant Nos. NSF MIP-8920891, NSF MIP-9307910, and the U.S.
Department of Energy, Grant No. DOE DE-FG02-85ER2500 I.

Contents

1 Introduction

2 Background

2.1 Dependences

2.2 DOACROSS Execution

3 Re-ordering Strategies

3.1 Previous Works .

3.2 Hierarchical Scheduling- A New Approach .

3.2.1 PSCC Identification

3.2.2 PSCC Ordering ..

3.3 Dependence Covering Maximization .

3.4 Run-time Complexity

4 Performance Results

5 Discussions

5.1 Dependence Distance

5.2 Multiply-nested Loops

5.3 Implementation Issues

5.4 Future Works

6 Conclusions

A Related proofs

2

1

2

2

3

6

6

7

9

9

12

15

16

18

18

18

18

19

20

21

1 Introduction

Loop-level parallelism is very important in achieving high performance on multiprocessors. Many architectures and

optimization compilers are aimed at efficient execution of parallel loops. One kind of DO loop, the DOALL loops, do not

have loop-carried dependences, and it is relatively easy to obtain the desired speedup. On the other hand, it is much harder

to parallelize DOACROSS loops [15, 16, 7, 8], which contain loop-carried dependences.1 They require the consideration

of not only the scheduling and the load-balancing issues, but also the synchronization issues, which are usually much more

difficult.

Loop-carried dependences can be categorized as lexically forward and lexically backward. Vector and SIMD machines

can handle DOACROSS loops with only lexically forward dependences [I, 15, 22, 14]. One advantage of the MIMD

(multiple-instruction-multiple-data) machines is it allows loops with backward loop-carried dependences to be handled by

DOACROSS execution (i.e., by delaying consecutive iterations to satisfy backward dependences). The speedup obtained

in this way can be large and therefore pay off the extra synchronization overhead.

Because the order of the statements in a loop determines the amount of delay between consecutive iterations, the extent

of the overlap between iterations, or equivalently, the parallelism, is determined solely by the statement order. It is very

important in DOACROSS loops to order the statements for the minimal delay (or the maximal overlap) between iterations.

As has been proven by Cytron [7), the optimization problem of statement re-ordering is NP-complete. Hence, in practice,

algorithms using heuristics have to be used.

Another related optimization problem, which has been overlooked in the past, is to reduce the amount of synchronization

through statement re-ordering. By making more dependences covered by others, more synchronization becomes ''redundant"

and therefore can be eliminated without affecting the correctness of the execution [I 2, 10, 13, 6). This problem should be

considered along with the delay minimization problem mentioned above. Although there is a trade-off between parallelism

and synchronization overhead, we shall make parallelism our main optimization goal. The reduced synchronization will be

achieved without compromising the parallelism available.

This paper describes a compiler optimization strategy that performs statement re-ordering for DOACROSS loops to

maximize the parallelism and to minimize the synchronization requirement. Unlike previous works, we adopt a hierarchical

1 The definition of DOACROSS loops used here includes all lhe loops with loop-carried dependences. These loops include those classified by the
traditional DOA CROSS loop definition in which only loops with dependence cycles are considered DOACROSS loops.

I

approach to find closely connected components in the dependence graph and to schedule statements in each component

together. The synchronization reduction, which was not considered in the previous works, is performed when statements can

be re-ordered without affecting overall parallelism. We organize our presentation as follows. Section 2 gives background

and definitions for later discussions. In Section 3, the proposed hierarchical re-ordering strategy is explained in detail.

Preliminary performance results and discussions are presented in Sections 4 and 5. Section 6 concludes our presentation.

2 Background

2.1 Dependences

The essential requirement for a correct execution of a program in parallel is to preserve dependences implied by the program

semantics. There are two kinds of dependences, data dependences and control dependences.

A data dependence occurs when a data object xis accessed by two statements Sp and sq, and there exists an execulion path

between Sp and Sq. Also, at least one of the accesses is a write access. Another kind of dependences, control dependences,

occur when the result of an expression alters the course of execution, and later statements are said to be "control-dependent"

on the expression. There are techniques that transform cross-iteration control dependences into data dependences [2].

Therefore, in this paper we focus only on data dependences.

Dependences can also be classified as loop-independent or loop-carried. Basically, loop-independent dependences occur

between statement instances within one iteration while Loop-carried dependences occur between statement instances of

different iterations. Alternatively, for a single loop, loop-independent dependences have source and sink statements in the

same iteration with a zero dependence distance; loop-carried dependences have a(> 0) dependence distance.

Furthermore, a dependence can be described as either (lexically)forward or backward. Given a statement order in a

loop, with the first statement at the top and the last statement at the bottom of the loop, a forward dependence stems from a

statement closer to the top to a statement closer to the bottom of the loop. Similarly, a dependence with the location of the

sink statement being closer to the top than, or at the same statement as, the source statement is a backward dependence.

Given the above descriptions, we have the following observations which arc essential to our strategies.

Observations

2

• A backward dependence must be a loop-carried dependence.

• A forward dependence can be either loop-carried or loop-independent. But, a loop-independent dependence must be

a forward dependence.

• The order of the source and the sink statements of a loop-independent dependence has to be kept when we re-order

the statements. The order of the source and the sink statements of a loop-carried dependence can be reversed, and the

dependence will not be violated.

• The properties of being "forward" and "backward" are defined only when a statement order is specified, whereas the

properties of being "loop-carried" and "loop-independent" are independent of the statement order.

Finally, a dependence graph is a directed graph describing dependence relations among statements. Each node (vertex)

is a statement and each edge (arc) represents a dependence. The edges can be annotated with information such as the type

of dependence, and the dependence distance. Note that there can be multiple edges between two nodes if there is more

than one dependence with different dependence distances. A strongly connected component (SCC) in a directed graph is a

maximal subgraph such that each node in this subgraph has a directed path to any other node in the same subgraph [18].

2.2 DOACROSS Execution

DOACROSS execution for the loops with loop-carried dependences is achieved by requiring the instances of the sink

statements in later iterations to wait for the completion of the source statements in earlier iterations, usually with explicit

synchronization between source and sink statements. Because the dependences derived from the sequential execution never

form a cycle among all statement instances, such synchronization will not cause dead-locks during execution. The key to

the DOACROSS execution is the delay of the consecutive iterations when there is any backward dependence. For example,

Figure la shows a DOACROSS loop, with its dependence graph shown in Figure 1 b. There are two backward dependences

(4 -.!...+ 2), and (6 -..!..... 2), where the numbers associated with the "----+" show the dependence distances. The second

backward dependence causes a delay of 5 time units for each iteration, as seen in Figure le. There are also three forward

dependences: (2£... 3), (I -..!..... 5), and (3-.!...+ 4), where only the first one is loop-independent. In addition, although there

are a total of 4 loop-carried dependences, synchronization for (6 -..!..... 2) will preserve all other loop-carried dependences.

3

DO I=O,N- 1
sl : A[I+l)= .. .
s2 : X =C[I) +D[I]
s3: B [I) =X

s4: C [I+2)=B[I-2]
s5 : =A[I]
s6 : D[I+l] = ...
END DO

(a)

(b)

Figure 1: DOACROSS loop example.

Iterations

time 1
t i me 2
time 3
time 4
time 5
time 6
time 7
time 8
time 9
time 10
time 11
time 12
time 13
time 14
time 15
time 16
time 17

1 2 3

sl
s2
s3
S4
s5
s6...., ~~

s3
s 4
s5
s6...., sl

~2
s3
s4
s5
s6

(c)

Therefore, only the explicit synchronization between statements 2 and 6 is necessary. All other synchronization becomes

"redundant." It is important to note that the delay caused by the backward dependences determines the overlap between

iterations. Explicit synchronization is necessary to effect such a delay in a M1MD machine. On the other hand, the delay

can be used to estimate when the dependences are most likely to be satisfied and to reduce unnecessary busy waiting at the

sink statements.

Apparently, parallelism obtained in Figure l is very small due to very little execution overlap between iterations. As

mentioned in the previous section, as long as the order specified by any loop-carried dependence is not violated, we can

re-order the statement to minimize the delay and to increase the overlap and hence the parallelism. Given a statement order,

a backward loop-carried dependence (src ~ sink) requires a delay of

src - sink+ 1

d
(1)

We cal 1 (src - sink + 1) the statement distance of the dependence. It is the longest delay among all backward dependences

that determines the final delay. Figure 2a shows a much better statement order for the example in Figure la which requires

a delay of 6-i+i = 5-1+1 = 1. It can be seen that one of the forward dependences (3 ~ 4) has been converted to

a backward dependence, and one of the backward dependences (6 ~ 2) becomes a forward dependence in this new

4

delay=l

(a) (b)

Figure 2: Optimized statement orders.

order, but the order between s2 and s3 , which is implied ·by the only loop-independent dependence, is not changed. More

parallelism usually requires more communication overhead. In our new statement order, (s1 ~ s5) and (s6 ~ s2) have

to be explicitly synchronized because no other synchronization covers them.

Given the san1e theoretical delay value, we want to have as much dependences covered as possible and therefore minimize

the synchronization requirement. Figure 2b shows a slight! y different statement order than that of Figure 2a. It has the same

delay of 1 but the synchronization for (s1 ~ s5) is now covered by that of (s6 ~ s2) because we can follow the order

0 I O I I (s1 --> s6 -, s2 __. s5) to ensure the order of (s1 __. s5). Therefore, the synchronization for (s1 __. s5) is redundant

and unnecessary.

The optimization problem discussed so far can be formally stated as follows.

Problem Statement

Given a dependence graph G(V, E), where V = { s;} is the set of statements in a loop and E = { (srci ~ sink;)} is the

set of dependences among members of V, we want to find a mapping P : V - { 1, . . . , IV I} such that

1 delay= max· src; - ~ink;+I is minimized and
· •EE dist; '

2. number of redundant synchronization is maximized.

Obviously the first goal must have a higher priority; otherwise, a serial execution <)f the loop requires no synchronization,

but it has very poor performance.

5

We assume execution in each iteration is sequential and each statement takes one unit time to execute. Although the

scheme described here is easier to understand for single loops, or the innermost loops, it can be extended to multiply-nested

loops and is discussed in Section 5.

3 Re-ordering Strategies

3.1 Previous Works

It has been shown that even for a simpler dependence graph with only loop-carried dependences (hence, no restriction on

its statement ordering), the delay minimization problem is NP-complete [7].

The heuristics algorithms previously proposed basically have two phases. In the first phase, the graph is partitioned and

the partitions are then ordered. In the second phase, statements within each partition are ordered. The idea is to determine

the partition order in the first phase such that, during the local optimization in the second phase, no loop-independent

dependences will be violated.

In the method proposed by Cytron [7] in the partitioning phase, it forms antichain-rows by level-sorting the dependence

graph considering only forward dependences. The source and the sink of a forward dependence are placed in different

partitions. In the second phase, a weight function for each statements; in a partition (or an antichain-row) is calculated. If

the maximal statement distance among all the backward dependences in whkh s; is the sink is p, and the maximal statement

distance among all the backward dependences in which s; is the source is q, the weight of s; is p- q. The statements within

each partition are then re-ordered according to their weight (in an increasing order). Figure 3a shows the antichain-row

partitioning after the first phase and the corresponding weight for each statement. A final order is shown in Figure 3b with

a delay of 2.

From the observations in Section 2.1, we know that the statement order of a forward dependence need not be preserved,

unless it is a loop-independent dependence. That means the partitioning phase of Cytron 's method is overly conservative.

For example, interchanging the positions of s3 and s4 results in a smaller delay. Moreover, the property of "forward-ness"

and the weight function depend on a given statement order, and the optimization is likely to reach only a local optimum. In

fact, anomalies could occur where the "optimized" order actually has a longer delay.

6

0 5 - 5

0 G) G)

0-3

(a) (b)

Figure 3: Cytron's algorithm.

A similar method was also proposed by Simons et. al. (3, 19). In their first phase, statements are level-sorted into

partitions considering only the loop-independent dependences. The source and the sink statements of a loop-independent

dependences are placed in different partitions. Within each partition, further partitioning is performed repeatedly until no

source and sink statements of a loop-carried dependence are contained in the same partition. Given an integer k, which is

the desired bound of the delay, their algorithm tries to find an order that orders statements within each partition such that

the statement distance of any backward dependence (now crossing partition boundaries) is less than or equal to k. For some

special backward dependences such as multiple chains and out- or in-trees, this algorithm finds an order for a given k if one

exists. However, sometimes the longer delay can result from the fact that the partition bound the movement of statements

in the second phase, unfortunately, a wrong decision on the direction of loop-carried dependences is made in the initial

partitioning.

In summary, the two-phase algorithms try to preserve Loop-independent dependences in the first phase without a proper

consideration of all the loop-carried dependences, which limits the strategies that can be used in the second phase.

3.2 Hierarchical Scheduling - A New Approach

Because it is not adequate to preserve all forward dependences [7), and it is difficult to determine which loop-carried

dependences should become forward dependences in the first phase (3), our strategy is to postpone making the decision

for each loop-carried dependence until it is necessary. Another intuition behind our strategy is that if we can make

7

Input: a dependence graph from a DOA CROSS loop.
Output: a statement order with minimized delay and maximized dependence covering.
Algorithm HS
begin

end;

normalize the dependence graph;
findSCCs;
if the total number of SC Cs> 1 then

level-sort SCCs;
order SCCs in each level and maximize the dependence covering; II see Section 3.3

endif;
foreach SCC s do

PSCC..scheduling(s);
endfor;

procedure PSCC..scheduling(S)
begin

end;

find PSCCs in S; II see Section 3.2.1
order PSCCs to minimize delay; II see Section 3.2.2
foreach PSCC s do

PSCC..scheduling(s);
endfor;

Figure 4: Hierarchical scheduling algorithm outlines.

the source and the sink statements of a dependence close to each other, even if the dependence becomes backward, the

resulting delay would still be small. Conceptually, our proposed Hierarchical Scheduling (HS) strategy finds Pseudo­

Strongly Connected Components (PSCC) first and orders the components to minimize the potential statement distances of

the backward dependences among the components. For each PSCC, this process is recursively applied until all statements

are scheduled. Figure 4 outlines the major steps of the proposed HS algorithm. The algorithm is explained in detail in later

sections.

Basically, the algorithm recognizes the fact that statements that are strongly connected in a dependence graph should

be scheduled close to each other in order to minimize statement distance of any backward dependence. The dependence

graph is first normalized such that if there is more than one dependence between the same source and sink statements, we

keep only the one with the smallest dependence distance. Next, we find all of the strongly connected components (SCCs)

in the dependence graph. They are also called 1r-blocks in [11, 15]. After they are ordered to maximize the dependence

covering, statements within each SCC are then ordered. Using the same heuristics, we try to detennine, in each SCC, the

8

strongly connected sub-structures (PSCCs), which consist of closely related statements in terms of their dependences. They

are ordered and the process proceeds recursively.

3.2.1 PSCC Identification

PSCCs are strongly connected subgraphs within a strongly connected graph such that they partition the original graph. In

the main algorithm, we use Tarjan's [21] well-known algorithm to determine SCCs. However, given a strongly connected

graph G, we cannot use the same algorithm to find PSCC because we will obtain the same graph as G. If G has n nodes,

the first PSCC is determined by identifying the largest connected subgraph that has less than n nodes. This is achieved by

iteratively selecting a node v to be excluded from the PSCC and then using Tarjan's algorithm to find SCCs in G - { v },

which always haven - 1 nodes. The largest SCC found in this process is the first PSCC. After the first PSCC is found, it is

deleted from G, and Tarjan's algorithm is used to find the remaining PSCCs.

It is not difficult to see that the first PSCC found by the above process is the largest connected subgraph. Ifwe condense

the input graph G such that each PSCC becomes a node and we keep only the edge with the smallest dependence distance

between the nodes, the resulting graph G' will be a ring.

Lemma 1 Each node in G' representing a PSCC has exactly one predecessor and one successor.

Proof: See Appendix. □

Theorem 1 G' is a ring.

Proof: The proof follows Lemma l and the fact that G' is strongly connected. □

3.2.2 PSCC Ordering

From Theorem 1, we can see that the PSCCs form a ring. The goal of ordering the PSCC is to minimize the distance between

the source and the sink PSCCs of any backward dependences under the constraint that no loop-independent dependence

(with dependence distance 0) can go backward. There are three cases to consider:

Case 1: If there is no loop-independent dependence in the ring of PSCCs, we select one forward edge e by the following

criteria:

9

0 i - th processed PSCC

·····► l oop- carried dependence

-- loop- independent dependence

/0A.,
//) 2

: r"":\:'"
: ~

1)3 0

>
0 ·i ..

l 2

r:'\3· .---·· __
e\ ~

·: 2 ··• .. -cu/
e

~--
-·

2

(a) case 1 (b) cas e 2

(cl case 3

Figure 5: SCC ordering examples.

l . it has the smallest dependence distance, and

2. in case there is a tie, we select the edge with the largest total number of statements in its source and sink PSCCs.

We make the source of e the first PSCC and its sink the last PSCC. All other edges are backward edges from a PSCC

to a PSCC immediately above it (see Figure Sa). The rationale behind this is to minimize the statement distance

between source and sink PSCCs.

Case 2: If some of the edges correspond to loop-independent dependences, their order has to be preserved. Similar to the

previous case, we select one forward edge e with one more constraint that the out edge of e's sink node pscqa, t has

a distance other than 0. Such an edge e must exist because, according to our assumption, not all the edges are with

distance 0. Edge e will have distance O in this case. We then start from e's sink pscc1ast to construct an upward

path (see Figure 5b). For each node psccp encountered, if psccp 's out edge e' is a loop-carried dependence, its sink

node psccq is temporarily put right below the source of e. Otherwise, if e' is a loop-independent dependence, its sink

node pscc9 is put right below the current node psccp. The rationale is similar to the above except that the order of

the loop-independent dependences have to be preserved. Figure 5b shows the ordering of a 5-node ring with both

loop-carried and loop-independent dependences.

Case 3: In rare occasions, all edges between PSCCs have distance 0 . Figure 5c gives an example in which nodes land 2 form

a PSCC and node 3 itself forms another PSCC and the two edges between these two PSCCs are all loop-independent

dependences. To handle these exceptional cases, we go back to the strongly connected input dependence G and select

a node v whose minimal dependence distance among its outgoing edges is the largest of all nodes. All outgoing

edges of node v must be loop-carried. Otherwise it implies that every node is the source of some loop-independent

dependences, and we will find a cycle of loop-independent dependences, which is not possible. Node v will be the

last statement of all statements in G and is deleted from G. The SCCs are determined in G - { v} and are level-sorted.

The scheduling process is then resumed.

After all PSCCs are scheduled, each PSCC is decomposed and the sub-structures ordered recursively until the leaf PSCCs

containing a single node are reached.

11

3.3 Dependence Covering Maximization

So far, our ordering strategy has been focused primarily on minimizing the delay (i.e., maximizing the parallelism). We

should also considering reducing the needed explicit synchronization by maximizing the dependence covering, if possible.

It has to be done without compromising the parallelism that is our the ultimate goal. Maximizing dependence covering is

best considered in the main algorithm, after the SCCs are determined and level-sorted. Because SCCs in each level are

independent of each other, the new order will not affect the delay and, hence, the parallelism. On the other hand, dependence

covering can be enhanced if the SCCs in the same level are ordered carefully. Figure 6a shows the four SCCs found for the

example of Figure 1. Individually, both dependences scca. -+ sccc and scc0 -+ seed require synchronization. If they are

ordered as (scca., scc0, seed, sccc) or (seq, scca. , sccc, seed) (see Figure 6b), one of the dependences could be covered.2 On

the other hand, if they are ordered as shown in Figure 6c, no dependence can be covered. Hence, the key here is to avoid

the dependence edge crossings as much as we could.

Our strategy, therefore, is to use a greedy algorithm to minimize such edge crossings when ordering the SCCs in a level.

We schedules one level at a time starting from the topmost level. In each level, a Source Vector is generated for each

SCC. The source vector of a SCC seep is a list of integers, ordered left to right from small to large, which correspond to

the sequence number of the SCCs in the previous levels whose dependence sink is seep. For example, suppose after the

scheduling of the first level, scca and sccb are ordered as (scca., sccb). The source vectors for scc0 and seed will be (1) and

(2), respectively.

Given an order of them SCCs in the current level, an Ordered Source VectorOSV = (svm, .. . , sv1) = (osv1, . . . , osvn),

where n is the sum of the vector length of the m source vectors, can be constructed from the source vectors by placing them

left to right with the first SCC's vector being the rightmost one. An inversion in OSV occurs when we have osv; > osvi

while i < j.

Theorem 2 The number of inversions that occur in the ordered source vector is equal to the number of edge crossings.

Proof: We shall prove by induction on the number of edges n .

Base case, n=l: When there is only one edge, there is no edge crossing. On the other hand, there is only one component in

the ordered source vector; hence no inversion. Suppose the theorem is true for n = k. We need to show that the theorem is

2 We need to construct the control path graph (CPG) to determine whether the dependence covering does occur (6).

12

d d

(a)

d

(c)

Figure 6: Dependence covering examples.

13

(b)

d

~ a

"G) C

d

also true for n = k + 1. We select an edge e from the dependence graph whose source SCC src has the smallest sequence

number. If there is a tie, the one whose sink SCC sink has the largest sequence number is chosen. If we remove this edge

and its corresponding component in the ordered source vector, we have k edges left and from the induction hypothesis, the

number of inversions in the ordered source vector equals the number of edge crossings. When we re-install the removed

edge and its corresponding component osve to the ordered source vector, the new edge crossings must be from SCCs with

a larger sequence number than that of src to SCCs with a larger sequence number than that of sink. It implies that, in the

ordered source vector, the components of the edges intersecting e must be placed to the left of where osve is placed and

have values greater than osve . Therefore, the additional number of inversions involving osve is exactly the number of new

edge crossings caused by putting e back, and the theorem holds for n = k + 1. □

With the number of inversions in the ordered source vector, we can estimate the potential for dependence covering. A

smaller number of inversions implies higher covering potential. Our optimization problem can thus be reduced to finding

an order such that the number of inversions in the ordered source vector is minimized. This is equivalent to solving the

following special case of the QUADRATIC ASSIGNMENT PROBLEM [9] with the cost;i being the number of inversions

in (sv,, sv;) which is constructed from the source vectors of SCC i and j:

Problem: Assume we have non-negative integer costs cost ii, 1 ::;; i, j ::;; n and distances d1:1, 1 ::;; k, I ::;; n, where

if k < l

otherwise.

We want to find out whether there is a one-to-one function f : { 1, 2, ... , n} -+ { 1, 2, ... , n} such that

n n

L L cost;idf(i)J(i)::;; K
i=I j:1,j;!i

where K is a positive integer. Unfortunately, this problem is also NP-complete, as shown by Theorem 3 in the Appendix.
3

We use a heuristic algorithm shown in Figure 7 to determine the best SCC order.

3 Actually this is only a subproblem because in addition to minimizing the edge crossings caused by the SCCs above the current level, we should also
minimize the edge crossings caused by the SCCs below the current level. This harder problem is also NP-complete.

14

Input: a set of SCCs and a cost matrix which gives number of edge crossings of each ordered SCC pair (i, j).
Output: an order of SC Cs with minimized dependence edge crossings.
Algorithm DC
begin

end;

foreach ordered SCC pair (i, j) do
if cost(i, j) < cost(j, i) then

endif;
endfor;

add ('i -,. j', cost(j, i) - cost(i,j)) to the edge list;

sort the edge list according to the second components;
foreach the edges in the edge list do

get the ordered SCC pair (i, j) with the next largest second component;
if there is no path from j to i then

add the edge ('i -,. j ') between i and j;
endfor;
topological sort SC Cs to get the final order;

Figure 7: SCC ordering algorithm to maximize dependence covering.

3.4 Run-time Complexity

Suppose there are I V I statments and I E I dependences. The normalization step of the Algorithm HS in Figure 4

examines dependence edges one at a time, so the time complexity is 0(1 EI). Using Tarjan's algorithm to find SCCs takes

0(1 EI + I V I) time steps and level-sorting takes 0(1 EI + I V I) time steps. Procedure PSCC..scheduling() (see

Figure 4) will not be called more than IV I times. In each time, it needs 0(1 VI x (IE I + IV I)) time steps to find PSCCs

and (I V I) time steps for ordering PSCCs if cases l and 2 are assumed. If in PSCC ordering, there is no loop-carried

dependences among PSCC as in case 3, it requires 0(I EI + I V I) time steps to find out the last node v and other PSCCs,

and to perform an additional level-sorting.

For dependence covering maximiwtion, all dependence edges are examined at most once to form the source vectors of

SCCs. It takes 0(1 EI + IV I) time steps. Each source vector has at most 0(1 VI) components and it takes 0(1 V I log IV I)

time steps to sort the components. The inversions between each pair of SCCs can be determined in 0(1 V I) time steps if the

source vectors' components are sorted. The cost matrix has 0(1 V 12) entries and is available with 0(1 V I3) time steps. The

dependence edge list is (IV 12) long and needs 0(IV 12 log IV I) time steps to sort. To process the edge list and maintain

the reaching information takes at most 0(1 V J
4

) time steps.

15

Routine Name Line Number #Nodes #Edges Percentage Parallelism (%) Parallelism

ORG CYT SMA NEW (1000 iter)

BISECT 118 53 103 9.43 11.32 41.51 83.02 5.86

BISECT 183 43 55 20.93 20.93 58.14 72.09 3.57

BISECT 221 21 19 76.19 90.48 85.71 90.48 10.40

CHWZR 66 24 19 91.67 91.67 91.67 91.67 11.87

CHWZR 80 70 68 95.71 94.29 92.86 95.71 22.82

HTRIB3 72 70 68 95.71 91.43 91.43 95.71 22.82

HTRIDI 77 67 67 95.52 95.52 94.03 95.52 21.87

IMTQLl 50 11 8 54.55 81.82 81.82 81 .82 5.48

IMTQLl 78 60 132 33.33 50.00 20.00 71.67 3.52

TINVIT 125 113 221 18.58 15.04 32.74 88.50 8.63

TINVIT 155 32 36 53.12 31.25 37.50 75.00 3.99

Table I: Percentage parallelism for several inner loops from Eispack.

To summarize, the overall time complexity without dependence covering maximization is 0(1 V 12 x(I E I + IV I)), and

is 0(1 V 14) with dependence covering maximization.

4 Performance Results

To see how effective the proposed hierarchical scheduling strategy is, we test it on several dependence graphs. These graphs

are all from the inner loops of several subroutines of the Eis pack (a set of mathematics libraty routines developed at Argonne

National Laboratory to solve eigenvalues and eigenvectors [20]). We randomly chose one test driver routine chtest. f

and used a source-level performance analysis tool, Max.Par [4, 5], to obtain loop-carried flow dependence information.4 A

dependence graph from each inner loop was constructed from its intermediate form by an experimental optimizing compiler

developed under EPG-sim environment [17) and was augmented with the loop-carried dependence information mentioned

above. Finally, the dependence graphs were used as inputs to the two algorithms described in Section 3.1 and to the new

hierarchical scheduling algorithm.

The preliminary results for improved parallelism are shown in Table I. The first two columns give the routine name and

the location of the inner loops. The third and the fourth columns described their dependence graphs. The next four columns

4We assume the anti- and output-dependences can be eliminated by the optimization using scalar and array expansion or privatization.

16

show the Percentage Parallelism, which is defined as,

number of nodes - delay

number of nodes

for the original loops and for the loops optimized by different algorithms. The best percentage parallelism is 100%, and a

0% parallelism indicates a serialized execution. Note that the results for Cytron's algorithm (shown under "CYT" column)

are chosen from the best of three consecutive runs because each optimized result depends on its input statement order. An

absolute parallelism assuming 1000 iterations is shown in the last column using the following formula

number of nodes x 1000

number of nodes+ delay x 999 ·

This parallelism is a performance upper bound because

1. We assumed an unlimited amount of resource and no communication overhead.

2. The loop-carried dependence information is obtained at run-time, which is less conservative than at compile time.

3. The intermediate form is not optimized; therefore it tends to have more nodes than an optimized one.

It can be seen that the performance of the proposed algorithm (shown under the "NEW'' column) is consistently better

than the previous schemes. In both Cytron's and Simon's schemes (shown under the "CYT" and the "SMA" columns), there

are loops whose original delay is shorter than the optimized delay. It is also important to note that the small difference in

the percentage parallelism is actually quite significant when it approaches 100%. It is because if we replace the delay by

(1 - percentage parallelism) x number of nodes, then the absolute parallelism can be approximated by

number of nodes

1 - percentage parallelism delay

These performance results confirm our expectation that the hierarchical scheduling strategy can achieve a higher perfor­

mance than previous schemes. However, we still need more experiments for dependence covering maximization and using

compile time available dependence information.

17

5 Discussions

5.1 Dependence Distance

One of the advantages of our scheme is to take the dependence distance into consideration in statement re-ordering.

Previous algorithms either ignore the dependence distances or unroll the loops to reduce the largest distance to one. Ignoring

dependence distances will treat all dependences equally and will fail to identify those that should stay forward to avoid large

delays. Unrolling the loop can create a lot of loop-independent dependences in the unrolled loop which can further restrict

a possible optimal ordering.

5.2 Multiply-nested Loops

An immediate question to the proposed re-ordering algorithm is whether it can handle dependence graphs from multiply­

nested loops. In such cases, the dependence distance vectors will have more than one component (instead of the scalar d

used in Equation (1) in page 4). It is shown that to determine the optimal delays for each loop level requires using the

simplex algorithm to solve a linear programming problem (7). Our problem is slightly different in that we try to determine

an order to minimize the delays. Therefore, the goal is to mimimize the statement distance for critical backward loop-carried

dependences. They are usually indicated by small dependence distance vectors. The identification of critical dependences

is needed only in the PSCC ordering step (see. Figure 4). For example, in the case 1 of the PSCC ordering, we want the

dependence with smaller dependence distance vector to be the forward dependence. One way to determine the critical

dependence is to compare the sum of the components of the distance vectors.

For non-perfectly nested loops, statements in the innennost perfectly-nested loops should be re-ordered first. The

perfectly-nested loops are then considered as a whole as a "compound statement." The dependence graph is modified

accordingly. The re-ordering process can then proceed to process the new innennost perfectly-nested loops.

5.3 Implementation Issues

There are other improvements worth consideration. For example, when the total number of statements becomes small

as the recursive decomposition proceeds, we could apply different methods, such as those proposed previously or even a

branch-and-bound algorithm, and select the best final order. When ordering a ring of PSCCs without loop-independent

18

1 2 3 4

s1

·· ·· ··· · ·►
s2

(a)

1 2 3 4

s 1

······ ···►
s2

(b)

Figure 8: Loop alignment examples.

dependences in the ring (see case I in Section 3.2.2), we can form more than one forward dependence, instead of just one,

if it is beneficial, because the increase in the statement distance for the remaining backward dependences is still small while

the originally critical backward dependences (the ones that define the delay) are converted to forward dependences.

In dependence covering maximization (see Section 3.3), the source vectors of each SCC is calculated from the original

dependence graph. However, when ordering the SCCs of the level i, some of the dependences have been covered because

the order of SCCs in the previous levels has been determined and these dependences should not be used to determine the

inversions in the current level i.

5.4 Future Works

Several other loop transformations can potentially improve the performance of the statement re-ordering. One of them is

loop alignment [15), which changes the distance of the dependences. Figure 8 gives a loop alignment example. The original

dependences among statement instances are shown in Figure 8a, while the dependences of the aligned loop are in Figure 8b.

In the original loop, no statement re-ordering can improve the loop-level parallelism. After the alignment, the dependence

distances become I and 3, and we can re-order the statement to make the backward loop-carried dependence have a larger

distance and the delay is reduced from~ to i-
The above transformation can be seen as a way to move intra-loop parallelism to inter-loop parallelism because the

19

independent statements (in shaded area) were in 2 iterations but are in 3 iterations after alignment. In future multiprocessors,

each processor can exploit instruction-level parallelism in addition to the loop-level parallelism. Loop unrolling has been

used extensively to improve intra-loop parallelism for a uniprocessor system. The balance between the two kinds of

parallelism using techniques such as loop alignment and unrolling when communication overhead is considered will be an

interesting research topic.

6 Conclusions

In this paper, we described a new statement re-ordering algorithm for DOACROSS loops. The new algorithm uses

a hierarchical approach to locate strongly dependent statement groups and to order these groups considering critical

dependences. A new optimization problem, dependence covering maximization, which was never discussed, is introduced.

It is shown that this optimization problem is NP-complete, and a heuristic algorithm is incorporated in the re-ordering

algorithm. Comparison to previous algorithms and a run-time complexity analysis are also presented. This new statement

re-ordering scheme, combined with the dependence covering maximization, can be an important compiler optimization to

parallelize loop structures for both coarse- and fine-grain parallelism.

20

A Related proofs

Lemma 1 Each node in G' representing a PSCC has exactly one predecessor and one successor.

Proof: It is obvious that each node has at least one predecessor and one successor; otherwise the input graph G would not

be strongly connected. The corresponding PSCC of a node can be (1) the first PSCC (pscc1), or (2) those found after the

first one is determined. These two cases are considered below.

Case I: Suppose the corresponding PSCC is pscc1 and hence is the largest connected subgraph. Assume that it ha, ~ 2

distinct successors and two of them are succ1, succ2, and that one of its predecessors is pred. If succ1 equals pred,

then pscc1 is not the largest because the nodes in pscc1, succ1 and pred can form an even larger connected subgraph

with number of nodes ~ n - 1. Therefore neither succ1 nor succ2 is pred. Then there exists a path P between succi

and pred which does not include succ2 . If no such path exists, we will consider a similar path between succ2 and

pred, instead. Because the nodes in pscc1, and P can form an even larger connected subgraph with number of nodes

~ n - 1, the existence of P implies that pscc1 is not the largest one, a contradiction. The same argument can be used

to show that pscc1 has at most one predecessor.

Case 2: Suppose the corresponding PSCC is not pscc1; hence it is an SCC (scc1) in G - PSCC1. Assume that it has~ 2

distinct successors and two of them are succ1, succ2, and one of its predecessor is pred. In G', we find a cycle C

from scc1 to p1·ed through succ1 then to sec; which does not include succz. If no such cycle exists, we will consider

instead a similar cycle through succ2 . The existence of such a cycle is guaranteed because G is strongly connected.

If C include the node of pscc1, then pscc1 is not the largest. On the other hand, if pscc1 is not in C, then C is in

G- P SCC1 and is strongly connected, which implies that sec; is not a SCC because it is not maximal, a contradiction.

The same argument can be used to show that sec, has at most one predecessor.

From the above argument, we conclude that each node in G' has exactly one predecessor and one successor. D

Theorem 3 The dependence covering maximization problem is NP-complete.

Proof: The dependence covering maximization problem tries to minimize the inversions in the ordered source vector, which

is equivalent to solving the following subproblem of the QUADRATIC ASSIGNMENT PROBLEM [9] with the cost;j being

the number of inversions in (sv;, svj) where sv; and svi are source vectors of SCC i and j:

21

INSTANCE: Non-negative integer costs cost;j, 1 :S i, j :S n and distance dk1,

if k < l

otherwise.

for I :S k, l :S n, bound K E z+.

QUESTION: Is there a one-to-one function f : { 1, 2, ... , n} --+ {I, 2, ... , n} such that

n n

L L cost;;df(i)J(j) :SK?
i:I j : l,j#

(2)

It is easy to see that the problem is in NP because a nondeterministic algorithm need only guess an order of { 1, 2, ... , n}

and check in polynomial time whether the total number of inversions is :S K. We transform the following FEEDBACK

ARC SET problem [9] to our quadratic assignment problem:

INSTANCE: Directed graph G = (V, A), positive integer K :Si A!-

QUESTION: Is there a subset A' ~ A with I A' l:S K such that A' contains at least one arc from every directed cycle in G?

The transformation simply let

if (i,j) EA

otherwise.

We need to show that "the subset A' exists" {=::} "Equation (2) can be satisfied."

"=}" part. Suppose for a given K, there exists a set I A' I :S K such that A' contains at least one arc from every directed

cycle in G. It follows that G'(V, A \ A') has no cycle. If an order p : {I, 2, ... , n} -> {I, 2, ... , n} is the result of a

topological sort on G', then f (i) = n - p(i) + I is the one-to-one function such that

n n

L L cost;;df(i)J(j) :SK
i:I j = l ,j;ti

It is because the arcs in A' become forward arcs given order f (or backward arcs given order p), and the number is :S K.

22

"<¢=" part. Suppose there exists a one-to-one function f such that

" n L L cost;;df(i)f(j) :SJ{.
i = I j =l,j;ti

After removing the arcs (i, j) such that f (i) < f (j) from G, there will be no cycles. Since the number of such arcs is :S J{,

they form a subset A' ~ A with I A' l:S K such that A' contains at least one arc from every directed cycle in G. D

References

[1] R. Allen and K. Kennedy. Automatic transformation of Fortran program to vector form. ACM Trans. on Programming

Languages and Systems, 9(4):491-542, Oct. 1987.

[2] R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control dependence to data dependence. In 10th

Annual ACM Symp. on Principles of Programming Languages, pages 177-189, Jan. 1983.

[3] R. Anderson, A. Munshi, and B. Simons. A scheduling problem arising from loop parallelization on MIMD machines.

In 3rd Aegean Workshop on Computing, AWOC 88,Corfu,Greece, pages 124-133, June/July 1988.

[4] D.-K. Chen. MaxPar: An execution driven simulator for studying parallel systems. Master's thesis, University of

Illinois at Urbana-Champaign, October 1989. Also available as CSRD tech report No. 917.

[5] D.-K. Chen and P.-C. Yew. An empirical study of DO ACROSS loops. In Supercomputing '91, pages 620-632. IEEE

Computer Society Press, November 1991. Also available as CSRD tech report No. 1140.

[6] D.-K. Chen and P.-C. Yew. Redundant synchronization elimination for DOACROSS loops. In 1994 lnt'l. Parallel

Processing Symposium, pages 477-481, April 1994. Also available as CSRD tech report No. 1315.

[7] R. Cytron. Compile-time Scheduling and Optimization for Asychronous Machines. PhD thesis, University of Illinois

at Urbana-Champaign, 1984.

[8] R. Cytron. Doacross: Beyond vectorization for multiprocessors. In Int' l. Conf on Parallel Processing, pages 836-845,

August 1986.

23

[9] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman,

1979.

[IO] V. Krothapalli and P. Sadayappan. Removal ofredundant dependences in doacross loops with con slant dependences.

IEEE Trans. on Parallel and Distributed Systems, 2(3): 281-290, July 1992.

[11] D. J. Kuck. The Structure of Computers and Computations, volume I, chapter 2, page 139. John Wiley and Sons, New

York, 1978.

[12] Z. Li and W. Abu-Sufah. On reducing data synchronization in multiprocessed loops. IEEE Trans. on Computers,

C-36(1): 105- 109, January 1987.

[13] S. Midkiff and D. Padua. A comparison of four synchronization optimization techniques. In Int'l. Conf on Parallel

Processing, volume II, pages 9-16, Aug. 1991.

(14] D. Padua and M. Wolfe. Advanced compiler optimizations for supercomputers. Comm. of ACM, pages 1184-1201,

Dec. 1986.

[15] D. A. Padua. Multiprocessors: Discussion of Some Theoretical and Practical Problems. PhD thesis, Dept. of Computer

Science, Univ. of Illinois at Urbana-Champaign, October 1979.

[16] D. A. Padua, D . J. Kuck, and D. H. Lawrie. High-speed multiprocessors and compilation techniques. IEEE Trans. on

Computers, c-29(9):763-776, September 1980.

l 17] D. K. Poulsen and P.-C. Yew. Execution-driven tools for parallel simulation of parallel architectures and applications.

In Supercomputing '91, pages 860-869, November 1993.

[18] E. Reingold, J. Nievergelt, and N . Deo. Combinatorial Algorithms: Theory and Practice. Prentice-Hall Inc., 1977.

[19] B. Simons and A. Munshi. Scheduling loops on processors: Algorithms and complexity. SIAM J. of Computing,

19(4):728- 741,August 1990.

[20] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler. Matrix eigensystem

routines - eispack guide. Heidelberg, 1976.

24

[21] R.E. Tarjan. Depth first search and linear graph algorithms. SIAM J. Comupting, 1(2), 1972.

[22] M. J. Wolfe. Optimizing Compilers for Supercomputers. PhD thesis, University of Illinois at Urbana-Champaign,

1982.

25

	Blank Page

