
Abstract†

MPEG-4 which is currently being developed by MPEG
(Moving Pictures Experts Group), is poised to become a
standard for supporting current and emerging interactive
multimedia applications. The objective of MPEG-4 is to
support content-based compression, communication, access
and manipulation of digital objects which can be natural or
synthetic. Since MPEG-4 based video consists of objects and
provides full interactivity between the client and the server, a
software-based implementation seems to be the only viable
approach for building an MPEG-4 encoder. Parallel processing
solves the problem of large computational requirements for
building a real-time encoder.

In this paper, we describe a parallel implementation of
MPEG-4 video encoder using a cluster of workstations
collectively working as a virtual machine. Parallelization of the
MPEG-4 encoder poses an interesting problem since not only
can objects be added or deleted from a video scene but their
sizes and shapes may vary with time. Moreover, some of the
computationally intensive parts of the encoder are non-uniform
algorithms, which means their execution times are data
dependent and cannot be predicted in advance. In order to
guarantee the spatio-temporal relationship between various
objects in a video, we propose a real-time scheduling algorithm
for exploiting parallelism in the temporal domain. The
algorithm divides the workstations into a number of groups and
assigns one video object to one group of workstations for
encoding. A dynamic shape-adaptive data partitioning strategy
is proposed to exploit parallelism in the spatial domain. The
partitioning strategy divides the data of an object among the
workstations within a group. The scheduling scheme ensures
the synchronization requirements among multiple objects
while the dynamic data parallel approach adapts to the object
shape variations to balance the load for all the workstations.
The performance of the encoder can scale according to the
number of workstations used. With 20 workstations, the
encoder yields an encoding rate higher than real-time, allowing
to encode multiple sequences simultaneously.

Keywords: MPEG-4, video compression, distributed and
parallel processing, data partitioning, scheduling, MPI.

1  Introduction
With the development of workstations and networking

technologies, the aggregated computing power of a cluster of
workstations can match that of an expensive parallel computing
system [6]. Because of the advantages such as scalable file
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storage, large memory, high performance-cost ratio, and
efficient communication hardware/software support, many
current parallel applications can use the cluster of workstations
as the platform instead of parallel machines.

On the other hand, recently, there has been a technological
revolution in the area of multimedia-based information
technology. Progress in information technology is now
recognized to be essential for the success of industrial and
commercial businesses as well as for improving the quality of
life for the masses in general. A majority of present and future
multimedia-based applications require huge computing power.
For instance, video is a fundamental component of multimedia
systems, and the storage and transmission of large amount of
required data inevitably calls for the compression and
decompression of digital video. Video compression, if done
through software, requires considerably extensive computing
power than that offered by a single PC or workstation. Parallel
processing then becomes a natural approach. The latest
developments in cluster computing offer a higher degree of
performance at an affordable cost (such as a network of
workstations), provided the parallelism from the application at
hand is effectively extracted and scheduling and load balancing
schemes are properly designed.

MPEG-4, currently being developed by MPEG (Moving
Picture Experts Group) [9], is expected to be finalized towards
the end of this year. It will become a standard for compression,
transmission, and presentation of current and emerging
interactive multimedia applications. The objective of MPEG-4
is to support content-based communication, access and
manipulation of digital objects which can be natural or
synthetic [15]. With a flexible toolbox approach, MPEG-4 is
capable of supporting diverse new functionalities and satisfy
various application requirements on different aspects and
hence will cover a broad range of present and future
multimedia applications. In addition, due to its extensible
system configuration architecture, MPEG-4 is aimed to be
more compatible with advanced new technologies.

Because of its object-based features and flexible toolbox
approach, MPEG-4 is considerably more complex and
demands more computing power than previous video coding
standards. Thus, a software-based implementation using
parallel processing seems to be only viable approach for
building MPEG-4 based systems.

Previous coding standards such has H.261, MPEG1/2, and
H.263 have been implemented using either software (see [3],
[4], [5] and [18]) or hardware-based (see [23], [2], [17] and
[10]) approaches with each having its pros and cons. Interactive
multimedia systems, such as digital television, that require real-
time multimedia communication, both the encoder and decoder
are desired to be highly efficient and must provide close to real-
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time operations. For example, mobile communication and
database access require very low bitrate video coding and error
resilience across various networks; virtual reality requires
integration of natural and synthetic hybrid object coding;
interactive video games require a high degree of object based
interactivity. Instead of traditional frame based interaction such
as fast-forward, fast-backward, etc., new ways of interactively
are needed to efficiently realize such applications.

MPEG-4, due to its content-based representation nature
and flexible configuration structure, is considerably more
complex than previous standards. Any MPEG-4 hardware
implementation is likely to be very much application specific.
Therefore, software-based implementation is a natural and
viable option. The main problem with such an approach is the
requirement of a huge amount of computing power to support
real-time encoding and decoding operations. As elaborated in
the subsequent section, although MPEG-4 encoding is highly
suitable for implementing using parallel and distributed
systems, it is nevertheless a non-trivial task because of the
unpredictable nature of MPEG-4 workload.

We are building an MPEG-4 based interactive multimedia
environment for supporting applications in the areas of CAD,
teaching, and animation. And as a part of this system, we have
implemented an MPEG-4 encoder with a software-based
approach using parallel processing. As illustrated in Figure 1,
the system is conceptually based on a client-server model, with
a number of clients making interactive requests to a server. The
server encodes and delivers the requested information using
MPEG-4 format. The problem addressed here is the
implementation of MPEG-4 encoder which is done using a
distributed cluster of workstations.

The rest of this paper is arranged in the following manner:
Section 2 gives a brief overview of MPEG-4 video verification
model. Section 3 describes the proposed implementation
approach in detail. A real-time scheduling algorithm is
proposed to schedule various sub-tasks of the encoder. A
dynamic shape-adaptive data partitioning scheme is also
proposed to further divide the data of a sub-task. Section 4
provides the experimental results. The last section concludes
the paper by providing an overview of our ongoing research in
this area and future avenues of extending this work.

2  Overview of MPEG-4 Video
MPEG-4 is scheduled to become an international standard

in November 1998. During the development, the so called
“Verification Model” (VM) methodology is adopted to specify
the candidate technologies which may be included in the final
standard [14]. The VM is supposed to evolve through a core
experimental process [19]. MPEG-4 video VM is one of the
main parts of MPEG-4 with the objective to support three
major functionalities: content-based interactivity, coding
efficiency, and universal access [21]. Its bitrate can range from
10kbits/s up to several Mbits/s. The spatial resolutions include
SQSIF/SQCIF, QSIF/QCIF, SIF/CIF, 4*SIF/CIF, and
CCIR601. In contrast to the existing ‘frame-based’ or ‘pixel-
based’ standards, such as MPEG-1/MPEG-2 and H.261/H.263,
MPEG-4 video is object-based hybrid coding standard which
specifies the technologies for representing and processing
video object efficiently to support various content-based
functionalities within the compression domain.

Figure 2 shows the conceptual architecture of MPEG-4
based multimedia systems. A user using a decoder can access
arbitrarily shaped objects in the scene or send a request to the
encoder which can manipulate the objects and deliver the
requested objects. The encoder compresses the data and
includes the additional necessary information such as the scene
description and synchronization requirements.

Figure 3 is the overall structure of the MPEG-4 video
codec (encoder and decoder) which is based on the concept of
video object planes (VOPs) defined as the instances of video
objects at a given time. As illustrated in Figure 4, a video may
have many sessions and each session may involve many
objects or layers of objects which in turn may have multiple
instances in time. A VOP lasts over a number of video frames.

The video encoder is composed of a number of identical
VOP encoders. Each object is segmented from the input video
signal and goes through the same encoding scheme separately.
The bitstreams of different VOPs are then multiplexed and
transmitted. At the decoder, the received bitstream are
demultiplexed and decoded by each VOP decoder. The
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reconstructed video objects are then composited by the
composition information (which is sent along with the
bitstream) and presented to the user. The user interaction with
the objects such as scaling, dragging, replacement and linking
can be handled either in the encoder or in the decoder.

In order to encode the arbitrarily shaped VOPs, MPEG-4
defines the “VOP window” as the tightest rectangular of the
VOP with the minimum number of macroblocks to represent
the VOP. There are three kinds of macroblock (MB) within the
VOP window, as depicted in Figure 5, the transparent MB, the
contour MB and the standard MB. The contour and standard
macroblocks include the pixels belonging to the VOP image,
and transparent MB lies completely outside the object.

Each VOP encoder consists of three main functions: shape
coding, motion estimation/compensation, and texture coding
(see Figure 6). When the shape of a VOP is the standard
rectangular size, MPEG-4 encoder structure is similar to that of
MPEG1/2 encoder, shape coding can be skipped.

Shape coding is used to compress the alpha plane
information which indicates the object region and contour
within the scene. There are two types of alpha planes: binary
alpha plane and grey scale plane, with both having the same
format as the luminance file. The binary alpha plane is encoded
by the algorithm calledcontent-based arithmetic encoding
(CAE). And the grey scale alpha plane is encoded by a block
based DCT (Discrete Cosine Transform) with motion
compensation which is similar to texture coding.

Motion estimation and compensation (ME/MC) are used to
reduce temporal redundancies. Motion prediction is performed
on the current block to find the best matched block within the

search window in the previous frame; the block size can be
either  or . The motion vector which is the
displacement between the current and the best matched block
from the previous frame are then coded with respect to the
neighboring three motion vectors already transmitted. In
addition to the basic motion technique, unrestricted ME/MC,
advanced prediction mode and bidirectional ME/MC
(especially for B-frame) are supported by the MPEG-4 video
VM to obtain a significant quality improvement. Unrestricted
motion estimation extends the predicted VOP to a large enough
size and performs ME/MC over the VOP boundaries. Thus, the
motion vectors may be outside the predicted VOP area. Such a
mode can achieve improved video quality when the object is
moved by the camera or the object is located on the picture
edge. In the advanced mode, each macroblock may have one,
two, or four vectors. The advanced mode also usesoverlapped
block motion compensation for luminance, which can provide
a significant quality improvement with a little increase in
complexity.

Since the shape of a VOP may be arbitrary and could vary
over time, a padding technique is applied on the blocks on the
previously reconstructed VOP borders to fill the values of the
pixels outside the object. This allows polygon matching instead
of block matching for rectangular image. SAD (Sum of
Absolute Difference) is used as the error measure due to its
lower computational complexity. SAD is calculated only on the
pixels inside the object.

The texture coding which deals with the intra and residual
data after motion compensation of VOPs includes algorithms
that are similar or identical to the ones used in H.263. A 2D
DCT is performed on each macroblock. The DC and AC
coefficients are then quantized by either MPEG or H.263
quantization method. For I-VOP and P-VOP, the intra DC and
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Figure 3: MPEG-4 video codec (encoder and decoder) structure.
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AC coefficients can be predicted from the corresponding
coefficients in the previous neighboring blocks to get the
differential DC/AC values. After using a scanning method
(such as zigzag scan, alternate-horizontal scan and alternate-
vertical scan), the quantized transform coefficients are further
coded by variable length coding (VLC). The data of the blocks
on the boundary of the object can be coded by low pass
extrapolation (LPE) padding and shape adaptive DCT (SA-
DCT).

MPEG-4 also supports scalable coding of video objects in
both spatial and temporal domains, and provides error
resilience across various media. In addition to the above basic
technologies used in the encoder structure, the toolbox
approach of MPEG-4 video makes it possible to achieve more
improvement for some special cases by dedicated tools. Further
details on the coding and syntax of MPEG-4 video can be
found in [16].

3  Parallelizing the MPEG-4 Encoder
Since MPEG-4 supports many new functionalities that are

not available in the existing standards, it will cover a broad
range of multimedia applications, such as interactive video
games, intra/internet multimedia mailing, and content-based
database access. Most of these applications have real-time
requirements which demand the codec to be highly efficient. In
order to deal with arbitrarily shaped objects, more sophisticated
techniques are needed to achieve an efficient compression. But
this can introduce extra complexity in the encoder which in turn
requires additional computational power. Since the encoder of
MPEG-4 video is much more complex and time consuming in
computing than the decoder, it is more challenging to speedup
the computation in the encoder.

As mentioned earlier, no hardware-based MPEG-4 encoder
can fully support the flexible and extensible features of MPEG-
4 standard. The object-oriented nature of MPEG-4 requires a
highly flexible and somewhat programmable encoder which is
more feasible using a software-based approach. But the
computational requirement of a software-based encoder is
simply too enormous to be handled by a single processor PC or
even a very fast workstation. It is, therefore, natural to exploit
the high computational power offered by a high-performance
parallel or distributed system. In our MPEG-4 based
multimedia project, we have implemented an encoder on a
cluster of dedicated workstations that collectively work as a
virtual parallel machine. The architecture of MPEG-4 encoder
as shown Figure 3 also happens to be very suitable for
distributed computing. Each input VOP is encoded separately
and efficient performance can be achieved by decomposing the
whole encoder into separate tasks with individual VOP
encoders and running them simultaneously. However, the task
of parallelizing the MPEG-4 encoder VM on a cluster of
workstations is a non-trivial as it requires a careful data
distribution and scheduling of various parts of the encoder to
ensure that spatio-temporal relationships between various
VOPs are preserved.

In a simpler approach, one could use a single workstation
to encode one VOP. But this scheme does not fully exploit the
computational power of the system because it is not scalable
and the degree of parallelism offered by this approach is rather
limited. A more effective approach is to form groups of
workstations, with each group working on a single VOP while
parallelism is exploited by further partitioning the VOP among

the workstations within the group. This scheme, however,
requires a careful partitioning of both control and data.
Furthermore, the sizes of VOPs change with time implying that
distribution and partitioning of VOPs will need to be adjusted
accordingly. Since this must be done in real-time, the cost of
scheduling and distribution must be kept low to ensure that the
benefits gained from an efficient parallelization are not
outweighed by a long time taken by the scheduler.

In our scheme, the control parallelism is achieved by
making groups of workstations, and assigning the task of one
VOP encoding to one group. However, the distribution of
VOPs to different groups of workstations must consider the
relationships between the VOPs. This is done by using a
scheduling algorithm that distributes VOPs to various groups
of workstations in accordance with their priorities so that their
encoding is complete before their presentation deadlines.

Data parallelism is exploited by dividing the data of a VOP
among the workstations within a group, allowing further gain
in computing speed. For distributing the data of a VOP various
partitioning schemes are possible. The details of the scheduling
algorithm and data partitioning schemes are described below.

3.1  Real-time Scheduling
In MPEG-4 video VM encoder, one of the most important

issues to consider is the synchronization of various video
objects. Each object may have certain presentation timing
constrains which, in turn, may be dependent on the other
objects. The playout time requirement and associated
synchronization constrains among multiple video objects must
be satisfied in real-time to guarantee a smooth flow of video
sequence presented to the user.

The objective of real-time scheduling is to assign the tasks
to the available processors and determine the execution order
of each task so that tasks are completed before their deadlines
[20]. A real-time scheduling can be characterized as being
either static and dynamic. In static scheduling, the algorithm
determines the schedule with the complete knowledge of all the
tasks in advance. In contrast, a dynamic scheduling algorithm
deals with task assignment at run-time because the information
about the tasks is not available in advance. Static scheduling
incurs little run-time cost but cannot adapt to the
indeterministic behavior of the system. On the other hand,
dynamic scheduling is more flexible as it can be adjusted to
system changes but incurs a high run-time cost.

According to MPEG-4 video hierarchical syntax structure
shown in Figure 4, we can employ a completely static
scheduling at the VS level which requires the knowledge of all
the objects within the session beforehand. Alternatively, we
can perform dynamic scheduling on a frame by frame basis at
the VOP level so as to adapt to the VOPs variations. Since in
an MPEG-4 video session, the number of objects may change
from time to time, their characteristics such as frame rate,
playout deadlines, and spatial resolutions may also be different.
Thus, while a static scheduling scheme at a VS level is feasible
for some non-real-time applications, its is not suitable for most
real-time applications because of the unpredictable
characteristics of VOPs.

In our implementation, we have designed a hybrid static
and dynamic scheduling scheme applied at the VO level. The
knowledge of video objects can only be known after observing
a time period. During that period, either the objects variation is



arisen by the operations such as user interaction or content
database retrieval, or the characteristics of these objects are
relatively stable. The length of the period depends on the
availability of objects. When a new object is added or dropped,
we have to reschedule the tasks for the next period. The main
advantage of such scheduling is its ability to adapt to the
variation of both deterministic and indeterministic video
objects on line with a little overhead. Figure 7 shows the
playout time chart of a general MPEG-4 video example. The
session has 4 video objects (VOs); VO0, VO1, VO3 start at time
0, and VO2 starts at time unit 4. VO0 and VO1 end at time unit
4, while VO2 and VO3 end at time unit 12. The frame rates of
VOs are different. The duration of a frame for VO1 is 1 time
unit, while the duration of a frame is 2 for VO1 and 4 for VO2
and VO3.

Figure 8 indicates the scheduling period at VO level for the
case of Figure 7. The scheduling period is bounded by the
successive object scheduling instants (OSIs) and the
complexity of the scheduling depends on the number of OSIs
during the whole video session.

A number of scheduling algorithms have been developed
for both distributed and parallel systems [8]. In our
implementation, we use a variant of theearliest-deadline-first
(EDF) algorithm which has been widely employed in many
applications [22]. The principle of this algorithm is that the
tasks with earlier deadlines are assigned higher priorities and
run before tasks with lower priorities. In our implementation,
VOPs with the earlier playout deadlines or synchronization
points get to be encoded and delivered first. For the tasks with
the same deadline, we assign a portion of available processors
to each object, with the number of allocated processors
depending upon the size ratio among these objects because a
video object with a larger size generally requires more
computing and vice versa.

3.2  Dynamic Shape-Adaptive Data Partition
Parallel programming paradigms can be classified into

various models such as object-oriented model, control-parallel
model, and data-parallel model. Data parallel paradigm
emphasizes exploiting parallelism in a large data sets such as a
video session which usually consists of a large amount of data.
The main idea of data partitioning in video encoding is to
decompose the whole frame data into a number of data blocks
and map these blocks onto the corresponding processors.
Because the processors of the parallel program perform the
computation on their local memories and run the program on

the data blocks simultaneously, a high speedup can be
achieved.

The exchange of the data and synchronization in a
distributed system can only be done through message passing
among processors. However, the communication overhead can
penalize the gain achieved due to parallelism. Most tools
specified by the MPEG-4 video standard, such as padding,
DCT, quantization, and VLC, are block-based algorithms and
perform the computing restricted within a macroblock.
Therefore, we can employ macroblock-based data partition to
map the integer number of macroblocks to each processor and
enable the compression algorithm to be done locally. This is
done by setting the workstations in a virtual two dimensional
topology and then mapping the data onto the topology. As for
motion estimation which finds the motion vector of current
macroblock from the previous frame search window, both the
current block data and search window data are involved in the
computation.

To reduce the interprocessor communication overhead, we
use an overlapped partition approach which minimizes the data
exchange during the motion estimation procedure, but requires
more memory in each processor to store the entire search
window data from the previously processed frame (as shown in
Figure 9). This approach allows to perform motion estimation
on all the processors independently since the required data are
available in the local memories.

The second problem to be addressed is the issue of load
balancing. Due to the object-based nature of MPEG-4 video,
the size and location of each object may vary with time, and
such situations cannot be predicted beforehand. Therefore no
matter how initial tasks are assigned, the workloads of the
processors will become unbalanced later on, which will cause
some processors to be highly loaded while others are idle or
lightly loaded. Furthermore, some computationally intensive
algorithms of the encoder are data dependent and their
execution time are different to different data region. For
example, some algorithms are performed on all macroblocks
while others just acted on contour and standard MBs. Thus the
problem of load balancing should be addressed carefully in the
parallel processing in order to achieve real-time video
encoding.

Figure 10 shows several commonly used partitioning
methods. Strip-wise partition divides the whole VOP window
horizontally or vertically into  subregions for  processors.
It is easy to determine the area of subregions for corresponding
processors. Block-wise partition divides the VOP window
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evenly along both the horizontal and vertical dimensions. The
number of boundary pixels of the subregion is minimum, but
the number of processors to be used is restricted and not
suitable for heterogeneous systems. Recursive bisection
method divides the whole VOP window recursively in binary
fashion [7]. It is capable of optimally equally distributing the
computational load, while it is relatively expensive to execute
the recursive operations during the decomposition.

Due to the unpredictable variation of MPEG-4 objects, any
simple and static partitioning scheme will cause workload
imbalances which result in lower overall performance. A
dynamic partition scheme can handle the indeterministic
behavior of the system, but it depends on the trade-off between
the balancing quality and overhead run-time cost [1]. In our
implementation, since the partition must be done in real-time,
the cost of partition and redistribution must be kept low to
ensure that the benefits gained from an efficient parallelization
are not negated by a long time taken by the partitioning method.

In order to adapt object variations and minimize
partitioning cost, we developed a shape-adaptive data partition
method to guarantee the workload balancing during the whole
video session with low run-time overhead and fine granularity.

First, the entire MPEG-4 video session is defined as a the
number of time intervals. The time interval boundary depends
on the variation of the VOP window size. A new time interval
begins whenever a VOP window changes above a certain

threshold. Since the knowledge of the video objects can be
obtained at the beginning of the interval, we then perform the
shape-adaptive partition within each time interval. During that
interval, we can assume that the spatial computation
distribution is relatively stable and no need to change
partitions. Therefore, the proposed load balancing can handle
the object variation with minimum overhead run-time. Since
most of the algorithms are macroblock-based, we employ
macroblock-based data partition to map an integer number of
macroblocks to each processor and enable the compression
algorithm to be done locally.

Most data partitioning methods restrict the subregion to be
rectangular blocks to avoid a messy problem of the data
structure. For MPEG-4, when the object is large enough and
almost fill the VOP window, these methods may achieve good
load balancing because the contour and standard MBs are
likely to be distributed uniformly among multiprocessors.
While in general cases, some subregions of the window may be
full of transparent MBs while others may be full of contour
and/or standard MBs. Therefore, no partitioning method can
equally distribute the rectangular subregion in a
straightforward way. In addition, the object size may become
too tricky to do the strip-wise or block-wise partition.

Here, we present a shape-adaptive partitioning method
whose subregions may have arbitrary shape, and the
rectangular sub-alpha plane is further redefined to avoid the
unnecessary computation for each processor. As depicted in
Figure 11, the gray blocks represent the contour and standard
MBs while the white blocks represent transparent MBs. By
using the alpha plane information, we can get the statistical
distribution of the contour and standard MBs. Then they are
equally assigned to a given number of processors. As illustrated
in Figure 11 (a), there are 20 contour and standard MBs within
the window. Each processor is assigned 5 contour and standard
MBs. Since each processor (P0 to P3) may get arbitrarily
shaped subregions (see Figure 11 (b)), it may require complex
data structures for processing. To overcome this problem, we
extend these subregions to rectangular regions called sub-
AlphaPlane (see Figure 11 (c)). Since some of the sub-alpha
planes contain macroblocks which are redundant, we redefine
the sub-Alpha planes by labelling those macroblocks as
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Figure 10: Common partitioning methods.

1

2

3

4

1 2

3 4

1 2

3 4 5

Strip-wise Block-wise Recursive bisection

14 15 16

17 18 19 20

P0 P1

P2 P3

Sub-AlphaPlane Re-defined Sub-AlphaPlane

P0

P1

P2

P3

1 2 3 4 5

6 7 8 9

10 11 12 13

14 15 16

17 18 19 20

1 2 3 4 5

6 7 8 9

10 11 12 13

10 11 12 13

14 15 16

1 2 3 4 5

6 7 8 9

10

11 12 13

14 15

16

17 18 19 20

1 2 3 4 5 6 7 8 9

10

11 12 13

14 15

16

17 18 19 20

(a) (b)

(c) (d)

Figure 11: Arbitrary partitioning example.



transparent MBs in order to avoid unnecessary computation
(see Figure 11 (d)). For example, Processor 3 (P3) encodes only
the subregion that includes the contour and standard
macroblock from 16 to 20 as shown in Figure 11 (b). In order
to get a rectangular subregion which contains those blocks, we
extend this subregion such that the whole sub-alpha plane
contains the contour and standard MBs from 14 to 20. Then we
define the 14th and 15th MB as the transparent MB to form a
redefined sub-alpha plane (as shown in Figure 11 (d)).
Therefore, processor 3 still processes 5 contour and standard
MBs while keeps the subregion rectangular.

Because such a partition is based on macroblock
decomposition, the granularity is small allowing a finer load
balancing of the workload among the multiprocessors. In
addition, by keeping the data block for each processor
rectangular, the decoder can recover the entire object easily.
Because the syntax definition of each bitstream contains the
position and size information of the rectangular block,
reconstruction of the object is just equal to the composition of
the data blocks together and no bitstream combination
required.

4  Experimental Results
The proposed parallel approach has been tested on a cluster

of 20 UltraSparc-I workstations connected by a ForeSystems
ATM switch (ASX-1000). The cluster is virtually configured
as virtual 2D processor grid which is independent of the
hardware topology.

For inter-processor communication and synchronization,
we useMessage Passing Interface (MPI) [24], ensuring the
portability of our MPEG-4 video encoder across various
machines. MPI is an industrial standard designed by MPI
Forum for supporting a portable message-passing parallel
program on massively parallel computers as well as networks
of workstations. MPI includes the syntax and semantics of
point-to-point and collective communication routines which
are useful to most parallel programmers.

Several experiments have been performed on a sets of
MPEG-4 video test sequences by using a number of
workstations ranging from 1 to 20. A fast block-based motion
estimation algorithm [12] is adopted to speedup the
computation of motion estimation while maintaining the visual
quality close to that of the full search.

Our experiments included video sequences of QCIF
resolutions which are chosen from different classes of MPEG-
4 library and represent various characteristic in terms of spatial
detail and movement.

Figure 12 shows the encoding rates for different MPEG-4
video test sequences by using various numbers of workstations,
and Figure 13 is the overall speedup ratio. Figure 14 shows the
comparison between the static strip-wise/block-wise partition,
object-based partition [11] and our proposed method for the
test sequence ‘Children21’ with QCIF format. We can observe
that a high real-time performance has been achieved by our
method.

Figure 15 is one of the alpha planes of VOP ‘Children21’,
we can observe that most transparent macroblocks located
between two boys. Neither the block-wise or strip-wise
partition can make the workload balancing when the number of
processors increased. It is unavoidable that some processor
might deal with the data block full of the transparent

macroblocks that require little computation. Some processors
need to process the entire data block that is full of the
computationally intensive contour/standard macroblocks. The
proposed object-based partitioning method [11] can determine
the optimal rectangular grid from the available block-wise/
strip-wise partitioning grid, and its performance is better than
fixed grid partitioning, especially when the VOP shape changes
significantly. One limitation of this method is that the number
of possible grids is limited. When the number of processors
increases, the same problem with fixed block-wise/strip-wise
partition will occur. The shape-adaptive partition can guarantee
the workload balancing in such a case since it can equally
distribute the computationally intensive macroblocks to each

Figure 12: Encoding frame rate.
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Figure 13: Overall speedup.
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Figure 14: Partitioning performance comparison.
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processor without using an exhaustive search. Therefore, a
higher encoding rate can be achieved compared to the other two
methods.

5  Conclusions
In this paper a software-based parallel implementation of

MPEG-4 video VM encoder using a cluster of workstations has
been proposed. The experimental results on various test
sequences have been provided and an encoding rate higher that
real-time has been achieved on most sequences. The
contribution of our work includes the use of a shape-adaptive
data parallel scheme, and a real-time scheduling algorithm to
implement MPEG-4 video encoder. In our present work, we are
exploiting dynamic load balancing algorithms for
heterogeneous computing environment for MPEG-4
applications.
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